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ABSTRACT 

In this paper, an accurate method of updating the 

configuration pose (dead reckoning) for differential drive 

mobile robot localization is introduced. This method is based 

on the principles of geometry. This method ensures the most 

accurate and fast position updating in comparison with the 

conventional methods of configuration updating. This method 

was applied on a group of mobile robots in an indoor 

environment searching for a target. 
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1. INTRODUCTION 
One of the localization most and simple important techniques 

is the dead reckoning. This technique estimates the next robot 

location as a function of time using the current location and 

other commands like output velocity and steering. Dead 

reckoning varies according the design of the mobile robot. In 

the case of differential drive mobile robot (DDMR) which has 

two individual wheels on common axle, the robot should 

follow arc curves around a point lies on the wheel common 

axle [1] provided that the two wheels are fixed and have a 

fixed and flat contact with the ground.  

In the ideal circumstances, this method is sufficient to locate 

the differential drive mobile robot in any next time. However, 

some real events may challenge this ideal situation like 

modeling errors, actuator command difference, wheel slipping 

etc. So, other pose estimation techniques are required to fix 

the pose estimation by Dead Reckoning especially for long-

time run. 

One of the important effects of odometric errors is the limited 

resolution during integration. This effect concerns with 

limited time increments and distance measurement resolutions 

[2]. This effect occurs when the time period T is inconsistent 

with the possible change of motion commands which makes 

the robot driven away on its real position. Another effect is 

the flatness of the ground. If the ground is not flat, a slip may 

occur and the robot misleads its way. 

Although there are advanced ways of localization like using 

maps or GPS or using SLAM technique, dead reckoning is the 

most favorable technique in indoor environments [3]. 

Dead reckoning method used for mobile robot localization 

was extracted from the kinematic equation of motion. Discrete 

methods were used in terms of time steps to predict the next 

pose. One of these methods was presented in [3] and the other 

by [4] which is more accurate. In this article an improvement 

was performed on the localization method to become more 

accurate. The proposed method is little more complicated than 

the method in [4] but is more accurate and suitable for real-

time mobile robot navigation. This method can be applied on 

the real robots if flatness of the ground is guaranteed with no 

slipping, also if the robot has low speed and moves in an 

indoor environment. 

This article is divided to some section. The second one is for 

theory research. It contains the three methods of dead 

reckoning including the proposed one. The third one is the 

design section which contains the design of mobile robot and 

its maximum speed and input wheel speeds. In the fourth 

section which contains the results and discussion, a 

comparison is held among the three methods as well as a 

robot simulation to illustrate the effect of this proposed 

method. In that simulation, this method is used to guide the 

robots to a found target until they reach and gather around it. 

2. RESEARCH METHOD 
In this section, three methods of robot dead reckoning will be 

explained. The first one is the ideal method which includes 

the integration of the kinematic equation; the second is the 

approximated method which is mentioned in [2]; and the third 

is the method proposed in this article. 

2.1 The Ideal Method: 
The kinematic model of the DDMR is as follows: 
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The output configuration vector contains the Cartesian 

coordinates of the DDMR in the global reference frame (x and 

y) as well as the orientation θ; whereas v and ω are the input 

linear and angular velocities of the DDMR which are used to 

calculate the configuration vector. To integrate the system of 

ordinary differential equations continuously, the orientation 

parameter is calculated first, and then it is used to calculate 

the Cartesian coordinates as in the next system of integrations: 
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Unfortunately, integrating this system continuously is very 

difficult if not as impossible because of the orientation 

function θ(t) which is inside the trigonometric functions. Also, 

this system is not suitable for digital machines which need the 
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system to be discrete. Therefore an approximate method will 

be used to overcome this problem. 

2.2 The Approximate Method: 
This method was introduced by [4] and mentioned in [2]. This 

method calculates the next configuration q(t+T) vector using 

the current vector q(t) and the current linear an angular 

velocities v and ω which are fixed scalars during the time 

period T. 

The calculation method is also begins with the orientation θ 

which is directly calculated by the next formula: 
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Then, the Cartesian coordinates x and y are then calculated 

using the kinematic model, where the orientation used in this 

calculation is the average of the current and the next 

orientation values: 
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This method is very useful to calculate the next configuration 

vector due to its simplicity and fast calculation. However, this 

method treats all robot tracks as linear although the actual 

tracks are circular most of the time. This method accumulates 

error over time which makes the robot diverges away from its 

actual position. 

Therefore, it is essential to take the circular paths into account 

to make the computation more accurate, an that’s will be 

carried out in the proposed method 

2.3 The Proposed Method: 
This method is based on two facts related to the DDMR; 

which are: 

The DDMR either moves in a straight line or rotates around 

itself or in a circular arc; because the linear and angular 

velocities are linearly dependant on the angular velocities of 

the wheels; and 

The angular velocity command for the robot’s wheels is fixed 

through a predefined time period T. 

The linear and angular velocities of the DDMR can be 

calculated through this matrix equation: 
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Where r is the wheel’s radius and l is the half distance 

between the two wheels 

It can be seen that when the angular velocities of the right and 

left wheels, ωr and ωl respectively are equal, the angular 

velocity of the DDMR ω becomes zero (i.e. the robot is 

moving in a straight line; forwards or backwards); and the 

linear velocity v can be simply calculated by multiplying the 

wheel angular velocity by the wheel radius. 

When the angular velocities of the DDMR wheels differ, the 

robot will no longer move in straight line; the robot will move 

in a circular path which its center C is located somewhere in 

the global reference frame. The circle center C is always 

positioned on the line which passes the robot wheels through 

its axle. The position of the center my be on one of the wheels 

(if the angular velocity command on that wheel is zero), or it 

may be on the robot axle (if the angular velocity command of 

one wheel is positive and the other one is negative), or it may 

be on the center of the robot (if the two angular velocity 

commands are equal in magnitude and opposite in signs); in 

this case, the linear velocity of the robot will be zero and the 

robot rotates around itself like the Earth does in its daily 

motion. 

Fig. 1 illustrates the three possible cases of robot movement. 

The first two cases, (i) and (ii), are simpler in calculation than 

the third one (iii). 

 

 

Figure 1: Robot Movement Cases 

The next configuration vector of the DDMR q(t+T) can be 

calculated from the current configuration vector of the DDMR 

q(t), provided that the angular velocity values for the DDMR 

wheels ωr and ωl are fixed through a time period T. The 

calculation occurs in three cases: 

Case (i) (ωr = ωl): In this case, the two angular velocity 

commands are equal; so the angular velocity of the robot is 

zero and the heading of the DDMR does not change. The 

linear velocity v is calculated by Eq. (5), and then multiplied 

by T to obtain the travelled distance Δs which can be used to 

update the configuration vector of the DDMR as in the 

equations below: 
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Case (ii) (ωr = -ωl): In this case, the two angular velocity 

commands are equal in magnitude and opposite in direction; 

so the linear velocity of the robot is zero and the Cartesian 

position of the DDMR does not change. The angular velocity 

ω is calculated by Eq. (5), and then multiplied by T to obtain 

the rotated phase Δθ which can be used to update the 

configuration vector of the DDMR as in the equations below: 
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Case (iii) (abs(ωr) ≠ abs(ωl)): In this case, neither v nor ω are 

zeros; so the robot will move in a circular path around a center 

point which is located in a distance R away from the center of 

the robot. To update the configuration vector, the value of R 

should be calculated first, and then the coordinates of center 

of robot’s circular path C is found. 

To prove that the track of the robot is circular, the curvature 

of the robot path should be calculated geometrically by this 

equation: 

 
s

Curvature






   …(8) 

The curvature is constant through T because the linear and 

angular velocities are made fixed. Therefore the curve which 

the robot takes is circular and it is possible to find the length 

of the circle radius R using the equation below: 
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Then, the coordinates of the center point [xC, yC] can be 

geometrically calculated in terms of the current and next 

configuration vectors: 
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Finally, after some rearrangements, the important set of 

equations which are useful to update the configuration vector 

of the DDMR through the third case of robot movement can 

be obtained. 
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It can be seen that the system of equations above is little more 

complex than the approximate method in the previous section 

in Eq. (3) and (4). 

This system of equation can also be deduced from the ideal 

integration system in Eq. (2). For instance, the next y-axis 

coordinate value can be obtained by integrating with respect 

to θ instead of t as follows: 
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The result is similar to the result obtained in Eq. (11). The 

same manner can be used in the next x-axis coordinate value. 

This method is also useful in calculation of total odometry (s). 

3. DESIGN PROCEDURE 
The three methods were modeled using MATLAB® software 

using robot model which has r = 5 cm, l = 10 cm, angular 

velocity values of the right and left wheels ωr and ωl are -20 

through 20 rad/s. 

MATLAB function ode45() was used for solving ordinary 

differential equations in the system of Eq. (1) in discrete form, 

because the continuous form is not practical for digital 

machines. However, the other two methods were coded in 

simple MATLAB .m script files. 

Two different angular velocities were applied upon the right 

and left wheels. These velocities were applied on all the 

methods to check their efficiencies; the error in distance and 

time taken in manipulation were measured to check the 

accuracy and speed. 

The applied angular velocities in continuous form were: 
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The applied angular velocities in discrete form were: 
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4. RESULTS AND DISCUSSIONS 
The test was performed onto different values of T with zero 

initial configurations. Figure 2 shows the original track; 

Figures 3 and 4 show the responses of the ideal discrete form 

as well as the two methods for time step of 0.2 and 0.02 

second respectively. 

 

 

Figure 2: Original track of the Mobile Robot in 

continuous form. 
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Figure 3: Response of the three methods for T = 0.2 

second. 

 

 

Figure 4: Response of the three methods for T = 0.02 

second. 

 

Table I shows the computation time and distance error for 

each of the approximated and proposed method with respect 

with the discrete ideal method.  

 

Table 1: Total Time and Distance Error for Different 

values of T 

T 
Disc. Ideal Approx. Proposed 

Time Time Error Time Error 

0.2 30 ms 140 μs 0.039 200 μs 0 

0.1 60 ms 200 μs 0.013 280 μs 0 

0.05 100 ms 260 μs 0.005 350 μs 0 

0.02 250 ms 520 μs 0.002 660 μs 0 

0.01 470 ms 1.1 ms 0.001 1.3 ms 0 

 

Fig. 2 shows the continuous ideal track of the mobile robot. 

This track can be achieved if the time sample T approaches 

zero. That’s clear in the Fig. 4 when the track shape 

approaches the ideal shape in Fig. 1. 

As it stated earlier, the ideal continuous form is not practical 

so the discrete one was used instead. The path color of the 

discrete ideal curve which the mobile robot follows is black, 

the red dots represent the approximated method, whereas the 

blue dots represent the proposed method. The blue dots are 

coincided over the mobile robot track as shown in Figures 3 

and 4. This means that the two methods (discrete ideal and 

proposed) are identical. This result is cited by Eq. (12) and the 

error column of the proposed method in Table I which hold 

just zeros. 

Table I holds the execution times of the three methods. The 

first method time is much greater than the times of the other 

two methods; because of the complicated mathematics for 

solving the ordinary differential equations. This method is not 

practical for real-time applications because it consumes time. 

As it can be seen, it is useless after T = 0.05 because the 

computation time will be greater than T after that value. So, 

this type of solution is mostly discarded from use. 

If a comparison occurs between the approx. and proposed 

methods, it can be seen that the two methods have close 

execution time. Although the approximated method is faster 

than the proposed method, but that does not exceed 20% from 

the speed of the proposed one. This is because latter method is 

little complicated than the former one. 

However, in all cases, the error decreases when T becomes 

smaller and smaller. But the computation time should be at 

most 10% from T so as to let the remaining time for other 

Mobile Robot processes. 

The proposed method was used in simulation of eight mobile 

robots searching for a target. The mobile robots used were E-

puck robots [5] and the simulation was performed by 

Webots™ robot simulation software [6]. The robots begin 

their journey searching for a colored target in the middle of 

the environment. When one of the robots finds the target, it 

stops and informs other robots about its location. All robots 

then direct to that location until they gather around the target. 

Figure 5 shows the robots when they are wandering. Figure 6 

shows the robots when the head to the target after they were 

informed about its location. Figure 7 shows the robots when 

they are gathering around the target. 

 

 

Figure 5: Robots when they are wandering in the 

environment 
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Figure 6: Robots when they head to the target 

 

Figure 7: Robots when they are gathering around the 

target 

 

5. CONCLUSIONS 
It can be concluded from this work that the proposed method 

has succeeded in representing the discrete ideal localization 

method with computation time close to the fast approximated 

method. These features elect the proposed method to be used 

in real-time robot mobile localization efficiently. This method 

idea can inspire the derivation of localization systems for 

other types of mobile robots like unicycle and car-like robots. 
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