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ABSTRACT
This has been seen that in some application for finding the analyt-
ical solution of mathematical problem is too complicated , so in
recent years researcher has devoted lots of afforts to find the nu-
merical solution of the equation. In this paper an application of the
Gegenbauer wavelet method is applied to solve system of general-
ized Abel’s integral equation. This wavelet reduces the system of
generalized Abel’s integral equation to a system of linear equation
in generalized case such that the solution of the resulting system
gives the unknown Gegenbauer wavelet coefficient of the solutions.
Illustrative examples have been provided to demonstrate the valid-
ity and applicability of the proposed method and result has been
compaired with the exact solution. Lastly we have shown the er-
ror analysis to the proposed method and found that it is an quite
efficient and has high accuracy.
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1. INTRODUCTION
As a matter of fact it is said that many engineering and applied sci-
ence problem like water waves ,potential theory and electrostatics
are reduced to solve integral equations. Since these equation we
can not solve exactly so we require to obtain approximate solu-
tions. In this paper we have proposed to solve system of general-
ized Abel’s integral equation. So far there are numerous numerical
methods which have been focusing on the solution of generalized
Abel’s integral equation like for exam Lowengrub and Waltson[1]
this method in which the system has been solved by reducing the
system to an equivalent coupled Riemann- Hilbert boundary value
problems,Waltson[2] develop a method for solving certain sys-
tems of generalized Abel’s integral equations by constructing an
equivalent singular integral equation , Mandal solve the system for
α = 1, µ = 1

2
, uij(x) = 1 by using fractional calculus[4] , Panday

and Mandal [3] solve this system by using Bernstien polynomial.
Recently Ashish and Upreti [5] has solve this system of generalized
Abel’s integral equation by using Legendre multi-wavelets.
In the present paper we present a new approach for evaluating
the approximate solution of the system (1)expanding the unknown
functionfi(x), i = 1, 2 in terms of Gegenbauer wavelet [6] in
L2
wα(0, 1] space. We can reduce these system into system of lin-

ear equations for given hi(x), i = 1, 2 . An error estimation of the
system is discuss and some examples are given to show the effi-
ciency and accuracy of the present method.
Consider the system of generalized Abel’s integral equation[5]

u11(x)

∫ x

0

f1(t)

(xn − tn)µ
dt+ u12(x)

∫ 1

0

f2(t)

(tn − xn)µ
dt = h1(x)

u21(x)

∫ 1

x

f1(t)

(tn − xn)µ
dt+u22(x)

∫ x

0

f2(t)

(xn − tn)µ
dt = h2(x) ,

(1)
where x ∈ (0, 1), 0 < µ < 1, n = 1, 2 and uij(x), i, j = 1, 2 are
continuous on [0, 1].

2. GEGENBAUER WAVELETS (G W) AND ITS
PROPERTIES

Wavelet constitute a family of functions constructed by performing
translation and dilation on a single function ψ(.), where ψ(.) is a
mother wavelet . We define family of continuous wavelets [7] as

ψa,b(•) =
1√
|a|
ψ

(
• − b
a

)
a, b ∈ R, a 6= 0, (2)

where a is called scaling parameter and b is translation parameter.
By discretization of [7] these parameters a = 2−k and b = n2−k,
we have

ψk,n(•) = 2
k
2 ψ
(
2k • −n

)
k, n ∈ Z, (3)

where ψk,n(.) forms an orthonormal basis for L2(R).
Gegenbauer wavelets (G W) ψαnm(x) = ψ(k, n,m,α, x) have five
parameters; translation parameter n = 1...2k−1, dilation parameter
k can assume any positive integer, m is the order of Gegenbauer
polynomial , x is the normalized time [7] and last parameter α >
− 1

2
. They are defined on [0, 1) as following form

ψαnm(x) =

{
2k/2ηαmGα

m(2kx− 2n+ 1), for n−1
2k−1

≤ x < n
2k−1

,

0, otherwise

}
,

(4)

wherem = 0, 1, 2, ...,M −1 , in eq(4) ηαm =

√
m!(m+α)(Γ(α))2

π21−2αΓ(m+2α)

is used for orthonormality and Gα
m(x) = Cαm(2x − 1) . Here

Cαm(x), α > −1/2 are the Gegenbauer polynomials which are
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orthogonal with respect to the weight function ω̃α(x) = (1 −
x2)α−1/2 on the interval [−1, 1]. They are defined on the interval
[−1, 1] by the following way [8]

Cαm(x) =

[m/2]∑
r=0

(−1)rΓ (m− r + α)

Γ(α)(r)! (m− 2r)!
(2x)m−2r ,m = 0, 1, 2, 3....

(5)
Some of Gegenbauer polynomials are

Cα0 (x) = 1

Cα1 (x) = 2αx

Cα2 (x) = 2α(1 + α)x2 − α
Cα3 (x) = 4/3α(1 + α)(2 + α)x3 − 2α(1 + α)x

.

.

.

In fact, Gegenbauer polynomials form a large family of orthogonal
polynomials with the famous Chebyshev polynomials of the first
kind, Tm(x), Chebyshev polynomials of the second kind, Um(x),
and the Legendre polynomials,Pm(x), as its special cases and their
relationships are given in [8].
We should note that in dealing with the Gegenbauer wavelets the
weight function ωα(x) = ω̃α(2x−1) have to be dilated and trans-
lated as ωαn(x) = ω̃α(2kx− 2n+ 1) to get orthogonal G W

3. FUNCTION APPROXIMATION AND
CONVERGENCE

We define the space L2
ωα(0, 1) as

L2
ωα(0, 1) = {f |f is measurable & ‖f‖L2

ωα
<∞}

where ‖f‖L2
ωα

=
(∫ 1

0
|f(x)|2ωα(x)dx

)1/2

and ω̃α(x) =

(1− x2)α−1/2 for α > −1/2.

In particular L2
ωα(0, 1) is Hilbert space with the following inner

product and norm

〈f, g〉L2
ωα

=

∫ 1

0

f(x)g(x)ωα(x)dx, ‖f‖L2
ωα

= 〈f, f〉L2
ωα

.

A function f(x) ∈ L2
ωα(0, 1), may be expressed in terms of the G

W as,

f(x) =

∞∑
n=1

∑
m∈Z

cαnmψ
α
nm(x), (6)

where the coefficient cαnm are given by

cαnm = (f(x), ψαnm)wαn =

∫ 1

0

wαn(x)ψαnm(x)f(x)dx. (7)

We can approximate the function f(x) by the truncated series

f(x) '
2k−1∑
n=1

M−1∑
m=0

cαnmψ
α
nm(x) = [Cα]TΨα(x), (8)

where the coefficient vector Cα and G W vector function Ψα(x)
are given by

Cα = [cα10, ..., c
α
2k−1(M−1)

]T and Ψα(x) = [ψα10, ..., ψ
α
2k−1(M−1)

]T .

(9)
Now, its convergence is given by the theorem.

THEOREM 1. Let f(x) ∈ L2
ωα(0, 1) and whose second deriva-

tive bounded in (0, 1) , say |f ′′(x)| < M ,can be expanded as an
infinite sum of Gegenbauer wavelets and the series converges uni-
formly to the function f(x) , that is:

f(x) =

∞∑
n=1

∞∑
m=0

cαnmψ
α
nm(x), ∀α > −1/2, (10)

where cαnm = (f(x), ψαnm(x)) and (·, ·) denote the inner product
in L2

ωα(0, 1).

PROOF. [6]

THEOREM 2. (Accuracy Estimation) Let f(x) ∈ L2
ωα(0, 1)

with bounded second order derivative |f ′′(x)| ≤M whereM > 0,
then we have the following accuracy estimation

(δαnm)2 <M

∞∑
n=2k−1+1

∞∑
m=M

1

n5m(2α+m)(m− 1)(1+2α+m)
∀ α ∈N,

where

(δαnm)2 =

∫ 1

0

[
f(x)−

2k−1∑
n=1

M−1∑
m=0

cαnmψ
α
n,mdx

]2

ωαn(x).

PROOF. [6]

Using the Gegenbauer wavelets basis, we have three degree of free-
dom as dilation parameter k , number of basis M and α, which
increases the accuracy of the new method.

4. METHOD OF SOLUTION
For finding approximate solution of (1), f1(t) and f2(t) are ap-
proximated by using (8)

f1(t) ≈ f̃α1 (t) = [Cα1 ]Tψα(t), f2(t) ≈ f̃α2 (t) = [Cα2 ]Tψα(t)(11)

where [Cα1 ]T and [Cα2 ]T are unknown constants to be determined.
Then from (11) and (1) we get

u11(x)[Cα1 ]TΨα
1 (x) + u12(x)[Cα2 ]TΨα

2 (x) = hα1 (x),

u21(x)[Cα1 ]TΨα
2 (x) + u22(x)[Cα2 ]TΨα

1 (x) = hα2 (x), (12)

where for ∀x ∈ (0, 1)

Ψα
1 (x) =

∫ x

0

ψα(t)

(xn − tn)µ
dt,

Ψα
2 (x) =

∫ 1

x

ψα(t)

(tn − xn)µ
dt. (13)

Now, by putting x = xl, l = 0, 1, 2..., (M − 1)2k−1 in (12),
where xl’s are chosen as suitable distinct points in (0, 1) such that
0 < x0, x1, ..., x(M−1)2k−1 < 1.We obtain the linear systems

u11(xl)C
α
1 Ψα

1 (xl) + u12(xl)C
α
2 Ψα

2 (xl) = hα1 (xl),

u21(xl)C
α
1 Ψα

2 (xl) + u22(xl)C
α
2 Ψα

1 (xl) = hα2 (xl) (14)
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The linear systems (14) can be easily solved by any standard
method for the unknown constants Cα1 and Cα2 provided of course
the coefficient matrix is nonsingular. It is emphasized that it is al-
ways possible to choose distinct points xl ∈ (0, 1) such that this
is possible. The computed Cα1 and Cα2 are then used in (11) to ob-
tained the approximate solution f̃α1 (t) and f̃α2 (t).

5. ERROR ESTIMATION
In this section an error estimation for the approximation of solution
of (1) is discussed. Let us consider e1α

kn(t) = f1(t) − f̃α1 (t) and
e2α
kn(t) = f2(t) − f̃α2 (t) as the error functions of the approximate

solution f̃αi (t), i = (1, 2) respectively, where fi(t), i = 1, 2 are
the exact solution of (1) and using approximate solution in (1), we
get

h1(x) + T 1α
kn (x) = u11(x)

∫ x

0

f̃α1
(xn − tn)µ

dt

+ u12(x)

∫ 1

x

f̃α2
(tn − xn)µ

dt

h2(x) + T 2α
kn (x) = u21(x)

∫ 1

x

f̃α1
(tn − xn)µ

dt

+ u22(x)

∫ x

0

f̃α2
(xn − tn)µ

dt (15)

where T iαkn(x), i = 1, 2 are small perturbation quantity.
We proceed to find an approximations ẽ1α

kn(t) and ẽ2α
kn(t) to the

error of functions e1α
kn(t) and e2α

kn(t) respectively . Now, using (1)
and (15) we obtain

−T 1α
kn (x) = u11(x)

∫ x

0

e1α
kn(t)

(xn − tn)µ
dt

+ u12(x)

∫ 1

x

e2α
kn(t)

(tn − xn)µ
dt

−T 2α
kn (x) = u21(x)

∫ 1

x

e1α
kn(t)

(tn − xn)µ
dt (16)

+ u22(x)

∫ x

0

e2α
kn(t)

(xn − tn)µ
dt (17)

It should be noted that in order to construct the approximations
ẽ1α
kn(t) and ẽ2α

kn(t) to the error functions e1α
kn(t) and e2α

kn(t) respec-
tively, only equation 16 to recalculated in same way we did before
for the solution of equation (1).

6. ILLUSTRATIVE EXAMPLES
EXAMPLE 1. Consider the system of generalized Abel’s inte-

gral equation (1) with ui,j = 1 for i, j = 1, 2, n = 1 and µ = 1
2

with

h1(x) =
4

3
x

3
2 +

2

15

√
1− x(1 + 2x+ 8x2) + 2DawsonF [

√
x]

h2(x) =
16

15
x

5
2 +

2

3

√
1− x(1 + 2x) + e−x

√
πErf [

√
(1− x)].

which has exact solutions f1(x) = x + ex and f2(x) = x2. If we
apply the Gegenbauer wavelet approach and solve given equation
by taking M = 6, k = 1 and α = 1/2 we obtain the approximate

solution and compare result with the exact solution, Gegenbauer
wavelets solution for x ∈ (0, 1) which is show in the table 1.

EXAMPLE 2. Consider the system of generalized Abel’s inte-
gral equation (1) with ui,j = 1 for i, j = 1, 2, n = 1 and µ = 1

2
with

h1(x) =
4

3
x

3
2 +

2

15

√
1− x(3 + 4x+ 8x2)

h2(x) =
16

15
x

5
2 +

2

3

√
1− x(1 + 2x).

which has exact solutions f1(x) = x and f2(x) = x2. If we apply
the Gegenbauer wavelet approach and solve (14) by taking M =
3, k = 1 and α > 0 we obtain the exact solution

x =
π1/4

2
√

2

√
Γ
[

1
2

+ α
]

Γ[1 + α]
ψα0,0(x) +

√
π

4α

√
4−αΓ[1 + 2α]

(1 + α)Γ[α]2
ψα0,1(x),

x2 =
π1/4(3 + 2α)

8
√

2(1 + α)

√
Γ
[

1
2

+ α
]

Γ[1 + α]
ψα0,0(x) +

√
π

4α

√
4−αΓ[1 + 2α]

(1 + α)Γ[α]2

× ψα0,1(x) +
αΓ
[

3
2

+ α
]

4Γ[3 + α]

√
(2 + α)Γ[α]2

21−2αΓ[2 + 2α]
ψα0,2(x).

EXAMPLE 3. Consider the system of generalized Abel’s inte-
gral equation (1) with ui,j = 1 fori, j = 1, 2, n = 1 and µ = 1

3
with

h1(x) =
9

40
x

5
3 (4 + 3x) +

3

440
(1− x)

2
3 (40 + 9x(5 + 6x+ 9x2))

h2(x) =
243

440
x

11
3 +

3

40
(1− x)

2
3 (13 + 9x(2 + x)).

which has exact solutions f1(x) = x+ x2 and f2(x) = x3. Apply
the Gegenbauer wavelet approach and solve (14) by taking M =
4, k = 1 and α > 0 we obtain exact solution

x+ x2 =
π1/4(7 + 6α)

√
Γ[ 1

2 +α]
Γ[1+α]

8
√

2(1 + α)
ψα0,0(x) +

√
π
√

4−αΓ[1+2α]

(1+α)Γ[α]2

2α

× ψα0,1(x) +

√
π
2

√
2−2αΓ[2+2α]

(2+α)Γ[α]2

8α+ 8α2
ψα0,2(x),

x3 =
π1/4(5 + 2α)

√
Γ[ 1

2 +α]
Γ[1+α]

16
√

2(1 + α)
ψα0,0(x) +

3
√
π(5 + 2α)

√
4−αΓ[1+2α]

(1+α)Γ[α]2

32α(2 + α)

× ψα0,1(x) +
3αΓ

[
3
2

+ α
]

8Γ[3 + α]

√
21−2αΓ[2+2α]

(2+α)Γ[α]2

ψα0,2(x)

+

√
3α(1 + α)Γ

[
3
2

+ α
]

8Γ[4 + α]

√
21−2αΓ[3+2α]

(3+α)Γ[α]2

ψα0,3(x).

EXAMPLE 4. Consider the system of generalized Abel’s inte-
gral equation (1) with u1,1 = x2

2
, u1,2 = x, u2,1 = 2− x, u2,2 =

6 for n = 2 and µ = 1
2

with

3
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Table 1. Comparison between the approximate and exact solution of
Example 1 for M = 6, k = 1 and α = 1/2

t 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f1(x) 1 1.0048 1.018 1.0408 1.070 1.106 1.148 1.196 1.249 1.306
f̃1(x) 0.99 1.0048 1.018 1.040 1.070 1.106 1.148 1.196 1.249 1.306
f2(x) 0 0.01 0.04 0.09 0.16 0.25 0.36 0.49 0.64 0.81
f̃2(x) -0.00005 0.0099 0.0400 0.090 0.1600 0.2500 0.359 0.489 0.6400 0.81

h1(x) =
1

8

√
(1− x2)(2 + 3x2)− 3x4Log[x]

+ 3x4Log[
√

1− x2] +
1

8
x3(4 + πx)

h2(x) =
9

8
πx4 +

1

2
(2− x)(3

√
1− x2 + x2Log[

1 +
√

1− x2

x
].

which has exact solutions f1(x) = x + x2 and f2(x) = x4. If we
apply the Gegenbauer wavelet approach and solve (14) by taking
M = 5, k = 1 and α > 0 we obtain the exact solation

x+ x2 =
π1/4(7 + 6α)

√
Γ[ 1

2 +α]
Γ[1+α]

8
√

2(1 + α)
ψα0,0(x) +

√
π
√

4−αΓ[1+2α]

(1+α)Γ[α]2

2α

× ψα0,1(x) +

√
π
2

√
2−2αΓ[2+2α]

(2+α)Γ[α]2

8α+ 8α2
ψα0,2(x),

x4 =
2−

1
2 +2α

√
Γ[ 1

2 +α]
Γ[1+α]

Γ[1 + α]Γ
[

9
2

+ α
]

π1/4Γ[5 + 2α]
ψα0,0(x)

+

√
π(7 + 2α)

√
4−αΓ[1+2α]

(1+α)Γ[α]2

16α(2 + α)
ψα0,1(x)

+
3
√
π(7 + 2α)

√
2−1−2αΓ[2+2α]

(2+α)Γ[α]2

32α(1 + α)(3 + α)
ψα0,2(x)

+

√
3α(1 + α)Γ

[
3
2

+ α
]

4Γ[4 + α]

√
21−2αΓ[3+2α]

(3+α)Γ[α]2

ψα0,3(x)

+

√
3α(1 + α)Γ

[
5
2

+ α
]

8Γ[5 + α]

√
21−2αΓ[4+2α]

(4+α)Γ[α]2

ψα0,4(x)

Conclusion
The aim of the present work is to develop an efficient and accurate
method for solving system of generalized Abel’s integral equation
by using Gegenbauer wavelets in L2

wα(0, 1] space. The G W re-
duces system of generalized Abel’s integral equation to system of
linear algebraic equations. Since number of basis functions are re-
stricted up to seven so it does not make the calculation complexity.
Illustrative examples are included to demonstrate the validity and
applicability of the present technique.
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