
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 13, June 2014

21

An Accurate Dead Reckoning Method based on
Geometry Principles for Mobile Robot Localization

Ziyad T. Allawi

College of Education for

Humanitarian Studies,

University of Baghdad, Iraq

Turki Y. Abdalla
Department of Computer Engineering,

College of Engineering,

University of Basrah, Iraq

ABSTRACT

In this paper, an accurate method of updating the

configuration pose (dead reckoning) for differential drive

mobile robot localization is introduced. This method is based

on the principles of geometry. This method ensures the most

accurate and fast position updating in comparison with the

conventional methods of configuration updating. This method

was applied on a group of mobile robots in an indoor

environment searching for a target.

KEYWORDS
Dead Reckoning, Geometry, Localization, Navigation, Mobile

Robots.

1. INTRODUCTION
One of the localization most and simple important techniques

is the dead reckoning. This technique estimates the next robot

location as a function of time using the current location and

other commands like output velocity and steering. Dead

reckoning varies according the design of the mobile robot. In

the case of differential drive mobile robot (DDMR) which has

two individual wheels on common axle, the robot should

follow arc curves around a point lies on the wheel common

axle [1] provided that the two wheels are fixed and have a

fixed and flat contact with the ground.

In the ideal circumstances, this method is sufficient to locate

the differential drive mobile robot in any next time. However,

some real events may challenge this ideal situation like

modeling errors, actuator command difference, wheel slipping

etc. So, other pose estimation techniques are required to fix

the pose estimation by Dead Reckoning especially for long-

time run.

One of the important effects of odometric errors is the limited

resolution during integration. This effect concerns with

limited time increments and distance measurement resolutions

[2]. This effect occurs when the time period T is inconsistent

with the possible change of motion commands which makes

the robot driven away on its real position. Another effect is

the flatness of the ground. If the ground is not flat, a slip may

occur and the robot misleads its way.

Although there are advanced ways of localization like using

maps or GPS or using SLAM technique, dead reckoning is the

most favorable technique in indoor environments [3].

Dead reckoning method used for mobile robot localization

was extracted from the kinematic equation of motion. Discrete

methods were used in terms of time steps to predict the next

pose. One of these methods was presented in [3] and the other

by [4] which is more accurate. In this article an improvement

was performed on the localization method to become more

accurate. The proposed method is little more complicated than

the method in [4] but is more accurate and suitable for real-

time mobile robot navigation. This method can be applied on

the real robots if flatness of the ground is guaranteed with no

slipping, also if the robot has low speed and moves in an

indoor environment.

This article is divided to some section. The second one is for

theory research. It contains the three methods of dead

reckoning including the proposed one. The third one is the

design section which contains the design of mobile robot and

its maximum speed and input wheel speeds. In the fourth

section which contains the results and discussion, a

comparison is held among the three methods as well as a

robot simulation to illustrate the effect of this proposed

method. In that simulation, this method is used to guide the

robots to a found target until they reach and gather around it.

2. RESEARCH METHOD
In this section, three methods of robot dead reckoning will be

explained. The first one is the ideal method which includes

the integration of the kinematic equation; the second is the

approximated method which is mentioned in [2]; and the third

is the method proposed in this article.

2.1 The Ideal Method:
The kinematic model of the DDMR is as follows:



















sin

cos

vy

vx

 …(1)

The output configuration vector contains the Cartesian

coordinates of the DDMR in the global reference frame (x and

y) as well as the orientation θ; whereas v and ω are the input

linear and angular velocities of the DDMR which are used to

calculate the configuration vector. To integrate the system of

ordinary differential equations continuously, the orientation

parameter is calculated first, and then it is used to calculate

the Cartesian coordinates as in the next system of integrations:













dtttvty

dtttvtx

dttt

)(sin)()(

)(cos)()(

)()(







 …(2)

Unfortunately, integrating this system continuously is very

difficult if not as impossible because of the orientation

function θ(t) which is inside the trigonometric functions. Also,

this system is not suitable for digital machines which need the

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 13, June 2014

22

system to be discrete. Therefore an approximate method will

be used to overcome this problem.

2.2 The Approximate Method:
This method was introduced by [4] and mentioned in [2]. This

method calculates the next configuration q(t+T) vector using

the current vector q(t) and the current linear an angular

velocities v and ω which are fixed scalars during the time

period T.

The calculation method is also begins with the orientation θ

which is directly calculated by the next formula:









)()(tTt

T
 …(3)

Then, the Cartesian coordinates x and y are then calculated

using the kinematic model, where the orientation used in this

calculation is the average of the current and the next

orientation values:

)2/)(sin()()(

)2/)(cos()()(











tstyTty

tstxTtx

vTs

 …(4)

This method is very useful to calculate the next configuration

vector due to its simplicity and fast calculation. However, this

method treats all robot tracks as linear although the actual

tracks are circular most of the time. This method accumulates

error over time which makes the robot diverges away from its

actual position.

Therefore, it is essential to take the circular paths into account

to make the computation more accurate, an that’s will be

carried out in the proposed method

2.3 The Proposed Method:
This method is based on two facts related to the DDMR;

which are:

The DDMR either moves in a straight line or rotates around

itself or in a circular arc; because the linear and angular

velocities are linearly dependant on the angular velocities of

the wheels; and

The angular velocity command for the robot’s wheels is fixed

through a predefined time period T.

The linear and angular velocities of the DDMR can be

calculated through this matrix equation:





























l

r

ll

rv





 11

11

2
 …(5)

Where r is the wheel’s radius and l is the half distance

between the two wheels

It can be seen that when the angular velocities of the right and

left wheels, ωr and ωl respectively are equal, the angular

velocity of the DDMR ω becomes zero (i.e. the robot is

moving in a straight line; forwards or backwards); and the

linear velocity v can be simply calculated by multiplying the

wheel angular velocity by the wheel radius.

When the angular velocities of the DDMR wheels differ, the

robot will no longer move in straight line; the robot will move

in a circular path which its center C is located somewhere in

the global reference frame. The circle center C is always

positioned on the line which passes the robot wheels through

its axle. The position of the center my be on one of the wheels

(if the angular velocity command on that wheel is zero), or it

may be on the robot axle (if the angular velocity command of

one wheel is positive and the other one is negative), or it may

be on the center of the robot (if the two angular velocity

commands are equal in magnitude and opposite in signs); in

this case, the linear velocity of the robot will be zero and the

robot rotates around itself like the Earth does in its daily

motion.

Fig. 1 illustrates the three possible cases of robot movement.

The first two cases, (i) and (ii), are simpler in calculation than

the third one (iii).

Figure 1: Robot Movement Cases

The next configuration vector of the DDMR q(t+T) can be

calculated from the current configuration vector of the DDMR

q(t), provided that the angular velocity values for the DDMR

wheels ωr and ωl are fixed through a time period T. The

calculation occurs in three cases:

Case (i) (ωr = ωl): In this case, the two angular velocity

commands are equal; so the angular velocity of the robot is

zero and the heading of the DDMR does not change. The

linear velocity v is calculated by Eq. (5), and then multiplied

by T to obtain the travelled distance Δs which can be used to

update the configuration vector of the DDMR as in the

equations below:

)(sin)()(

)(cos)()(

)()(

TtstyTty

TtstxTtx

tTt

vTs














 …(6)

Case (ii) (ωr = -ωl): In this case, the two angular velocity

commands are equal in magnitude and opposite in direction;

so the linear velocity of the robot is zero and the Cartesian

position of the DDMR does not change. The angular velocity

ω is calculated by Eq. (5), and then multiplied by T to obtain

the rotated phase Δθ which can be used to update the

configuration vector of the DDMR as in the equations below:

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 13, June 2014

23

)()(

)()(

)()(

tyTty

txTtx

tTt

T













 …(7)

Case (iii) (abs(ωr) ≠ abs(ωl)): In this case, neither v nor ω are

zeros; so the robot will move in a circular path around a center

point which is located in a distance R away from the center of

the robot. To update the configuration vector, the value of R

should be calculated first, and then the coordinates of center

of robot’s circular path C is found.

To prove that the track of the robot is circular, the curvature

of the robot path should be calculated geometrically by this

equation:

s

Curvature






 …(8)

The curvature is constant through T because the linear and

angular velocities are made fixed. Therefore the curve which

the robot takes is circular and it is possible to find the length

of the circle radius R using the equation below:



v

T

vTs

Curvature
R 






1
 …(9)

Then, the coordinates of the center point [xC, yC] can be

geometrically calculated in terms of the current and next

configuration vectors:

)(sin)()(sin)(

)(cos)()(cos)(

TtRTtytRtyy

TtRTtxtRtxx

C

C







 …(10)

Finally, after some rearrangements, the important set of

equations which are useful to update the configuration vector

of the DDMR through the third case of robot movement can

be obtained.

))(cos)((cos)()(

))(sin)((sin)()(

)()(

tTtRtyTty

tTtRtxTtx

TtTt

v
R

















 …(11)

It can be seen that the system of equations above is little more

complex than the approximate method in the previous section

in Eq. (3) and (4).

This system of equation can also be deduced from the ideal

integration system in Eq. (2). For instance, the next y-axis

coordinate value can be obtained by integrating with respect

to θ instead of t as follows:

 )(

)(

)(

)(

cos)()(

sin)()(

)()(sin
)(

)(
)()(

)(sin)()()(

Tt

t

Tt

t

Tt

t

Tt

t

RtyTty

dRtyTty

dttt
t

tv
tyTty

dtttvtyTty








































 …(12)

The result is similar to the result obtained in Eq. (11). The

same manner can be used in the next x-axis coordinate value.

This method is also useful in calculation of total odometry (s).

3. DESIGN PROCEDURE
The three methods were modeled using MATLAB® software

using robot model which has r = 5 cm, l = 10 cm, angular

velocity values of the right and left wheels ωr and ωl are -20

through 20 rad/s.

MATLAB function ode45() was used for solving ordinary

differential equations in the system of Eq. (1) in discrete form,

because the continuous form is not practical for digital

machines. However, the other two methods were coded in

simple MATLAB .m script files.

Two different angular velocities were applied upon the right

and left wheels. These velocities were applied on all the

methods to check their efficiencies; the error in distance and

time taken in manipulation were measured to check the

accuracy and speed.

The applied angular velocities in continuous form were:

10

)2sin(20)(

)2cos(20)(







t

tt

tt

l

r





 …(13)

The applied angular velocities in discrete form were:

1,

)2sin(20)(

)2cos(20)(







nTNn

nTn

nTn

l

r





 …(14)

4. RESULTS AND DISCUSSIONS
The test was performed onto different values of T with zero

initial configurations. Figure 2 shows the original track;

Figures 3 and 4 show the responses of the ideal discrete form

as well as the two methods for time step of 0.2 and 0.02

second respectively.

Figure 2: Original track of the Mobile Robot in

continuous form.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 13, June 2014

24

Figure 3: Response of the three methods for T = 0.2

second.

Figure 4: Response of the three methods for T = 0.02

second.

Table I shows the computation time and distance error for

each of the approximated and proposed method with respect

with the discrete ideal method.

Table 1: Total Time and Distance Error for Different

values of T

T
Disc. Ideal Approx. Proposed

Time Time Error Time Error

0.2 30 ms 140 μs 0.039 200 μs 0

0.1 60 ms 200 μs 0.013 280 μs 0

0.05 100 ms 260 μs 0.005 350 μs 0

0.02 250 ms 520 μs 0.002 660 μs 0

0.01 470 ms 1.1 ms 0.001 1.3 ms 0

Fig. 2 shows the continuous ideal track of the mobile robot.

This track can be achieved if the time sample T approaches

zero. That’s clear in the Fig. 4 when the track shape

approaches the ideal shape in Fig. 1.

As it stated earlier, the ideal continuous form is not practical

so the discrete one was used instead. The path color of the

discrete ideal curve which the mobile robot follows is black,

the red dots represent the approximated method, whereas the

blue dots represent the proposed method. The blue dots are

coincided over the mobile robot track as shown in Figures 3

and 4. This means that the two methods (discrete ideal and

proposed) are identical. This result is cited by Eq. (12) and the

error column of the proposed method in Table I which hold

just zeros.

Table I holds the execution times of the three methods. The

first method time is much greater than the times of the other

two methods; because of the complicated mathematics for

solving the ordinary differential equations. This method is not

practical for real-time applications because it consumes time.

As it can be seen, it is useless after T = 0.05 because the

computation time will be greater than T after that value. So,

this type of solution is mostly discarded from use.

If a comparison occurs between the approx. and proposed

methods, it can be seen that the two methods have close

execution time. Although the approximated method is faster

than the proposed method, but that does not exceed 20% from

the speed of the proposed one. This is because latter method is

little complicated than the former one.

However, in all cases, the error decreases when T becomes

smaller and smaller. But the computation time should be at

most 10% from T so as to let the remaining time for other

Mobile Robot processes.

The proposed method was used in simulation of eight mobile

robots searching for a target. The mobile robots used were E-

puck robots [5] and the simulation was performed by

Webots™ robot simulation software [6]. The robots begin

their journey searching for a colored target in the middle of

the environment. When one of the robots finds the target, it

stops and informs other robots about its location. All robots

then direct to that location until they gather around the target.

Figure 5 shows the robots when they are wandering. Figure 6

shows the robots when the head to the target after they were

informed about its location. Figure 7 shows the robots when

they are gathering around the target.

Figure 5: Robots when they are wandering in the

environment

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 13, June 2014

25

Figure 6: Robots when they head to the target

Figure 7: Robots when they are gathering around the

target

5. CONCLUSIONS
It can be concluded from this work that the proposed method

has succeeded in representing the discrete ideal localization

method with computation time close to the fast approximated

method. These features elect the proposed method to be used

in real-time robot mobile localization efficiently. This method

idea can inspire the derivation of localization systems for

other types of mobile robots like unicycle and car-like robots.

6. REFERENCES
[1] Siciliano, B. and Khatib, O. (Eds.), Springer Handbook

of Robotics, Springer-Verlag Berlin Heidelberg,

Germany, 2008.

[2] Siegwart, R. and Nourbakhsh, I. R., Introduction to

Autonomous Mobile Robots, MIT Press, Cambridge,

UK, 2004.

[3] Corke, P., Robotics, Vision and Control, Springer Tracts

in Advanced Robotics, Springer-Verlag Berlin

Heidelberg, Germany, 2011.

[4] Chong, K.S., Kleeman, L., “Accurate Odometry and

Error Modeling for a Mobile Robot,” in Proceedings of

the IEEE International Conference on Robotics and

Automation, Albuquerque, NM, 1997.

[5] Mondada, F. and et al, “The E-puck, a Robot Designed

for Education in Engineering,” In Proceedings of the 9th

Conference on Autonomous Robot Systems and

Competitions, Castelo Branco, Portugal, Vol. 1, No. 1,

2009, pp. 59-65.

[6] Michel, O. and et al, Cyberbotics’ Robot Curriculum,

Cyberbotics Ltd., Wikibooks, Switzerland, 2010.

IJCATM : www.ijcaonline.org

