
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 12, June 2014

7

Test Case Generation using UML State Diagram and

OCL Expression

Md Azaharuddin Ali

School Of Computer science
VIT University Tamil Nadu-

600048, India

Khasim Shaik
School Of Computer science
VIT University Tamil Nadu-

600048, India

Shreyansh Kumar
School Of Computer science
VIT University Tamil Nadu-

600048, India

ABSTRACT

Manual software testing is both an expensive and time

consuming activity, requires proper planning and resource.

This paper proposed a method to automate the process of test

case generation. This proposed technique reduces time and

increase the reliability of the software testing processes. The

main criteria of software testing are to generate test cases.

This methodology consist of transforming the state diagram

(UML) into finite state machine (DFA / NDFA) where each

node represent state and the arrow connecting the states

represent transition. The nodes store state information and

arrows maintain trigger information which is necessary for

state transition. Mined information and pre- and post-

condition of the states are used to build test case. The

proposed technique attains sufficient test coverage without

increasing the number of test cases. It also achieves much

important coverage like transition coverage, transition pair

coverage, and provides state coverage

General Terms

Software Testing, UML, State Diagram, Test Case

Keywords

DFA, NDFA, Sequence diagram graph (SDG), OCL

1. INTRODUCTION
Software testing includes executing software on a group of

test cases and verifies the particular results with the expected

results. The important task of software testing is to assure the

quality of software product. Existing test sequence generation

methods are costly, time consuming and also with less testing

coverage. This may cause the following critical issues:

a) The project budget may be increase, particularly in the

large software systems. Testing may take about 50% of

total budget [1].

b) It may cause a delay of developing software system phase.

c) Some test cases may not be covered (less coverage) and

tested properly, In future which may causes to many

known flaws.

A well tested software package will be checked by the client

before acceptance. However, in object-oriented environment

the designing and implementation of software is complicated

because it has to deal with important object-oriented concept

like polymorphism, inheritance, encapsulation, dynamic

binding etc. This makes software testing complicated and

more chance to error-prone.

In software engineering a test case is a set of criteria or

variable under that a tester will validate whether the software

system or an application is working properly or not. Usually

software developers may not have enough time to create test

case after coding phase to test their code. This problem can be

solved by generating test case before the coding phase. It will

help the developers to test their software after the end of

coding [2]. Generation of test cases using UML model are one

of the most significant method. This method has many

advantages it can cover the issues raised by object-oriented

paradigm. However, test case generation from UML model is

not an easy task it is the most challenging task. Because test

case needs so many parameters like input values, pre- and

post-condition of the input values, and the expected output.

Several researchers propose to way out of this problem, but

that increase the complexity of test case generation effort.

In this paper the proposed technique is use to generate test

case automatically using UML models. UML State diagram is

used as a source for test case generation. Generated test suits

achieve much important coverage like transition coverage,

state coverage, transition pair coverage etc. State diagram

alone is not sufficient to generate test data, some more

different parameters that is input values, pre- and post-

condition of the test case, and expected output is needed. For

that purpose UML model like use case diagram is also used

here.

2. RELATED WORKS
Several research attempts have been proposed for test case

generation under various circumstances, mainly scenario

based, path oriented, model based, goal oriented approaches.

Scenario-based test case based on concurrent approach with

concurrence coverage criteria. Path-oriented testing based on

static and also dynamic flow of the software. Static path

testing is based on symbolic execution, and dynamic path

testing done by evaluation of running time of executing

program. Model based technique is deal with different UML

models such as state-chart, sequence diagram, object diagram,

activity etc. Goal oriented technique identify test case which

covers a selected goal such as a branch or statement. Many

researches have been going to generate test case based on the

specifications.

a) Monalisa [3] have proposed a technique which used UML

sequence diagram to generate test case. They transformed

the UML case diagram to sequence diagram graph (SDG),

and they generate test case based on two coverage

criterion.

b) Novada Haji Ali and Sufian Idris [4] they design an

assessment system for UML diagrams. They developed a

tool named UCDA that can produce list of comments on a

UML diagram.

c) J. Hartmann, M. Vieira, H. Foster, and A. Ruder [5]

provides a technique based on the interaction between

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 12, June 2014

8

system and user, that information is used to generate

automatic test suit. In this process use cases textual

description is converted into activity diagrams.

d) Ranjit Swain, Prafulla Kumar Behara at al [6] they used

function minimization technique and construct test case

automatically from UML state chart diagrams. First the

diagram is prepared then the diagram is traversed using

DFS to select associated predicates. After that initial

dataset is guess and conditional predicates are transformed

to generate test cases.

e) Bertolino and Basanieri [1] [7] they proposed a technique

which describe how to generate test cases manually using

Use Case and Interaction diagrams. The main objective of

this technique is to check the pre-tested software modules

are interact correctly at integration testing or not. In

sequence diagram the different component interacts with

each other through message passing. This message

information is used with category partition method (CPM)

to generate test case manually.

f) A novel approach proposed by M.Lettrari and J. Klose [9].

They focus on real time system only.

g) P.Tonella and Potrich [10] they used reverse engineering

technique on UML sequence diagram to generate test

case.

Now UML becomes most widely used language. For model

based test case generation several researchers are focused on

different UML models like sequence diagrams, use-case

diagrams, state-chart diagrams, class diagram etc.

3. PROPOSED APPROACH
The propose approach is to transform a given state diagram

into a finite state machine (FSM). Each node in FSM stores

necessary information for test case generation. The important

feature for test case generation are stored in node of FSM,

these important feature collected from use case diagram

including pre and post- conditions are expressed using Object

Constrained language (OCL). Finally based on different

coverage criteria FSM is traversed to generate the suitable test

case.

3.1 OCL expression for pre and post-

conditions
Object Constrained Language (OCL) is a declarative language

for describing rules that apply to Unified Modeling Language

(UML). It was developed at IBM and presently part of the

UML standard [13]. It is very advantageous for UML model

because of following reasons.

 OCL provides expressions that are not ambiguous like

natural language.

 OCL has higher abstraction level than any other OOPL.

For this reason generating code from OCL reduce error

rate. In addition, this allows reuse of the captured business

rules on all supported target platforms.

 The most important benefit of using OCL is that its gives

a precise specification of the systems requirements, and

also helps us to gain a better and more complete

understanding of the system

An example of ATM is given below to show, how to

determine pre and post condition of ATM system using use

case diagram.

3.2 Pre- and Post- Condition of Use Case

Pre-condition:- Before creation of use case diagrams it is the

necessary state that must be present to the system.

Post-condition:- It is lists of possible states that may be exist

just after a use case has finished.

Example 1.

Fig 1: Use Case diagram of money withdraw from a bank

account using ATM

Pre-conditions of Cash Withdraw
 The customer with valid ATM card.

 Context ATM :: withdraw (amount : Integer): Boolean

 Pre: bank.atm.valid=true;

 Active network connectivity with the Bank System must

exist.

 Context ATM

 Pre: bank.network.alive=true;

 There must be sufficient cash in the account to withdraw.

 Context ATM :: withdraw(amount : Integer) : Boolean

 Pre: customer.account.balance >=0 and

account.balance>= amount.

Post-conditions of Cash Withdraw
 If the customer enters the wrong PIN three times, the card

should be retained.

Context ATM :: withdraw(amount:Integer):Boolean

Post: numberOfPinTrials = numberOfPinTrials@pre + 1

 and

 if uPin = customer.card.pin and numberOfPinTrials

<= 3

 then pinAccepted

 and

 result = PinResult::true

 else

 not pinAccepted

 numberOfPinTrials = numberOfPinTrials+ 1

 result = PinResult::false

 endif

 If the customer enters correct PIN number and the

customer's account balance is greater or equal to the

requested amount, then only the customer can able to

withdraw the requested amount and the same amount must

be deduced from the customer’s account.

Context ATM::withdraw(amount:Integer) : Boolean

Pre: pinAccepted

Customer
Withdraw Cash

Bank System

Service Admin

Security Admin

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 12, June 2014

9

Post: if (amount <= customer.account.balance)

 then customer.account.balance =

customer.account.balance@pre - amount

 and

 result = true

else

 customer.account.balance =

 customer.account.balance@pre

 and

 result = false

endif

 The ATM card will be returned back to the customer if the

customer wants to withdraw excess money.

Context ATM::withdraw(amount:Integer) : Boolean

Pre: pinAccepted and withdraw=true

Post: if (withdraw=true)

 then customerAccountClose

 and

 result= AtmCardReturn::true

 else if(numberOfPinTrials>3)

 then customerAccountClose

 and

 result= AtmCardReturn::true

endif

3.3 Transformation of State diagram to

FSM
UML state diagram provide a way to model the behavior of

the system by analyzing how the state of the system changes

in response to input data.

Every software system has something that is called its state.

Software state consists of the current value of the entire

variable in program at any given moment in time. In the case

of object oriented system the state of the system is stored

within the object in the system, and each object has its own

state which is stored in the object’s variables (class fields).

The essence of running a computer program is changing the

software from one state to another. Finite state machine

(FSM) used to model the software system conceptually. FSM

has fixed number of states and the system is always any one

of the fixed number of states when it is running. As

computation progress the FSM transition from one state to

another. Each state machine can receive input and it possibly

produces output during state transition upon entering a state,

upon leaving a state or even within a state. FSM is two type

Deterministic and Non-deterministic. In practice of writing

software model, the effect non-determinism are trying to be

reduced. Since non-deterministic program could produce

different result each time, they run with same input. Therefore

deterministic approach is considered in this process.

Definition of DFSM:

A deterministic finite automata consist of 5-tuple

M=Q,, , q0, F

Where

Q  Is finite set of all states i.e. set of all FSM nodes

defining various conditions of operation scheme;

each node signifies an event.

  Is finite set of input symbol, transition is happened

for these inputs.

  Transition function, it describe from where to where

states are moving for a particular input.

q0  Operation begins from this state, means it is initial

state.

F Operations will terminate to this state. It may be

single or set of node.

We define operation scheme (OpScm) as 4 tuple,

OpScm: <SId, BeginState, TransitionSet, NextState>

SId  A unique id for each operation scheme.

BeginState  Is a starting point of scheme.

TransitionSet It include set of all events that happens in

an operation scheme.

NextState System enters to this states after

completion of an operation scheme.

It may happen that a DFSM has a single begin state but

multiple end state which depends on various operation

scheme.

Four tuple is used to represent an event in a “TransitionSet”.

aEvent :<tr, S, R, G>

tr  Value or name of the trigger for which transition occur.

S  Current node/state which sends trigger.

R Next node/state where transition occur form current node.

G It is a guard condition used to decide which event will

occur next.

Example2.

`

Fig 2: State diagram of one session ATM system.

CardRead[No]/Eject

Reading Card (S1)

Reading Pin (S2)

Choosing

Transaction (S3)

Performing

Transaction (S4)

Ejecting Card (S5)

CardRead[Yes]

PinRead[No]/Eject

CancelPressed

/Eject

PinRead[Yes]

TransactionChoosen

TransactionSuccess

Another

Choice

Dy

Cy

Cn

Ac

Ay

By

Bn

An

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 12, June 2014

10

Fig 3: DFSM for the state diagram of fig 2.

Table 1.  Is defined by following State Transition Table

 Ay An By Bn Cy Cn Dy Ac

S1 S2 S3

S2 S3 S5

S3 S4 S5

S4 S5 S3

S5

List of possible operation scheme from DFSM

OpSCm1: Nf S1S5N1

OpScm2: Nf S1S2S5Nl

OpScm3: Nf S1S2S3S5Nl

OpScm4: Nf  S1S2S3S4S3 S5Nl

OpScm5: Nf  S1S2S3S4S5Nl

3.4 Test Case Generation
A state diagram provides a way to model the behavior of the

system by analyzing how the state of the system changes in

response to input data. So, the test set is essential to detect

faults during the state of an object is changes from one to

another. It is necessary to cover all possible combination of

paths from start to end node of DFSM to ensure maximum

coverage.

Algorithm TestCaseGeneration

Input: DFSM Graph

Output: TestSet T

Notation: Nf, Nc, Nn, Nl are the first, current, next and last

node respectively.

Testcase Γ= {Pr, s, r, G, Po}

Where

Pr Pre-condition of node/state.

s Set of input value/ trigger for senderNode.

r Set of output value/ resultant node after transition.

G Set of guard condition for transition.

Po Post-condition of node/state.

The event Ec corresponding to current node Nc is

Ec= (tr, S, R, G).

Steps:

Take all paths = 1, 2,….., n from the start to end node in

DFSM.

FOR each path i   do

 Nc← Nf

Γi ← ɸ //Initially testcase for the operation

 //scheme OpScmi will be empty.

 Nc ← Nn //Move to next node of OpScmi

 WHILE (Nc ≠ Nl)

 Ec= (tr, S, R, G) //The event of Nc.

 IF G = ɸ THEN

 Γ= {Pr, s, r, Po}

 Γi = Γi U Γ

 ENDIF

 IF G ≠ ɸ THEN

 Γ= {Pr, s, r, G, Po}

 Γi = Γi U Γ

 ENDIF

 Nc ← Nn+1 //Go to next node of Nn

//on the path i.

 Γ = Γ U Γi

 ENDWHILE

 Determine the final output r and Po from

the operation scheme OpScmi stored in Nl.

 Γ= {Pr, s, r, G, Po}

 T← T U Γ //Add the test case to test set

ENDFOR

RETURN (T)

STOP.

TestSetGeneration algorithm starts by considering all paths in

DFSM from start to end node. A path essentially corresponds

to an operation scheme. The test case for all possible paths

from start to end node are considered and integrate them one

by one to generate final TestSet T.

The main strategy of testing is to detect certain type of fault

that can be called as fault model [12]. Our testing technique is

based on following fault model.

Transition fault: Generally in a state diagram the state

of an object is changed from one to another when some

certain conditions are true. In this state transition there may be

several faults like, incorrect response or state change to an

input, correct input pass to a wrong state, incorrect input pass

to a right state, input passed with improper or incorrect

condition or guard value.

Scheme fault: Each operation scheme represents to all

possible sequence of transition path in state diagram. For a

particular operation scheme, transition of state may not adopt

a particular route because of inappropriate guard statement, or

abnormal termination etc.

4. EXPERIMENTAL RESULT
To prove the effectiveness of the generated test cases, we took

the example of ATM Cash Transaction problem. Visual

Paradigm v. 8.0 is used to produce UML diagram, and

exported in XML format. We have developed a Java based

parser which reads a UML state diagram in XML format and

convert it into DFSM Graph. The node of DFSM graph is

defined using template defined inside java program. The OCL

2.0 syntax is used to represent pre or post conditions and

Breadth-first traversing algorithm is used to traverse the all

possible paths of DFSM.

The experimental approach is built on Java programming

language in Linux OS and run the program in Intel machine.

The above experiment is consider on 5 different path of the

DFSM (in Fig. 3) and produce 5 test cases as shown in Fig. 4.

5. CONCLUSIONS
It has been proved that different UML models are effectively

used to generate test cases. This paper suggests a technique to

achieve test cases based on UML state diagram. This

approach will help software developer and tester to start the

testing process quickly in the software development life cycle.

S1 S2 S3 S4

S5

Ay By

Cy

Dy

Bn

AC

Cn

Nf

Nl

An

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 12, June 2014

11

The prerequisite information like pre and post-condition is

collected from use case diagram and expressed in terms of

Object Constrained Language (OCL 2.0) [11][13]. The best

part of this approach it does not require any alteration in the

UML models to generate test cases. DFSM is basically a

graph based methodology and the proposed algorithm

enumerate all possible path to generate test case. In worst case

with n nodes the time complexity of the proposed algorithm is

O (n2) which is significantly less and this suggests that this

technique is capable enough to handle big enterprise project

efficiently. The major impact of this paper is use case and

state diagram and this approach could be extended for Nested

State diagram and other UML diagrams for further research.

6. REFERENCES
[1] Myers G. “The Art of Software Testing” 2nd ed. Year

2004: John Wiley

[2] Beck K. “Test-Driven Development by Example” Year-

2003: Addison- Wesley. 220.

[3] Monalisa Sarma, Debasish Kundu and Rajib Mall,

“Automatic Test Case Generation from UML Sequence

Diagrams”, 15th International Conference on Advance

Computing and Communication, 2007, pp. 196-201.

[4] Novada Haji Ali, Zarina Shukur and Sufian Idris, “A

Design of an Assessment System for UML Class

Diagram”, 5th International Conference on

computational Science and Applications, 2007, pp. 539-

544.

[5] J. Hartmann, M. Vieira, H. Foster, and A. Ruder, A

UML-based Approach to System Testing, Journal of

Innovations System Software Engineering, Vol. 1, PP.

12-24, 2005.

[6] Ranajita Swain, Vikas Panthi, Prafulla Kumar

Behera,Durga Prasad Mohapatra, “Automatic Test case

Generation From UML State Chart Diagram”,

International Journal of Computer Application, Vol 42,

March 2012,

[7] A. Bertolino, and F. Basanieri, A practical approach to

UML-based derivation of integration tests, in

Proceedings of the Fourth International Software Quality

Week Europe, Brussels, Belgium, 2000.

[8] T.J. Ostrand, and M.J. Balcer, The category-partition

method for specifying and generating fuctional tests,

Communications of the ACM 31 (6)

[9] M. Lettrari M. and J. Klose, Scenario-Based Monitoring

and Testing of Real Time UML Models, in the

Proceedings of UML 2001, Springer Verlag, pp. 312-

328. (1998).

[10] P. Tonella, and Potrich, A. Reverse Engineering of the

Interaction Diagrams from C++ Code, in the Proceedings

of IEEE International Conference on Software

Maintenance (2003) 159–168.

[11] Object Constraint Language 2.0 is available from the

main website of Object Mangement Group

(http://www.omg.org/).

[12] M. Esser and P.Struss,"Fault-model-based Test

Generation for Embedded Software" International

Journal of Computer Application, 2007.

[13] Absolute Astronomy Object Constraint Language,

Encyclopedia

(http://www.absoluteastronomy.com/topics/Object_Cons

traint_Language)

Fig 4: Snapshot of test run with the state diagram (ATM Cash Transaction)

IJCATM : www.ijcaonline.org

