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ABSTRACT 

In this paper, we introduce a new class of lifetime distributions 

which is called the Quasi Lindley Geometric (QLG) 

distribution. This distribution obtained by compounding the 

Quasi Lindley and geometric distributions. Some structural 

properties of the proposed new distribution are discussed, 

including probability density function and explicit algebraic 

formulas for its survival and hazard functions, moment , 

moment generating function and mean deviations. We propose 

the method of maximum likelihood for estimating the model 

parameters and obtain the observed information matrix. A real 

data set is used to illustrate the importance and flexibility of the 

new distribution. 

Keywords 
Quasi Lindley distribution, Geometric distribution, Moments, 

Maximum likelihood 

1. INTRODUCTION 
The Lindley distribution was introduced by Lindley (1958) as a 

new distribution useful to analyze lifetime data especially in 

applications modeling stress-strength reliability. In a recent 

paper Ghitany et al. (2008) studied the properties of the 

Lindley distribution under a carefully mathematical treatment. 

They also showed in a numerical example that the Lindley 

distribution gives better modeling for waiting times and 

survival times data than the exponential distribution. The use of 

the Lindley distribution could be a good alternative to analyse 

lifetime data within the competing risks approach as compared 

with the use of standard Exponential or even the Weibull 

distribution commonly used in this area. The Exponential 

distribution assumes constant hazard function, usually not an 

appropriated assumption for many competing risks data. 

Mazucheli and Achcarb (2011) studied the applications of 

Lindley distribution to competing risks lifetime data. Also, the 

Lindley distribution has some nice properties to be used in 

lifetime data analysis as closed forms for the survival and 

hazard functions and good flexibility of fit. 

Lindley (1958), introduced a one- parameter distribution, 

known as Lindley distribution, given by its probability density 

function 
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the cumulative distribution function (cdf) of Lindley 

distribution is obtained as 
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Rama and Mishra (2013) introduced a new two-parameter 

Quasi Lindley distribution (QLD), of which the Lindley 

distribution (LD) is a particular case. They studied several 

properties of the QLD, and shown that the QLD is more 

flexible than Lindley and exponential distributions.  Quasi 

Lindley distribution with parameters α and θ is defined by its 

probability density function (p.d.f) 
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It can easily be seen that at      , the    Equation (1.3) 

reduces to the Lindley distribution. And at        , it 

reduces to the gamma distribution with parameters      . The 

p.d.f. Equation (1.3) can be shown as a mixture of exponential 

     and gamma     . distributions as follows 

1 2( , , ) ( ) (1 ) ( )f x pg x p g x      

where 
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The cumulative distribution function (cdf) of  QLD   is 

obtained as 

( , , ) 1 1 , 0, 0, 1.
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where     is scale parameter.  

 

Adamidis and Loukas (1998) introduced a two-parameter 

lifetime distribution with decreasing failure rate by 

compounding exponential and geometric distributions, which 

was named exponential geometric (EG) distribution. In the 

same way, the exponential Poisson (EP) and exponential 

logarithmic (EL) distributions were introduced and studied by 

Kus (2007) and Tahmasbi and Rezaei (2008), respectively. 

Recently, Chahkandi and Ganjali (2009) proposed a class of 

distributions, named exponential power series (EPS) 

distributions, by compounding exponential and power series 

distributions, where compounding procedure follows the same 

way that was previously carried out by Adamidis and Loukas 

(1998). In the same way, Barreto-Souza et al. (2010) and Lu 

and Shi (2011) introduced the Weibull-geometric (WG) and 

Weibull-Poisson (WP) distributions which naturally extend the 

EG and EP distributions, respectively. Barreto et al. (2009) 

presented a generalization of the exponential-Poisson 

distribution. Morais and Barreto-Souza (2011) defined the 

Weibull power series (WPS) class of distributions which 

contains the (EPS) distributions as sub-models. Adamidis et al. 

(2005) proposed the extended exponential-geometric (EEG) 

distribution which generalizes the EG distribution and 

discussed several of its statistical properties along with its 

reliability features. 

In this paper we introduce a Quasi Lindley-geometric (QLG) 

distribution which generalizes the Geometric and Quasi 

Lindley distributions and study some of its properties. The 

paper is organized as follows. In Section 2, we define the QLG 

distribution, density, hazard rate function and survival 

function. In Section 3, we give some statistical properties of the 

new distribution. The order statistics and its moment are given 

in Section 4. Residual life and reversed residual life functions 

of QLG distribution are discussed in Section 5. Mean 

deviations from the mean and median are derived in Section 6. 

The least squares and weighted least squares estimators are 

introduced in Section 7. In Section 8, we demonstrate the 

maximum likelihood estimates of the unknown parameters. 
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Finally, Section 8 gives applications involving a real data set. 

2. QUASI LINDLEY-GEOMETRIC 

DISTRIBUTION 
Our class can be derived as follows. Suppose that a company 

has   systems functioning independently and producing a 

certain product at a given time, where    is a random variable, 

which is often determined by economy, customers demand, etc. 

The reason for considering   as a random variable comes 

from a practical viewpoint in which failure (of a device for 

example) often occurs due to the present of an unknown 

number of initial defects in the system. In this paper, we focus 

on the case in which    is discrete random variable following 

a geometric distribution (truncated at zero) with the probability 

mass function given by 

1( ; ) ( ) (1 ) ,for  and  (0,1).nP n p P N n p p n N p       

Note that    can also be taken to follow other discrete 

distributions, such as binomial, Poisson, logarithmic, etc, 

whereas they need to be truncated zero because one must have  

   . Now, let  X1 ,X2 , . . . ,XN    be   independent 

and identically distributed (iid) random variables following the 

Quasi Lindley distribution cumulative distribution function 

(cdf) (1.4). Let  
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The conditional cumulative distribution of  (1) |X N n   is 
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and the unconditional cumulative distribution function of        

is 
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We shall refer to the distribution given by Equation (2.2) as the 

Quasi Lindley-geometric (QLG) distribution. If a random 

variable     has the QLG  distribution, then we write 

            . The corresponding probability density 

function (pdf) of       is given by 

2
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It is evident that (2.3) is much more flexible than the Quasi 

Lindley distribution. It is clear that the QLD distribution 

contains as limiting cases: (i) the Lindley geometric 

distribution for       (see, Zakerzadeh and Mahmoudi 

(2012), (ii) the gamma geometric distribution for      ; and 

(iii) the Quasi Lindley distribution for      .Figure 1 and 

Figure 2 illustrate some of the possible shapes of the pdf and 

cdf of QLG distribution for selected values of the parameters 

    and λ  respectively. 

 

Figure 1: pdf of Quasi Lindley geometric distribution 

Figure 2: cdf of Quasi Lindley geometric distribution 
 

The expressions given by Equations (2.2) and (2.3) are clearly 

complicated. For mathematical tractability, using the series 

expansion  
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Where        and       One can re-express Equations 

(2.2) and (2.3) as 
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Again using the binomial expansion of   1
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we can write (2.5) and (2.6) as 
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respectively. Note that the expressions involving   on the 

right-hand sides of Equations (2.8) and (2.9) are 

mathematically more tractable. So, Equation (2.9) can be used, 

for example, to derive some mathematical properties of the 

QLG  distribution. 
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The hazard function (also known as the failure rate , hazard rate 

, or force of mortality ) , reverse hazard functions and survival 

function are given by 
1
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respectively. Figure 3, 4 illustrate the graphical behavior of the 

hazard rate and survival function of QLG  distribution for 

selected values of the parameters. 

Figure 3: the hazard rate function of Quasi Lindley 

geometric distribution 

 
Figure 4:  the hazard rate and survival function of Quasi 

Lindley geometric distribution 

 

3. STATISTICAL PROPERTIES 
In this section we discuss the statistical properties of the Quasi 

Lindley geometric distribution, in particular, quantile function, 

moment and moment generating function. 

3.1 Quantile function 

The quantile  xq   of the             is the real solution of 

the following equation: 

1
log(1 ) log 0

1 1

q

q

x q
x
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we present the shortcomings of the classical kurtosis measure 

are well-known. There are many heavy tailed distributions for 

which this measure is infinite. So, it becomes uninformative 

precisely when it needs to be. The Bowley's skewness (see 

Kenney and Keeping, 1962) ) is based on quartiles 
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And the Moors' kurtosis (1998) is based on octiles 
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Where  (.)Q   represents the quantile function. 

 

3.2 Moments and associated measures 
Moments are necessary and important in any statistical 

analysis, especially in applications. It can be used to study the 

most important features and characteristics of a distribution 

(e.g., tendency, dispersion, skewness and kurtosis). 

Theorem (3.1). 

If    has  ( ; )QLG x     , ( , , )p     then the        raw 

moment of    is given by the following 
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Proof: 

Let  X   be a random variable with density function (2.9). 

The  thr   ordinary moment of the  QLG   distribution is 

given by 

 

 

)

0

( 1)

0

0 0

( 1) 1 ( 1)

, 0 0

, 1

( ) ( ( , )

(1 ) ( 1) ( )
1

( 1) ( 1)

( 1)( 1)

r r

r

kj
j

j r k j x

kj k

r k j x r k j x

j k

j k r k

x E X x f x dx

p j p x x e dx

w x e dx x e dx

r k r k
w

jj



 

 


 



 






 


   

 

       

 

  

  
     

  

  

       
   

    



 

where 

,

0 0

(1 ) ( 1) .
1

kj
j

j

j k
kj k

w p j p






 

  
    

  
  

Which completes the proof. 

 

Based on the first four moments of the  QLG   distribution, 

the measures of skewness       and kurtosis       of the 

QLG  distribution can obtained as 

3
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Theorem (3.2): 

If    has the  ( ; )QLG x  ,   then the moment generating 

function (mgf) of     is given as follows 
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which completes the proof. 

 

4. ORDER STATISTICS AND MOMENT 

OF ORDER STATISTICS 
Order statistics are among the most fundamental tools in 

non-parametric statistics and inference. They enter in the 

problems of estimation and hypothesis tests in a variety of 

ways. Let  1 2, ,..., nX X X   be a simple random sample from 

QLG  distribution with cdf and pdf given by (2.2) and (2.3), 

respectively. Let                          denote the 

order statistics obtained from this sample. The probability 

density function of  ith   order statistics, say  Xi:n  , and the 

moments of                Therefore, the measures of 

skewness and kurtosis of the distribution of the       are 

presented. The pdf of       is given by 
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Where           and         are the cdf and pdf of the 

QLG  distribution given by (2.2), (2.3), respectively, and 

         is the beta function, since 0          , for  

    , by using the binomial series expansion of 
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Substituting from (2.2) and (2.3) into (4.3), we get 

 
 

1

0 1

:

1

2

( 1)
1 1

( , )
( , 1) 1 1

(1 ) ( ) 1 1 .
1 1

n i
n i

j
i j

x x
jj

i n x x

x x

e
f x

B i n i pe

x
p x e pe

 


 


 



 
 

 




 


 







 

 
      

  
     

  
      

   



 

we can express the  kth   ordinary moment of the  ith   

order statistics  Xi:n    say       
    as a liner combination 

of the  kth   moments of the QLG  distribution with different 

shape parameters. Therefore, the measures of skewness and 

kurtosis of the distribution of  Xi:n   can be calculated. 

5. RESIDUAL LIFE AND REVERSED 

FAILURE RATE FUNCTION 
Given that a component survives up to time     , the 

residual life is the period beyond t until the time of failure and 

defined by the conditional random variable           . In 

reliability, it is well known that the mean residual life function 

and ratio of two consecutive moments of residual life 

determine the distribution uniquely (Gupta and Gupta, 1983). 

Therefore, we obtain the  rth
 -order moment of the residual 

life via the general formula 
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Applying the binomial expansion of         and 

substituting          given by (2.9) into the above formula 

gives 
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       is the upper incomplete 

gamma function. 

Also the mean residual life of the QLG  distribution is given 

by 
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On the other hand, we analogously discuss the reversed 

residual life and some of its properties. The reversed residual 

life can be defined as the conditional random variable  

|t X X t    which denotes the time elapsed from the 

failure of a component given that its life is less than or equal to 

t. This random variable may also be called the inactivity time 

(or time since failure); for more details you may see (Kundu 
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and Nanda, 2010; Nanda, Singh, Misra, and Paul, 2003). Also, 

in reliability, the mean reversed residual life and ratio of two 

consecutive moments of reversed residual life characterize the 

distribution uniquely. The reversed failure (or reversed hazard) 

rate function is given by Equation (2.5). The  r    
th

 -order 

moment of the reversed residual life can be obtained by the 

well-known formula 

0
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Applying the binomial expansion of           and 

substituting          given by (2.9) into the above formula 

gives 
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where  1

0
( , )

t s xs t x e dx      is the lower incomplete gamma 

function. Thus the mean of the reversed residual life of the 

QLG  distribution is given by  
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Using      and        we obtain the variance of the 

reversed residual life of the QLG distribution, and hence the 

coefficient of variation of the reversed residual life of the QLG  

distribution can be easily obtained. 

 

6. MEAN DEVIATIONS 
The amount of scatter in a population can be measured by the 

totality of deviations from the mean and median. For a random 

variable   with pdf,      , distribution function     ,  , 

mean        and               , the mean deviation 

about the mean and the mean deviation about the median, 

respectively, are defined by 
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Thus the mean deviation about the mean and the mean 

deviation about the median are given by 
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respectively, where    is given by Equation (3.1) at    , 

      and         are obtained by substituting     and     

in Equation (6.3). 

7. LEAST SQUARES AND WEIGHTED 

LEAST SQUARES ESTIMATORS 
In this section we provide the regression based method 

estimators of the unknown parameters of the modified Weibull 

geometric distribution which was originally suggested by 

Swain, Venkatraman and Wilson (1988) to estimate the 

parameters of beta distributions. It can be used some other 

cases also. Suppose  Y1 , . . . ,Yn   is a random sample of 

size  n   from a distribution function       and 

suppose                       denotes the ordered sample. 

The proposed method uses the distribution of         . For a 

sample of size    , we have 
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see Johnson, Kotz and Balakrishnan (1995). Using the 

expectations and the variances, two variants of the least squares 

methods can be used. 

 

 

Method 1 (Least Squares Estimators) . Obtain the estimators 
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with respect to the unknown parameters. Therefore in case of 

QLG   distribution the least squares estimators of      and    
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by minimizing 
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Method 2 (Weighted Least Squares Estimators). The 

weighted least squares estimators can be obtained by 

minimizing 
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with respect to the unknown parameters only. 

 

8. MAXIMUM LIKELIHOOD 

ESTIMATORS 
In this Section we consider the maximum likelihood estimators 

(MLE's) of QLG        . Let  x1 , . . . ,    xn   be a random 

sample of size   from QLG        , let              be 

the parameter vector. The log likelihood function can be 

written as 
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The maximum likelihood estimation (MLE) of    , say     , 

is obtained by solving the nonlinear system        . These 

equations cannot be solved analytically, and statistical software 

can be used to solve them numerically via iterative methods. 

We can use iterative techniques such as a Newton—Raphson 

type algorithm to obtain the estimate   . The 

Broyden--Fletcher--Goldfarb--Shanno method (see e.g. [1999, 

2007]) with analytical derivatives has been used for 

maximizing the log-likelihood function       . For interval 

estimation and hypothesis tests on the model parameters, we 

require the information matrix. The      observed 

information matrix is given by  
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whose elements are given in Appendix. Applying the usual 

large sample approximation, MLE of     , i.e.        can be 

treated as being approximately           
    , where 

             . Under conditions that are fulfilled for 

parameters in the interior of the parameter space but not on the 

boundary, the asymptotic distribution of           is 

          
     , where             

          is the 

unit information matrix. This asymptotic behavior remains 

valid if       is replaced by the average sample information 

matrix evaluated at    , say             . The estimated 

asymptotic multivariate normal            
       

distribution of      can be used to construct approximate 

confidence intervals for the parameters and for the hazard rate 

and survival functions. An          asymptotic confidence 

interval for each parameter     is given by 

 
2 2

,r rr rr rrACI z I z I      

where  Irr   is the        diagonal element of       
    for 

        , and   
 

   is the quantile   
 

 
   of the standard 

normal distribution. 

The following table represents the mean square error (MSEs) 

of the MLEs. 

 

Table 1 The mean square errors of the MLEs 

 

( , , ) ( ) ( ) ( ) ( )

15 0.4206 0.2343 0.0726

25 0.3008 0.2168 0.0269

35 0.1800 0.0961 0.0195

(0.5,0.25,0.1) 45 0.1190 0.0460 0.0138

55 0.1128 0.0041 0.0122

65 0.1086 0.0031 0.0101

75 0.0176 0.0027 0.0054

1

QLG P SampleSize n MSE MSE MSE P

QLG

   

5 0.4825 0.0141 0.201

25 0.4632 0.0130 0.1668

35 0.2701 0.0114 0.0712

(1.5,0.75,0.3) 45 0.2673 0.0059 0.0624

55 0.2239 0.0042 0.0678

65 0.2043 0.0012 0.0048

75 0.0896 0.0011 0.0022

15 0.0129 0.0118 0.1013

25 0.0006 0.0748 0.0454

35 0.0

QLG

005 0.0612 0.022

(0.05,1.0,0.5) 45 0.0004 0.0509 0.0148

55 0.0003 0.0386 0.0123

65 0.0002 0.0116 0.0104

75 0.0001 0.0015 0.0018

QLG

 

We noticed from the above Table 1 that all MSEs decrease as 

the sample size increases, while they increase with increasing 

of the true parameter. 
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9. APPLICATIONS 
In this Section, we use two real data set  to show how the QLG 

distribution can be applied in practice and the Quasi Lindley 

geometric distribution can be a better model than one based on 

the Lindley geometric and Lindley distribution. For each data 

set, we estimate the unknown parameters of each distribution 

by the maximum-likelihood method, and with these obtained 

estimates, we obtain the values of the Kolmogorov-Smirnov 

(K-S) statistic (the distance between the empirical CDFs and 

the fitted CDFs), Akaike information criterion (   ), Bayesian 

information criterion (    ), and the consistent Akaike 

information criterion (    ) are used to compare the candidate 

distributions. The      and      values are given 

by             and               , respectively, 

where     is the value of the log likelihood function for 

obtained estimates of the unknown parameters,     is the 

number of the estimated parameters and n  is the sample size. 

The better distribution corresponds to smaller           , 

     and       values. 

The first data set represents remission times (in months) of a 

random sample of 128 bladder cancer patients reported in Lee 

and Wang (2003). The data are as follows: 

0.08, 2.09, 3.48, 4.87, 6.94 , 8.66, 13.11, 23.63, 0.20, 2.23, 

3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 

13.80, 25.74, 0.50, 2.46 , 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 

0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 

5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 

14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 

1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 

4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 

11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 

3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 

11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 

4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 

2.07, 3.36, 6.93, 8.65, 12.63, 22.69. 

 

Table 2. Maximum-likelihood estimates, AIC , BIC and 

CAIC values, and Kolmogorov--Smirnov statistics for the 

data. 

 

The model MLEs Measurments

2log

QLG 0.922 0.033 0.035 0.583 480.618 486.618 492.355 487.14

LG 0.043 0.005 0.606 829.978 833.978 837.802 834.234

L 0.043 0.624 502.861 504.861 506.773 504.944

p KS L AIC BIC CAIC  

  

From table2, we observe that the QLG distribution is a 

competitive distribution compared with other distributions. In 

fact, based on the values of the AIC  and BIC  criteria as well 

as the value of the KS -statistic, we observe that the QLG 

distribution provides the best fit for these data among all the 

models considered. 

The second data set have been obtained from Aarset (1987) and 

it is provided below. It represents the lifetimes of 50 devices. 

0.1, 0.2, 1, 1, 1, 1, 1, 2, 3, 6, 7, 1,1, 12, 18, 18, 18, 18, 18, 21, 32, 

36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 

82, 82, 83, 84, 84, 84, 85, 85, 85, 85, 85, 86, 86. 

 

 

 

 

 

 

Table 3. Maximum-likelihood estimates, AIC, BIC and 

CAIC values, and Kolmogorov--Smirnov statistics for the 

data 

The model MLEs Measurments

2log

QLG 6.639 0.12 0.009 0.082 829.008 835.008 843.564 835.201

LG 0.192 0.026 0.123 1350.098 2866.984 2872.689 5867.08

L 0.196 0.117 839.06 841.06 843.912 841.092

p KS L AIC BIC CAIC  

  

Again, the values in Table 3 indicate that the QLG distribution 

is a strong competitor to other distributions commonly used in 

literature for fitting lifetime data. From the above results, it is 

evident that the QLG distribution is the best distribution for 

fitting these data sets compared to other distributions 

considered here. 

A cdf plot compares the fitted cdf of the models with the 

empirical curve of the observed data (Fig. 5) and (Fig.6) The 

fitted cdf for the QLG model is closer to the empirical graph 

than the fits of the LG and L models. 

 

 
Figure5: Empirical, fitted QLG, LG and L cdf of the 

bladder cancer patients data 

   

Figure6: Empirical, fitted QLG, LG and L cdf of the 

lifetimes of 50 devices 
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