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ABSTRACT

In ecology and epidemiology, spatio-temporal distributions of
events can be described by Cox processes. Situations for which
there exists a hidden process which contributes to random ef-
fects on the intensity of the observed Cox process are consid-
ered. The observed process is a generalized shot noise Cox pro-
cess and the hidden process is a Poisson process associated with a
Dirichlet process. The distributional properties of quadrat counts
are presented and bayesian inference is proposed for estimating
and predicting parameters of interest in the model. Illustrations
are given from weed spatial count data and disease mortality data.
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1. INTRODUCTION

In ecology and epidemiology, distributions of events like disease
occurrences, predator arrivals or plant locations can be considered
as realizations of a point process, of which each point represents
a single event. The point process theory has been presented and
discussed in [2], [3]] and [8]. Statistical procedures for analysing
point process realizations can be found in books ([6]; [22]; [12];
[19]) and a lot of papers deal with applications in special situa-
tions (e.g. [7]]; [11]; [4]; [25]). Some studies are based on counts
of events in sampling units ([5]), and some others on event spatial
positions or occurrence dates ([25]), and also distance sampling
([16h). Perry et al. ([20]) discussed appropriate selection and use of
method for analyzing spatial point patterns in plant ecology. One
may refer to [19] for papers about statistical tools for spatial point
processes. [3] discussed recently about spatial point process models
for forest inventories exhibiting overdispersion. In applications in
which overdispersion is assumed, Cox process modeling is a com-
mon choice since this class of point processes is wide enough to
take into consideration many features. Thus, [26] presented various
scientific fields in which the Cox process, also known as doubly
stochastic Poisson process, occurs. The intensity process A(.) of
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such a process on a measured space (X, B,v) is a random field
related to its driving random measure A(.) as follows :

A(B) = /B Az)v(dz), M)

for any element B of B. In expression , A(B) is a random vari-
able which stands for the expected number of points in B. Thus,
modeling a Cox process is equivalent to modeling either its inten-
sity or its driving measure ([24]). For example, [4] described a spe-
cific class of Cox processes, namely shot-noise G Cox processes,
by modeling A(.) with a shot-noise G-measure.

In this paper, a generalized shot-noise Cox process N on a mea-
sured space ([18]) is considered. The intensity at any spatial lo-
cation is expressed as a linear combination of kernels centered on
contributing events. The model is extended to the case where there
exist contributions to the intensity process associated with a Dirich-
let process ([[13]]; [9]). This latter process describes hidden environ-
mental effects on the observed intensity. The Dirichlet process is
almost surely discrete so that the proposed model takes into ac-
count situations for which some contributions may be equal even
if associated with different spatial locations or dates. The focus is
on statistical procedures providing inference tools in a bayesian
framework when observing count data. In section 2, the distribu-
tional properties of observed counts in spatial sampling units are
presented with respect to bandwidth influence of the hidden spa-
tial events and with respect to concentration parameter of hidden
contributions to intensity. Section 3 focuses on performing pos-
terior inference on the hidden process parameters by means of a
hybrid Gibbs-Metropolis-Hastings algorithm. In sections 4 and 5,
two case studies are carried out : the first one concerns spatial count
data from Ibicella lutea, the second one is based on death numbers
per county in Georgia, US, caused by chronic lower respiratory
diseases. After performing dispersion and spatial autocorrelation
tests, estimations of the expected number of hidden events, their
expected contribution to intensity and other parameters of the pro-
posed model are carried out. Section 6 concludes the paper with an
overview of the main features of the proposed approach.



2. DISTRIBUTIONAL PROPERTIES OF COUNT
MIXTURES

Let N be a Cox process with intensity process A on space X de-
fined by :

Vo € X, Za] (x,y;) 2

where K is a kernel function such that K(.,y) is a probability den-
sity function on X for any y in X and M is the random number
of contributions. The y; are a realization of a point process L on
X with positive real marks a; identically distributed according to
a probability law G on R, and independent of the y;. If L is a
homogeneous Poisson process with scalar intensity p and the a;
are equal to the same value, then ) is a standard shot noise process
([17]), and then N is a standard shot noise Cox process. Moreover,
if the bandwidth of K is a random variable, then NN is a generalized
shot noise Cox process ([18]]). In expression @), a; is the contribu-
tion of event y; to the intensity A.

In this paper, the contributions a; are assumed to follow a Dirichlet
process G ([13],[9]) with base measure GG and concentration pa-
rameter « denoted by DP(«, Gy). Therefore, there is no indepen-
dence condition on the a; as in many models but a weaker condition
of exchangeability provided by De Finetti’s theorem, see for exam-
ple [10]. In fact the contributions a; are conditionally independent
given G. This provides a way of taking into account correlation be-
tween marks and mixed environmental effects. The y; are assumed
to be occurrence locations of a homogeneous Poisson process with
parameter p denoted by H PP( ). In other words,

()| G "~ G
(y5) ~ HPP(u) 3)
G ~ .DF)(OZ7 Go)

The following propositions give some distributional properties of
the counting measure associated with NV with respect to concentra-
tion parameter .

PROPOSITION 1. Let N be a Cox process on the measured
space (X, B, v) with intensiy defined by equations (2) and , then

VA€ B BN(B) =nB(@) [ [ Klawpldey(dy)
and
vV(E) =BV ®) (1- L EE)

+uEa1/(/K:cy dcc) v(dy).

PROOF. Taking into account (T) and (), then for any element
B of B,

M
:Zaj/ K (2, y;)v(dz). )
=1 B

Since the y; are uniformly distributed on X conditionally to M,
the expectation of A(B) conditional on M is

1
ME(a /7/1(3:, v(dz)v(d
and the final result for E(N(B)) is obtained from E(M) =
uv(X).
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Similarly, the second moment of A(B) conditional on M is
2
me@) [ s (K nma) viay
xv(X

/B K (z, y)l/(dx)y(dy)) .

E(araz) = (E(a)*a/(a+1); BE(M(M —1)) = (w(X))
and V(N(B)) =V (A(B))+ E(A(B)) lead us to the final
result. O

+M(M —1)E(ara2) (AW

PROPOSITION 2. With the same conditions as in propositionm
let (By, By) be an element of 3% with B;N By = (). The covariance
between N (B) and N(By) is

Cov(N(B1),N(Bg)) =

wa) [ ( [ Kl

1
a+1

K(r, y)v(dm) v(dy)

Bo

E(N(B1))E(N(Bz)).

PROOF. Since N is a Cox
Cov (N(B1),N(B2)) = Cov (A(B1),A(Bz)).
On the other hand,

process, then

E(A(B1)A(B2)) =
(Zaj/ K(z,y;)v(dz) Zak K (z,yp)v (dm))
K(z,y,)v(dz)

- E (ME(af)E ( . . K(x,yl)V(dfﬂ)))

+ B0 5| K (oot . §<x7yg>v<dx>))

The final result is obtained from

E(M) = uv(X), E(a1a2) = (E(a1))?*a/(a+ 1) and
E(M(M —1)) = (u(X))".
O

Let us consider count data in r disjoint subsets of X. When G be-
longs to a probability distribution family parameterized by b and K
a kernel family parameterized by o, we have the following result :

PROPOSITION 3. Let N be a Cox process on the mea-
sured space (X,B,v) with intensiy defined by equations (l)
and (3) and let By,--- , B, be r disjoint elements of B. Con-
sider Gy parametertzed by b and K parameterized by o. Un-
der independent priors for o, b, and o, the posterior distri-
bution of (o, b, u, 0, (a;)j=1,... ,m, M), conditional on counts in

By, .-, B,, is proportional to :
v(X)M
P(@p(Dp(@p(P(ar.. . ax | a,b, 1) IV oo
« HA )N (Bi) g=AB) ®)]



with the conditional joint distribution of the a; obtained from the
following expression :

ajlay,...

Q@
i1~ G Oa,- (6
, Q-1 atj_1 0+a+j71; e (0)

The A(B;) depend on (o, (a;)j=1,....m, M) as described in (EI)
PROOF. Conditionally to process A, the N (B;) are independent
counts following respectively a Poisson distribution with parameter
A(B;). The associated conditional likelihood is then multiplied by
the joint prior distribution of the parameters «, b, 4, o, a1, ..., an
and M. The Bayes theorem is then applied.
Equation @) is obtained from the predictive law representation pre-
sented by [1]. O

In the sequel, K is assumed to be an isotropic gaussian kernel with
bandwidth o. Another aspect of the model is the limits when the
spatial influence parameter o tends to zero or when the concentra-
tion parameter « tends to zero or infinity.

PROPOSITION 4. With the same conditions as in prapositionm
consider B and B' two disjoint elements of B and let K be an
isotropic gaussian kernel with bandwidth o. Then

1) lim E(N(B)) = pE(a)v(B),
L VINB) | pB) o B
DI ENE) ~ ' a1 "B ey
3) lim Cov(N(B), N(B) = i (Blar))? - v(B)v(B)
4) The variance-to-mean ratio % is an increasing func-

tion with respect to c.

PROOF. 1) A(B

Za]/ K(z,y;)v(dz) and for any
(w,5) € X x{L,---, M}, K(z,y;) convergestod, ({z})
as o converges to O. T his gives us

[ljlgr(l) A(B Z a;dy, ( (7

E(N(B)) =
Independence of a; and y; conditional on
lin(l)E(N(B)) = pF(a1)v(B).

E(A(B)) = E (ME(a;|M)E(5,,(

J

B)|M)).
leads to

2) / K (z,y)v(dx) converges to 1 (y) as o converges to 0.

B

Therefore )

lim (/ K(x,y)y(dx)) v(dy) = v(B) which leads us
o—0 X B

to the final result.

3) Equation (7) leads to
E(A(B)A(B")) = p*v(B ) (B ’)E(alag) On the other
hand, Cov(N(B), N(B')) = Cov(A(B), A(B')). Therefore,
Cov(N(B )N( ') = 1i20(B)v(B')Cov(ar, as).
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Fig. 1. Acyclic directed graph of the hierarchical model defined by @
with Go=Gamma(1, b)

4)  From proposition[T] it results that
V(N(B)) 1

ENGB) L arilWNB)

/(/ny dw) (dy).
O] [ Keiasmian

Moreover, in the above equation, the third term of the right
member and F(N(B)) do not depend on a.. Consequently, the
variance-to-mean ratio is increasing with a.

O

Proposition [] shows that even if the spatial influence of hidden
events is negligeable (o close to zero), count correlation may be
high according to the value taken by parameter «. It is worth point-
ing out that when « equals zero, the a; are all equal to each other
whereas when o converges to infinity, the a; are independent iden-
tically distributed according to Go. Thus property 4 in proposition[d]
indicates that « is a dispersion parameter. The lower « is, the higher
the correlation between a; is and the lower the overdispersion is.

In the sequel, the Gamma distribution with scale parameter a and
shape parameter b is denoted by Gamma(a, b).

3. ESTIMATION PROCEDURE

Posterior inference methods can be performed on spatial models
([14]) by implementing MCMC sampling. The model defined by
expressions (2) and (B) and described by figure[T]involves two sets
of unknowns, first o, b, u, ¢ which are the parameters of interest,
secondly, the positions (y;) and effects (a;) of the hidden events.
Let us denote by ¢(.) the joint distribution of the unknowns and
count data up to a constant. Then :

q ((N(Bl))7 (O{, b? W, o, M? (a’j ’ yj)j:l,--- ,M)) X

)N (Bi)gA(BY)

p p a,b,u,o
p(ay,...,anm | @,b, M) e HA

®)

As expressed in , the positions (y,) intervene in the posterior
distribution of (v, b, i, o) in the following way :

= Zaj /B. K(z,y;)v(dz).



Fort=1,...,N
- Generate log(a**1)) according to N (log(a(?)), &)
- Accept a*+1) with probability
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(®)
q ((N(Bz))v (a(t+1)7 b(t) ) /L(t)y U(t)y M(t)7 (a‘j7 yj)jil,'“ M (1) ))

min

q ((N(B’L))7 (a(t>, b(t)7 M(t)7 U<t)7 M(t)7 (a’j7 yj)izl e M (1) ))

- Generate log(b®**+1)) according to N (log(b™®), &)
- Accept b(*+1) with probability

man

I

q ((N(BZ))7 (O‘<t+l)7 b(t+1)a /"’(t)a U(t)a M(t>’ (a’j7 y]);ZL 7]\/I(t)))

q ((N(Bz))v (a(t+1)7 b(t) ) /La)y U(t)y M(t)7 (a‘j7 y])§21 e M (E) ))

- Generate log (1)) according to M (log(u(?), &3)
- Accept p(t+1) with probability

)

q ((N(Bi)), (a(t+1)7 pE+D | (1) 50 pp) (ajvyj)i-t:)L...,Mu)))

min

q ((N(BZ))7 (O‘(t+l>7 b<t+1)a /"’(t)a U(t)a M(t>’ (a’j7 y])§21 ]\/I(t)))

- Generate o**1) according to NV (log(c(?)), &)
- Accept o(*T1) with probability

)

q ((N(Bz))7 (a(t+1)7 b(t+1)a /~’L<t+l)7 o—(t+1)7 M<t)’ (aj7 y]);ZL ,]M(t)))

min

q ((N(Bi))7 (amn, DD, (D) 60, M), (ag,5,) " Mm))

- Generate M (1) according to % (Sparrs1 + 000 1)
- Generate (agtﬂ), cee ag\i[ftlll)) in the following way
-if MY = M® — 1 by uniform random thinning on {a(lt), e
-if M@Y= M® 4 1 by a random adding according to
Q(t+D)
S I YIO)

- Generate ((y1) 1, -+, (yy,041)) D) in the following way

Gamma(1,b0Y) 4

I

1»1<t)}

M)

1
o+ D kZ LNO

=1

-if MY = M® — 1 by suppressing (y;) corresponding to a; previously suppressed

- if M) = M® 4 1 by adding (y,,¢+1) ™ according to U(X).

Fig. 2. Hybrid Gibbs Metropolis-Hastings algorithm

Expression (8) enables convenient use of the MCMC algorithm
proposed in figure[2}

It is worth noticing that independent priors were chosen for o, b,
and 0. Consequently, the Metropolis-Hastings ratios at the different
steps of the algorithm may be simple to calculate, particularly for
updating parameters «, b and .

For each individual parameter, the MCMC sampling enables in-
ferences made via posterior marginal distribution. In fact, at the
completion of the MCMC run, we have a posterior joint distribu-
tion sample for the parameters of interest which provides a good
approximation of their posterior probability law.

[23]] offered a set of suggestions for choosing among models by ex-
amining the posterior distribution of the log-likelihood under each
model. They introduced the deviance information criterion in aim-
ing to combine measure of fit and complexity (effective number of
parameters). The resulting criterion is the difference between the

posterior mean of the deviance and the deviance at the posterior
mean which can be easily calculated from the MCMC posterior
sample.

4. ANALYSIS OF IBICELLA LUTEA COUNT DATA

Data provided by [16] are considered. They consist of 742 weeds
(Ibicella lutea) in an australian farming paddock of area 1200 x
1200 square meter. This weed dispersal mechanism is through
seeds falling to the ground from ripen fruits. Additionally, fruits
are carried away from plants by mammals. These latter unobserved
events can be mathematically considered as the realization of an
hidden process.

Figure [3| displays Ibicella lutea count data by means of a regular
grid of size 32 x 32. In order to measure overdispersion and spa-
tial autocorrelation at different scales, counts were aggregated with



Table 1. Dispersion and spatial autocorrelation test results for Ibicella

lutea with respect to grid size
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Table 3. Dispersion and spatial autocorrelation test results for
death number per county in Georgia, US in 2007 for CLRD.

grid | Mean | Variance | Dispersion | Dispersion | Moran Moran Mean | Variance | Dispersion | Dispersion | Moran | Moran

size index pvalue index pvalue index pvalue index pvalue
x107° x1071 | x1072 x10~5 x1075

42 46.25 142.33 3.08 5 3.32 3.9 46.25 | 789.04 37.36 0 0.405 0

8% | 11.56 | 18.60 1.61 157 1.74 4.16

162 | 2.89 3.98 1.38 6 1.50 0.075 Table 4. Bayesian inference results for death number caused

32 [ 0.72 0.87 1.20 1 0.64 0.37 by CLRD per county in Georgia, US in 2007.

Table 2. Bayesian inference results for Ibicella lutea count

data
Mean Median | Standard error 95% HPD
« | 22.516 | 21.974 6.367 (11.920,36.761)
b 5.157 5.880 1.750 (2.150, 7.456)
p | 20.139 | 19.145 6.598 (9.808, 34.285)
o 0.048 0.033 0.024 (0.030,0.097)

different grid sizes and the dispersion and Moran autocorrelation
indices were calculated and tested for each grid size (table [I). A
significant overdispersion was found for each of the spatial scales
which were considered. The spatial autocorrelation was signifi-
cantly positive for grid sizes 2¥ x 2% k > 2 (table [I). This led
us to apply the Cox process model defined from expressions (2)
and (3). Then p stands for the expected number of dispersal events
whereas o is a seed dispersal parameter : the closer o is to zero, the
shorter are the dispersal distances. We assume that the contribu-
tions a; to weed intensity follow a Dirichlet process centered on a
Gamma distribution with scale parameter equal to unity and shape
parameter b, denoted by Gamma(1,b). In fact the Gamma distri-
bution is frequently used in environmental effect modeling ([24]]).
Here parameter b is the expected contribution to intensity for a dis-
persal event since Gamma(1,b) is the marginal distribution of any
a;. When concentration parameter « tends to zero, the contribu-
tions a; are strongly and positively correlated. When « tends to
infinity, these contributions are independent.

The bayesian inference results are summarized in table[2Jusing pos-
terior means, medians, standard deviations and 95% highest poste-
rior density (HPD) intervals. The bayesian mean number of hidden
events is around 20. Posterior mean contribution is 5.16. The in-
fluence parameter bayesian mean is 0.048. The concentration pa-
rameter estimates are around 22. The Bayesian deviance calculated
at the posterior mean was choosen as criterion of goodness-of-fit
(123]). In table@ the bayesian deviance result indicates that the hy-
pothesis of equality of some contributions is more likely than the
one of independent contributions.

In addition to information on structure of weed communities in
crops such as the one provided by [21]], these results may give some
relevant information about unobserved events in the framework of
weed control management. The proposed approach provides esti-
mates of hidden process parameters influencing the weed dispersal
and can be integrated into weed management programs.

S. ANALYSIS OF CHRONIC LOWER
RESPIRATORY DISEASES DEATH NUMBERS

A set of data from Georgia (USA) was analyzed. These data avail-
able at the Web site http://www.georgiastats.uga.edu/ consist of
counts of death cases in each of the 159 counties of Georgia, for
chronic lower respiratory diseases (CLRD) in 2007. For these dis-
eases, death occurrences are sometimes the consequence of unob-
served events due to environmental factor effects which generate

Mean Median | Standard error 95% HPD
« 8.189 8.048 1.868 (4.928,12.285)
b 1.498 1.489 0.241 (1.057,1.993)
©o| 26.844 | 26.493 5.130 (17.643,37.796)
o 0.075 0.075 0.002 (0.070,0.079)

Table 5. Bayesian deviance calculation for Ibicella
Lutea count data (grid 32 x 32) and Georgia death
number per county for CLRD.

Bayesian Deviance | Bayesian Deviance
(@=0) (o = +00)
Ibicella Lutea 1027.537 1048.074
[ CLRD [ 10245.690 [  10252.780 |

clustering. However, it is possible to formulate a bayesian cluster
model taking into account such unobserved process of cluster cen-
ters ([13]).

Figure [4| shows the case counts for each county for CLRD along
with the neighbourhood links between counties. The neighbour-
hood weight is based on whether or not two counties share border-
lines with each other. The dispersion index and the Moran spatial
index based on this neighbourhood were calculated (table[3). The
corresponding p-values indicate a very strong overdispersion and
positive spatial autocorrelation for CLRD.

Tables @]and[5]show the results of bayesian inference for these dis-
eases. The bayesian mean number of hidden events is 26.84 for
chronic lower respiratory disease. The bayesian deviance is weaker
under the hypothesis of equal contributions compared the one un-
der the hypothesis of independent contributions. In other words, the
equality of contributions is more likely than their independence.

6. CONCLUSION

In this article, a model of Cox process associated with a Dirichlet
process was proposed with an emphasis on modeling spatial distri-
butions of events generated by hidden occurrences. Event contri-
butions are distributed according to a Dirichlet process centered on
a Gamma distribution. A hybrid Gibbs-Metropolis-Hastings algo-
rithm was developed. It provides the posterior distribution for the
following parameters : expected number of hidden events per spa-
tial unit, expected contribution per hidden event, spatial influence
of hidden events and dispersion index due to hidden events. The
hypotheses of contribution equality and contribution independence
are compared by means of bayesian deviance calculation. Applica-
tion to real data shows the potential of the method considered.
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Fig. 3. 32 x 32 regular grid of Ibicella lutea spatial count data
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