
International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.16, June 2014 

6 

Runtime and Space Complexity Comparison of the 

various Association Algorithms 

 

K. Fathima Bibi, 
Research Scholar,   

Reg. No.:Ph.D_CB_Dec2012_0441, 
Dept. of Comp. Sc., Bharathiyar University, 

Coimbatore, TN, India 

 

M. Nazreen Banu, Ph.D 
Research Advisor, 

Professor, Dept. of Comp. Sc. & Engg, 

MAM College of Engineering, 

Tiruchirappalli, TN, India 

 
ABSTRACT 
Data mining has become an indispensable technology for 

businesses and researchers in many fields. Discovering 

frequent itemsets is a key problem in important data 

mining applications. Typical association algorithms for 

solving this problem operate in a bottom-up, top-down and 

breadth-first search direction. The computation starts from 

frequent 1-itemsets (the minimum length frequent 

itemsets) and continues until all maximal (length) frequent 

itemsets are found. Algorithms perform well when all 

maximal frequent itemsets are short. However, 

performance drastically decreases when some of the 

maximal frequent itemsets are relatively long.  This paper 

focuses on finding Maximum Frequent Set with the 

implementation of the APRIORI and the Dynamic Itemset 

Counting Algorithm (DIC) and a comparative study with 

Pincer Search Algorithm to select the fast algorithm for 

discovering the Maximum Frequent Set. 

General Terms 
Knowledge Discovery, Data Warehousing, Data Mining, 

Algorithms, Patterns. 

Keywords 
Maximum Frequent Set, Association, Classification, 

Clustering, Sequential, Outlier, Evolution. 

1. INTRODUCTION 
Data Warehousing:  The database in a data warehouse is 

not the same as the databases used for transaction 

processing. Data warehouse databases are designed to 

analyze terabytes of data and millions of records. They are 

organized to allow better analysis by using special 

techniques. 

Data Mining:   

 hot buzzword for a class of techniques that find 

patterns in data  [1]  

 A user-centric, interactive process which 

leverages analysis technologies and computing 

power   

 A group of techniques that find relationships that 

have not previously been discovered   

Knowledge Discovery in Database (KDD) defined as “the 

non-trivial process of identifying valid, novel, potentially 

useful, and ultimately understandable patterns in data”.   A 

key component of many data mining problems is 

formulated as follows. Given a large database of sets of 

items, discover all frequent itemsets (sets of items), where 

a frequent itemset is one that occurs in at least a user-

defined percentage (minimum support) of the database.  

The problem was first formulated by Agrawal et al. [2, 3, 

4, 5, 6, 7, 8, 9] and is often referred to as the ``market-

basket'' problem. In this problem, a set of items and a large 

collection of transactions which are subsets (baskets) of 

these items are given. The task is to find relationship 

between the presences of various items within those 

baskets.  

2. METHODOLOGIES 

Different methods or techniques are proposed based on 

which the hidden patterns are discovered.  They are 

Association Analysis, Classification, Prediction, Cluster 

Analysis, Sequential Pattern Analysis, Outlier Analysis 

and Evolution Analysis. 

2.1 Association Analysis  

As defined by Agrawal et al.,    

Let I = {i1, i2, ……., in} be a set of n binary attributes 

called items.  

Let D = {t1, t2,……., tm} be a set of transactions called 

the database.  

Each transaction in D has a unique transaction ID and 

contains a subset of the items in I.  

An Association rule is defined as an implication of the 

form X => Y where X, Y  I and X ∩ Y = ɸ. 
The sets of items (for short itemsets) X and Y is called 

antecedent (Left-Hand-Side or LHS) and consequent 

(Right-Hand-Side or RHS) of the rule.  

{i1, i2} => {i3} means, if i1 and i2 are bought customers 

also buy i3. 

The best-known constraints are minimum thresholds on 

support and confidence.   

Support (Supp(X)) of an itemset X - the proportion of 

transactions in the data set which contain the itemset. 

Supp(X) = Number of transactions in which X occurred /    

                  Total number of transactions. 

 

Confidence of a rule –  

Conf(X => Y) = supp(X U Y) / supp(X). 

The goal of association rule mining is to discover all rules 

that have support and confidence greater than some user-

defined minimum support and minimum confidence 

thresholds, respectively.   



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.16, June 2014 

7 

2.2 Frequent Itemsets - Structural 

Properties and Basic Discovery 

Approaches  

2.2.1 Maximum Frequent Set 
Among all the frequent itemsets, some will be maximal 

frequent itemsets; they have no proper supersets that are 

themselves frequent. The maximum frequent set (or MFS) 

is the set of all the maximal frequent itemsets. The 

problem of discovering the frequent set can be reduced to 

the problem of discovering the MFS.    

 

2.2.2 Closure Properties  
The set of all itemsets is partitioned, perhaps implicitly, 

into three sets:  

1. Frequent: This is the set of those itemsets that 

have been discovered so far as frequent. 

2. Infrequent: This is the set of those itemsets that 

have been discovered so far as infrequent.    

3. Unclassified: This is the set of all the other 

itemsets.  

Initially, the frequent and the infrequent sets are empty. 

Throughout the execution, they grow at the expense of the 

unclassified set. The execution terminates when the 

unclassified set becomes empty, and then, of course all the 

maximal frequent itemsets are discovered. 

Two closure properties can be used to immediately classify 

some of the unclassified itemsets 

Property 1: If an itemset is infrequent, all it supersets must 

be infrequent, and they need not be examined further. 

Property 2: If an itemset is frequent, all its subsets must be 

frequent, and they need not be examined further. 

2.2.3 Discovering Frequent Itemsets 

In general, it is possible to search for the maximal frequent 

itemsets either bottom-up or top-down. If all maximal 

frequent itemsets are expected to be short (close to 1 in 

size), it seems efficient to search for them bottom-up, uses 

only Property 1 to reduce the number of candidates. If all 

maximal frequent itemsets are expected to be long (close 

to n in size) it seems efficient to search for them top-down, 

uses only Property 2 to reduce the number of candidates as 

shown in Fig.1. 

Bottom-up approach: It consists of repeatedly applying a 

pass, itself consisting of two steps. At the end of pass k all 

frequent itemsets of size k or less have been discovered. 

As the first step of pass k+1, itemsets of size k+1 each 

having two frequent k-subsets with the same first k-1 items 

are generated. Itemsets that are supersets of infrequent 

itemsets are pruned (and discarded), as of course they are 

infrequent (by Property 1).  The remaining itemsets form 

the set of candidates for this pass. As the second step, the 

support of the candidates is computed (by reading the 

database), and they are classified as either frequent or 

infrequent. 

Top-down approach: Starts with the single n-itemset and 

decreases the size of the candidates by one in every pass. 

When a k-itemset is determined to be infrequent, all of its 

(k-1)-subsets will be examined in the next pass. However, 

if a k-itemset is frequent, then all of its subsets must be 

frequent and need not be examined. 

 

Fig. 1: Top-Down and Bottom-Up Searches 

3. ASSOCIATION RULE MINING 

ALGORITHMS 

3.1 Apriori Algorithm 

The Apriori algorithm is a typical bottom-up approach 

algorithm. The Apriori algorithm repeatedly uses Apriori-

gen algorithm to generate candidates and then count their 

supports by reading the entire database once. Apriori-gen 

relies on Property 1.  

3.1.1 Join and Prune Procedures 

The candidate generation algorithm consists of a join 

procedure and a prune procedure. The join procedure 

combines two frequent k-itemsets, which have the same 

(k-1) prefix, to generate a (k+1)-itemset as a new 

preliminary candidate. Following the join procedure, the 

prune procedure is used to remove from the preliminary 

candidate set all itemsets C such that some k-subset of C is 

not a frequent itemset. 

The join procedure of the Apriori-gen algorithm 

Input: Lk, the set containing frequent itemsets found in 

pass k 

Output: Preliminary candidate set Ck+1 

The prune procedure of the Apriori-gen algorithm 

Input: Preliminary candidate set Ck+1 generated from the 

join procedure  

Output: Final candidate set Ck+1, which does not contain 

any infrequent subset 

3.1.2 Reducing the Number of Candidates and 

the Number of Passes  

To design an algorithm that can efficiently discover both 

long and short maximal frequent itemsets, one might think 

of simply running both bottom-up and top-down programs 

at the same time. A key component of the approach is the 

use of information gathered in the search in one direction 

to prune more candidates during the search in the other 

direction. If some maximal frequent itemset is found in the 

top-down direction, then this itemset can be used to 

eliminate (possibly many) candidates in the bottom-up 

direction. The subsets of this frequent itemset can be 

pruned because they are frequent (Property 2). Of course, 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.16, June 2014 

8 

if an infrequent itemset is found in the bottom-up 

direction, then it can be used to eliminate some candidates 

in the top-down direction (Property 1). This “Two-Way 

Search Approach” shown in Fig.2 can fully make use of 

 

Fig. 2: Two-Way Search Approach 

both properties and thus speed up the search for the 

maximum frequent set. Reducing the number of candidates 

is of critical importance for the efficiency of the frequent 

set discovery process, since the cost of the entire process 

comes from reading the database (I/O time) to generate the 

supports of candidates ( CPU time) and the generation of 

new candidates (CPU time).  

3.2 The Basic Pincer-Search Algorithm 

The Pincer-Search Algorithm relies on the combined 

approach for determining the maximum frequent.  

3.2.1 Pincer-Search Procedure  

Input: A database and a user-defined minimum support 

Output: MFS, which contains all maximal frequent 

itemsets 

The MFCS is initialized to contain one itemset, which 

consists of all the database items. The MFCS is updated 

whenever new infrequent itemsets are found. If an itemset 

in the MFCS is found to be frequent, then its subsets will 

not participate in the subsequent support counting and 

candidate set generation steps.  

Pincer-Search reduces both the number of candidates and 

the number of passes.  

3.2.1.1 Two-Way Search by Using the 

MFCS 

The two-way search algorithm for discovering the 

maximum frequent set relies on a new data structure 

during its execution, the maximum frequent candidate set 

(MFCS). 

Consider some point during the execution of an algorithm 

for finding the MFS. 

Let FREQUENT be the set of the itemsets known to be 

frequent. 

Let INFREQUENT be the set of the itemsets known to be 

infrequent. 

Then the maximum frequent candidate set (MFCS) is the 

minimum cardinality set of items satisfying the conditions. 

 FREQUENT U {2X / x  MFCS} 

INFREQUENT ∩ {2X / x  MFCS} =  

MFCS is a superset of the MFS. When the algorithm 

terminates, the MFCS and the MFS are equal. The 

computation of the algorithm follows the bottom-up 

breadth-first search approach.  

In each pass, in addition to counting supports of the 

candidates in the bottom-up direction, the algorithm also 

counts supports of the itemsets in the MFCS; this set is 

adapted for the top-down search. This will help in           

pruning candidates, but will also require changes in 

candidate generation. The subsets of the MFCS must not 

contain this infrequent itemset.  

By using the MFCS some maximal frequent itemsets may 

be discovered in early passes. This early discovery of the 

maximal frequent itemsets can reduce the number of 

candidates and the passes of reading the database, which in 

turn can reduce the CPU time and I/O time. This is 

especially significant when the maximal frequent itemsets 

discovered in the early passes are long.  

3.2.1.2 Updating the MFCS  

Replace every such itemset (say X) by Y itemsets, each 

obtained by removing from X a single item (element) of Y.   

3.2.2 Procedure of MFCS-gen 

Input: Old MFCS and the infrequent set Sk found in pass k 

Output: New MFCS 

3.2.3 Prune procedure  

Input: Current MFCS and Ck+1  after join and recovery 

procedures 

Output: Final candidate set Ck+1  

 3.2.4 Candidate generation procedure 

Input:    Lk, current MFCS, and current MFS 

Output:   New candidate set Ck+1 

3.3 The Dynamic Itemset Counting 

Algorithm 

1. Mark the empty itemset with a solid square. 

Mark all the 1-itemsets with dashed circles. 

Leave all other itemsets unmarked.  

2. While any dashed itemsets remain:  

  Read M transactions (when the end of 

the transaction file is reached, continue 

from the beginning). For each 

transaction, increment the respective 

counters for the itemsets that appear in 

the transaction and are marked with 

dashes.  

 If a dashed circle's count exceeds 

minsupp, turn it into a dashed square. 

If any immediate superset of it has all 

of its subsets as solid or dashed 

squares, add a new counter for it and 

make it a dashed circle.   

 Once a dashed itemset has been 

counted through all the transactions, 

make it solid and stop counting it.  

 Solid Square:  confirmed frequent 

itemset - an itemset that has finished 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.16, June 2014 

9 

counting and exceeds the support 

threshold minsupp.  

 Solid circle:  confirmed 

infrequent itemset – that has finished 

counting and it is below minsupp.  

  Dashed square:  suspected 

frequent itemset - an itemset which is 

still in counting that exceeds minsupp.  

 Dashed circle:  suspected 

infrequent itemset - an itemset which 

is still in counting that is below 

minsupp. 

Operations:   

1. Add new itemsets  

2. Maintain a counter for every itemset  

3. Manage itemset states from dashed to solid 

and from circle to square. When itemsets 

become large, determine which new 

itemsets should be added because they 

could potentially be large.  

4. PERFORMANCE EVALUATION 
Assume support to be equal to 20%. Since the number 

of transactions is 15, it means that an itemset is 

supported by at least three transactions is a frequent 

set. Generate candidate itemsets and frequent 

itemsets, when minimum support count is >2.  

 

 Table 1: Sample Database 

 

Apriori Algorithm 

In a 9 x 15, in pass -3 only one set is present. This is MFS. 

So the algorithm stops.  

 

Pincer-Search Algorithm 

Here also in pass -3 only one set is present which is MFS 

so the algorithm stops.  

Dynamic Itemset Counting Algorithm  

This algorithm requires only 2.75 database passes instead 

of 3 passes. 

For the association mining algorithms to be effective, the 

top-down search needs to reach the maximal frequent 

itemsets faster than the bottom-up search.  

5. TIME and SPACE COMPLEXITY 

COMPARISON  
Since transactions of itemsets are divided into groups by 

interval value, the work done by DIC algorithm [10] is 

increased. So complexity also increases. But the time taken 

to complete the algorithm is reduced. 

In PINCER SEARCH algorithm, top-down and bottom-up 

approaches are applied on each step to find frequent 

itemset implicitly. So the amount of work done is 

increased in this case. 

If the amount of transactions and itemsets are increased, 

then considerably time taken to complete the process will 

be increased. The program size of Apriori algorithm is 923 

bytes and for Dynamic Itemset Counting Algorithm 1879 

bytes. 

Table 2: Run Time values 

DATABASE   SIZE 

(ITEMSET X 

TRANSACTIONS) 

APRIORI DIC 

TIME (in Seconds) TIME  (in Seconds ) 

Start      End       Run Start        End           Run 

4  X  4 51 55 4 8 10 2 

6  X  6 40 47 7 50 53 3 

6  X  7 50 57 7 34 37 3 

9  X   10 53 65 12 36 39 3 

9   X   15 39 55 16 44 48 4 

 The above Table2 values can be represented 

diagrammatically with the help of charts. 

RUN TIME COMPARISION

0

5

10

15

20

4x4 6x6 6x7 9x10 9x15

DATA BASE SIZE

( ITEMSETS X TRANSACTIONS)

T
IM

E

 (
 S

E
C

O
N

D
S

)

ap

dic

 

Fig. 3: Runtime and Space Complexity Comparison 

APRIORI PERFORMANCE

0

5

10

15

20

4x4 6x6 6x7 9x10 9x15

DATA BASE SIZE (ITEMSET X TRANSACTIONS)

T
I
M

E
 (

 S
E

C
O

N
D

S
)

 

 

DYNAMIC ITEMSET COUNTING PERFORMANCE

0

1

2

3

4

5

4x4 6x6 6x7 9x10 9x15

DATA BASE SIZE      (ITEMSET X 

TRANSACTIONS)

T
IM

E
(S

E
C

O
N

D
S

)

Series1

 

 1 2 3 4 5 6 

1 1 0 0 0 1 1 

2 0 1 0 1 0 0 

3 0 0 0 1 1 0 

4 0 1 1 0 0 0 

5 0 0 0 0 1 1 

6 0 1 1 1 0 0 



International Journal of Computer Applications (0975 – 8887) 

Volume 95– No.16, June 2014 

10 

6. CONCLUSION 

The maximum frequent set provides a unique 

representation of all the frequent set, and once it is known, 

all the required frequent subsets can be easily generated. 

The Dynamic Itemset Counting algorithm could reduce 

both the number of times the database is read and the 

number of candidates. 

Experiments show that the improvement of using this 

approach can be very significant, especially when some 

maximal frequent itemsets are long.  

7. FUTURE ENHANCEMENTS  

The performance of the Dynamic Itemset Counting 

algorithm in applications of discovering price changing 

patterns in stock market can be studied. It is worthwhile to 

study the performance of the Dynamic Itemset Counting 

Algorithm on problems having long maximal frequent 

itemsets. If the maximal frequent itemsets are distributed 

in a scattered manner, then the problem of discovering the 

MFS can be very hard. In this case, even Dynamic Itemset 

Counting Algorithm might not be able to solve it 

efficiently. Parallelizing the Dynamic Itemset Counting 

algorithm might be a possible way to solve this hard 

problem. The candidate set is divided in such a way that all 

the candidates that are subsets of an itemset in the MFCS 

are assigned to a same processor.  Each processor can run 

totally independent. The issues to study would be the way 

to minimize the duplicate calculations and to maximize the 

use of available processors. 

8. REFERENCES 

[1] www.dama-ncr.org 

[2]  R. Agrawal, T. Imilienski, and A. Swami. Database 

Mining: A Performance Perspective. IEEE 

Transactions on Knowledge and Data Engineering, 

5(6):914--925, December 1993. 

[3]  R. Agrawal, T. Imilienski, and A. Swami. Mining 

Association Rules between Sets of Items in Large 

Databases. Proc. of the ACM SIGMOD Int'l Conf. on 

Management of Data, pages 207--216, May 1993. 

[4] R. Agrawal and R. Srikant. Fast algorithms for 

mining association rules. In Proceedings of the 20th 

VLDB Conference, Santiago, Chile, 1994. 

[5] R. Agrawal and R. Srikant. Mining sequential 

patterns. In Proceedings of the 11th International 

Conference on Data Engineering, Taipei, Taiwan, 

1995. 

[6] R. Agrawal, K. Lin, S. Sawhney, and K. Shim. Fast 

similarity search in the presence of noise, scaling and 

translation in time-series databases. In Proc. of the 

Int'l Conf. on Very Large Data Bases (VLDB), 1995. 

[7]  R. Srikant and R. Agrawal. Mining generalized 

association rules. 1995. 

[8] M. Mehta, R. Agrawal, and J. Rissanen. Sliq: A fast 

scalable classifier for data mining. March 1996. 

[9] H. Toivonen. Sampling large databases for 

association rules. Proc. of the Int'l Conf. on Very 

Large Data Bases (VLDB), 1996.  

[10]  Sergey Brin, Rajeev Motwani y Jeffrey D. Ullman z, 

Dynamic Itemset Counting and Implication Rules for 

Market Basket Data, Department of Computer 

Science, Stanford University, Shalom Tsur, R&D 

Division, Hitachi America Ltd. 

9. AUTHOR’S PROFILE 

K. Fathima Bibi received her Bachelor’s degree in 

Computer Science, Master’s degree in Computer Science, 

and M.Phil. degree in Computer Science all from 

Bharathidasan University, Tiruchirappalli, Tamil Nadu, 

India. She cleared SET in October 2012. Presently she is 

pursing Ph.D.  in the area of Data Mining at Bharathiyar 

University, Coimbatore, Tamil Nadu, India. At present, 

she is working as an Assistant Professor in the Department 

of Computer Science, Jamal Mohamed College 

(Autonomous), Tiruchirappalli, Tamil Nadu, India. 

M. Nazreen Banu received her Bachelor’s degree in 

Chemistry and Master’s degree in Computer Applications, 

both from Bharathidasan University, Tiruchirappalli, 

Tamil Nadu, India. She gained her PhD degree from 

Nagoya Institute of Technology, Nagoya, Japan. She was a 

recipient of Japanese (MEXT) scholarship, from 2008 – 

2012. She worked as an Assistant Professor at Jamal 

Mohamed College, Tiruchirappalli from 1999 – 2008. At 

present, she is working as a Professor in the Department of 

Computer Science & Engineering, M.A.M College of 

Engineering, Tiruchirappalli. Tamil Nadu, India. Her 

research interests include Distributed & Parallel 

processing, operating systems and Advanced computer 

networks

 

 

IJCATM : www.ijcaonline.org 


