
International Journal of Computer Applications (0975 – 8887)

 Volume 95 – No 1, June 2014

33

Association Rule Generation using Modified Hashing

Function

M.Ramakrishnan

Professor & Head,
Department of Information

Technology, Velammal
Engineering College, Chennai-66,

Tamil Nadu, India

 D.Tennyson Jayaraj
Research Scholar, Department

of Computer Science,
Manonmaniam Sundaranar
University, Tirunelveli, Tamil

Nadu, India

ABSTRACT

Association rule mining is one of the most interesting and

challenging task in data mining process. There exists many

association rule mining techniques, each having merits and

demerits. The main problem that exists in many traditional

association rule mining algorithms is that these algorithms

need more than one database scan to generate association

rules. As scanning the database is a costly operation,

algorithms capable of generating association rules with only

one scan is the need of the hour. In this paper, a novel

algorithm for generating association rules is presented which

uses hashing function. This algorithm scans the database only

once by utilizing the latest version of priori algorithm, direct

hashing algorithm and pruning process. The algorithm

discovers set of association rules from frequent k-item sets by

computing the frequency of each item set. Then pruning

process is applied to minimize the number of item sets

generated after scanning the size of the database.

Experimental results show that our method is very effective in

generating association rules without any collision, leading to

very high data accuracy.

Keywords

Association Rule Mining, ARM, Hashing, Pruning, Basket

Market Analysis, Apriori Algorithm

1. INTRODUCTION
Association rule mining is the process of finding the rules that

will predict the occurrence of an item based on the

occurrences of other items in the transaction. The basic idea

is to find the co-occurrence relationship among data items

called associations[1]. Many real world applications are using

association rule mining to find the interesting and useful rules

from a large transaction data. One important application of

association rule mining is the application in Market Basket

analysis which aims to discover how items are purchased by

customers in a super market and their associations[2].

Association rule mining algorithm can be broadly classified as

(i) Apriori Algorithms

(ii) Partition Algorithms

(iii) Sampling Algorithms

Apriori algorithms are based on main memory, which imposes

a limitation on the size of the dataset to be mined. The

method works in two steps by generating frequent item sets in

the first step and generating association rules in the second

step. The first step consists of two phases with candidate item

set generation in the first step and frequent item set generation

in the second step. The method scans the database multiple

times and it is not possible to find the number of database

scans needed earlier[3].

Partition algorithms, on the other hand, are based on dividing

the database into number of non-overlapping partitions.

Frequent item sets local to the partition are generated for each

partition. Partition algorithm need minimum of two database

scans with generation of frequent item sets in the first scan

and generating global item sets in the second scan[4]. In

partition algorithms, a special data structure called TIDLIST

is used which contains transaction IDs of all the transactions

corresponding to an item set in the partition[4].

Sampling algorithm picks random samples from the database

and tries to find frequent item sets in the samples. Finding

frequent item sets is based on using support that is less than

the user specified minimum support for the database. Then

the algorithm also finds candidate item sets that did not satisfy

minimum support. Performance of this algorithm relies on the

quality of the sample chosen. [5]

Chin-Chen Chang et al [6] proposed an efficient algorithm for

incremental mining of association rules. Incremental

algorithms can manipulate earlier mining to get final mining

outputs. The algorithm uses backward approach and scanning

incremental database. Instead of scanning original database

for frequent item sets, occurrence counts of newly generated

frequent item sets are accumulated and infrequent item sets

are deleted. The running time of NFUP is directly

proportional to transaction number of incremental database.

Iko Pramudiono and Masaru Kitsuregawa [7] proposed tree

structure based generalized association rule mining algorithm

called FP-tax and it employs a tree structure to compress the

database. Two methods are used to traverse the tree structure

viz. bottom up and top down. This algorithm overcomes one

of the most complicated mining tasks that require long

processing time.

Ya Han Hu and Yen Liang Chen [8] proposed an algorithm

for mining association rules with multiple minimum supports.

The algorithm is the improvement of traditional apriori based

MSapriori (Minimum Support) algorithm proposed by Liu et a

l[8]. The proposed algorithm is two fold : with MIS-tree

construction to store the crucial information about frequent

patterns in the first step. In the second step, appropriate

thresholds for all items at a time are set. Generally, users tune

item supports and run the mining algorithm repeatedly till a

satisfactory value is reached.

Farah Hanna Al-Zawaidah et al [9] proposed an improved

algorithm for mining association rules in large databases. Key

challenge in developing association rule mining algorithm is

International Journal of Computer Applications (0975 – 8887)

 Volume 95 – No 1, June 2014

34

that rules generated in extremely large databases makes

algorithm inefficient. Further, understanding the generated

rules by the end users is difficult. The algorithm presented is

derived from conventional apriori approach with additional

features.

A.Zemirline et al [10] proposed an efficient association rule

mining algorithm for classification. The algorithm name is

Association Rule Mining algorithm for classification (ARMC)

and it extracts the set of rules, specific to each class. The

algorithm uses fuzzy approach to select the items and it does

not require the user to provide thresholds. This algorithm

contain different features like covering all training instances

and leaving no unclassified instances, requires only one pass

to discover rules and uses novel model for building

classification model. The features of this algorithm are not

available in traditional associative classification methods.

R.Rathinasabapathy and R.Bhaskaran [11] presented the

complexities in finding efficient association mining algorithm.

Several variations of association rule mining algorithms exists

such as Apriori algorithm that uses has functions in finding

large 2-itemsets and 3-itemsets, direct search method for

finding other large k-item sets. Éclat algorithm that uses

perfect hash function in finding 2-itemsets and 3-itemsets,

vertical method for finding other large k-item sets.

The main problem of many traditional association rule mining

algorithms is that these algorithms need more than one

database scan to generate association rules. As scanning the

database is a costly operation, algorithms capable of

generating association rules with only one scan is the need of

the hour. This paper is organized as follows: Section 1

provides introduction about the association rule mining and

section 2 provides preliminary work.

2. PRELIMINARY WORK
The problem of association rule mining can be stated as

follows : suppose a file consists of a set of transactions T such

that each transaction includes all the items I = { I1, I2, I3…..

In}. A transaction t is said to contain set of items A, if and

only if At. An association rule is an implication of the form

A  B, where A and B are set of items, A∩B= and AI,

BI. A or B is a set of items called item set. The support for

the rule A  B is the percentage of transactions in T that

contains AB and can be estimated as P(AB), where P

stands for probability. Support defines how frequent the rule

is applicable in the transaction set T. If T contains n

transactions, then the support for the rule A  B is computed

by

 Support(A  B) = (A  B).count / n

Support is used to test whether a rule may occur due to chance

or not. Confidence for the rule AB is the percentage of

transactions in T that contains both A and B. It can be

expressed as an estimate of conditional probability, P(A | B)

where P represents conditional probability. Confidence for

the rule A  B is computed by

Confidence(AB) = (AB count / A.count)

This defines the predictability of the rule. Confidence is used

to check whether one can reliably infer or not. The

association rule mining algorithm generates all association

rules that have support and confidence greater than or equal to

user specified minimum support and minimum confidence.

Association rule mining process contains two steps[12]. In

the first step, frequent item sets that contain support and

confidence above the user specified threshold are generated.

Generation of association rules from frequent item sets is

done in the second step. Let f is a frequent item set and we

will find all the non empty sub sets of f. For every sub set x,

the process generates rules of the form x (f - x). The

generated rule is accepted if and only if the ratio of support (f

– x) to support (x) is equal to or greater than the user specified

minimum confidence level else the rule is rejected.

2.1 Direct Hashing and Pruning
Direct Hashing and Pruning, which is abbreviated as DHP is

used to generate large item sets efficiently. DHP is having

advantages such as effective reduction on transaction database

size and effective reduction in database scan apart from its

efficiency in generating large item sets. DHP uses hash

function. DHP gathers information about candidate set in

advance using hash function. Each bucket in the hash table

contains an integer which represents number of item sets that

have been already hashed to this bucket so far. Based on the

output, a bit vector is constructed and value of the bit is set to

one if the number of corresponding entry in the hash table is

greater than or equal to minimum support.

The hash function is a black box which points to an address if

a key is provided. H(k) is the hashing function which

transforms key k into the address where the appropriate item

sets are stored[13].

Fig 1. Hash Function

Using hash function directly for association rule mining

generates certain draw backs also. Collisions may occur

while using DHP as hashing function may address to two sub

sets of each transaction for a single key k. that is in data

mining terminology, counts in hash table can only be used to

filter out the item sets whose numbers of occurrences are less

than minimum support. If counts are greater than or equal to

the minimum support, corresponding 2-item sets are candidate

2-item sets. The size of the candidate set may be close to that

of Apriori if the rate of collision of hashing function is too

high.

Apart from collision, DHP algorithm utilizes the fact that any

sub set of a frequent item set must be frequent item set by

itself.

3. PROPOSED METHOD
A new association rule mining algorithm is presented which

finds the hash index for k-item sets. This algorithm

overcomes the drawbacks listed in the above section. The

algorithm uses both hashing and pruning algorithms. The

basic idea of the proposed method is to divide the hash table

into Hk in virtually iterative way. To overcome collision, we

need to design a hashing algorithm that can spread the records

over the available address. The efficiency of a hash function is

International Journal of Computer Applications (0975 – 8887)

 Volume 95 – No 1, June 2014

35

the measure of how efficiently the function produces values

for elements within a set of data and complexity is represented

by O(1). Hash function has to satisfy the following

constraints

The data set is presented as continuous numeric data set.

(i) All the items in the item set are in sorted order (i.e.

descending order such that Ik<Ik-1<Ik-2 ……. I2 < I1)

(ii) The number of distinct k – item sets must be equal to














1k

rn
 where n is the number of elements in the

data set, ‘r’ is the smallest element in the data set.

To generate distinct item sets, we divide the hash table in to

(n-k+1) parts were n represents number of items in each item

set and k represents number of item sets. This is done in the

first iteration. During the next iteration, previous iteration

part is taken as parent part and divides it starting with first

item of the parent part. This divides the has table to (n-[k-

]+1). This procedure of division is repeated until we get 1-

item set[14].

The start index for each part and the size taken are computed

by using the equation






1

1

kX

i

iS where 













1k

in
Si

The next index is calculated using the equation











11

1

1

1

k

k

k X

Xi

i

X

i

i SS

As optimal ratio is gained in our algorithm, collision will not

occur. This is used to count frequency of k-item sets, which

gives reliable result and actual index of each k-item sets.

3.1 Algorithm Enhancement

A specific data structure is used to implement our proposed

algorithm. The data structure consists of root, after pointer,

before pointer, valid bit array and nodes. Valid bit array

represents numeric variable describing the frequency of each

k-item sets[14]. Valid bit array size is N  K where N is the

number of items. The first k-item set will be one which

represents the k-item sets frequency in the hash table.

Initially, root and tail pointers point to nil. First k-item set is

computed. Now new node is created, root and tail pointing to

the new node. Set the corresponding valid bit to 1.

Next, k-item sets are generated by computing index of k-item

sets using our proposed method and check whether it contains

valid bit array. If it is 1, it is in list search and increase the

count by one else dynamic array list is inserted and counter is

incremented by one.

New node is added to the end of the list if hash value greater

than maximum value and tail pointer pointing to it.

Corresponding valid bit is set to 1. The data structure

contains next pointer which points to next adjacent node in the

list.

3.2 Hash Class
Instance of a hash table is referred as hash class and it defines

three pointers, with first pointer pointing the first node of the

hash table, two other pointers are before and after which

points to the previous and next node to a specific item set.

When adding new k-item sets into the hash table, appropriate

position is to be located so that the value can be retrieved

using hash key. Increment index method computes the right

position for an item set. The following are the main methods

of hash class[11].

Searchnode method computes the position to insert the new

node in the hash list by performing summation of valid bit

array from beginning to the index parameter. Node is inserted

by using Insert_node method and it works based on the

particular scenario. If the hash table is empty, new node is

created and root and tail pointing to it. Increment the counter

by one and change valid bit to 1 for this item set[15].

If item sets are already available in the hashing table, then we

can insert the new node as first node or add new node to the

list. If it is inserted as first node then, get the position of

already available first node, assign it to new node and

increment the data by one. For the later case, just increase the

data by one and change corresponding valid bit to one.

Valid bit array value is zero initially and when new k-item

sets are added, the corresponding valid bit will be changed to

one. This set up reduces the size of the hash table, minimizes

the problem of unused space and avoids collision. This

hashing technique can be used with all apriori algorithms like

DHP.

4. ASSOCIATION RULE GENERATION
The algorithm works in two phases with scanning the

database to compute frequency of each k-item set for all k and

saving the item sets in the hash table in the first step.

Generating interesting rules is done in the second step[16].

Phase I : Find all the k-item sets for each transaction of the

database, compute index for each item set and increase

corresponding index in hash table by one. Store them in array

list. Once complete scan of database is over, perform the

following :

1) delete all non frequent 1-item set from array list

2) delete all non frequent nodes for each item set in the

hash table and change corresponding valid bit to 0.

3) prune k-item set by determining (k-1) item sets

Phase II : Find all the association rules by using frequent 1-

item set

5. CONCLUSION
In this paper, generating association rules using perfect hash

function is presented which is collision free and generates

association rules with only one scan. More over, the proposed

method does not require any complex operations. A new data

structure is used to implement hash table which makes this

algorithm cost effective. The data structure also reduces the

size of normal implementation of any hashing technique. This

enhanced algorithm can be very well used with other

algorithms like PHP and DHP. Experimental results show

that the generated rules are high in accuracy and the method

does not suffer from collision problem.

International Journal of Computer Applications (0975 – 8887)

 Volume 95 – No 1, June 2014

36

6. REFERENCES
[1] Y. Yin et al., “Association Rules Mining in Inventory

Database”, Data Mining. © Springer 2011

[2] Lei Chen “The Research of Data Mining Algorithm

Based on Association Rules”, The 2nd International

Conference on Computer Application and System

Modeling (2012)

[3] Han, J., Kamber, M. & Pei, J. (2006). Data Mining:

Concepts and Techniques, 2nd edition, Morgan

Kaufmann.

[4] Hui Cao; Gangquan Si; Yanbin Zhang; Lixin Jia, "A

density-based quantitative attribute partition algorithm

for association rule mining on industrial database,"

American Control Conference, 2008 , vol., no., pp.75,80,

11-13 June 2008

[5] Kanakubo, M.; Hagiwara, M., "Speed-up Technique for

Association Rule Mining Based on an Artificial Life

Algorithm," Granular Computing, 2007. GRC 2007.

IEEE International Conference on , vol., no., pp.318,318,

2-4 Nov. 2007

[6] R.Amornchewin and W.Kreesuradej “Incremental

association rule mining using promising frequent itemset

algorithm”, In proceeding of Information,

Communications & Signal Processing, 2007 6th

International Conference on Data Mining

[7] Jong Soo Park , Ming-Syan Chen , Philip S. Yu, Efficient

parallel data mining for association rules, Proceedings of

the fourth international conference on Information and

knowledge management, p.31-36, November 29-

December 02, 1995, Baltimore, Maryland, United States

 [doi : 10.1145/221270.221320]

[8] Ya-Han Hu, Yen-Liang Chen, Mining association rules

with multiple minimum supports: a new mining

algorithm and a support tuning mechanism, Decision

Support Systems, Volume 42, Issue 1, October 2006,

Pages 1-24, ISSN 0167-9236,

[9] Farah Hanna AL-Zawaidah, Yosef Hasan Jbara, Marwan

AL-Abed Abu-Zanona, " An Improved Algorithm for

Mining Association Rules in Large Databases", World of

Computer Science and Information Technology Journal,

Vol. 1, No. 7, pp. 311-316, 2011.

[10] A.Zemirline, Lecornu, B.Solaiman, and A. Echcherif,

“An Efficient Association Rule Mining Algorithm for

Classification ”, L. Rutkowski et al. (Eds.): ICAISC

2008, LNAI 5097, pp. 717 728, 2008. Springer, Verlag

Berlin Heidelberg 2008

[11] Rathinasabapathy, R.; Bhaskaran, R., "Performance

Comparison of Hashing Algorithm with Apriori,"

Advances in Computing, Control, & Telecommunication

Technologies, 2009. ACT '09. International Conference

on , vol., no., pp.729,733, 28-29 Dec. 2009

[12] Park, J. S., Chen, M. & Yu, P. (1995). "An Effective

Hash-Based Algorithm for Mining Association Rules,"

ACM SIGMOD Record archive, 24(2), 175 – 186.

[13] Seiden, S. S. & Hirschberg, D. S. (1994). "Finding

Succinct Ordered Minimal Perfect Hash Function,"

Elsevier Information Processing Letters, 51(6), 283-288.

[14] Sun, X., Li, M., Wang, H. & Plank, A. (2008). "An

Efficient Hash-Based Algorithm for Minimal K-

Anonymity," Proceedings of the thirty-first Australasian

conference on Computer science, 01 01 January,

Wollongong, Australia, 101-107.

[15] Tseng, M., Lin, W. & Jeng, R. (2008)."Incremental

Maintenance of Generalized Association Rules under

Taxonomy Evolution," Journal of Information Science,

34(2),174-195.

[16] Han, J., Kamber, M. & Pei, J. (2006). Data Mining:

Concepts and Techniques, 2nd edition, Morgan

Kaufmann.

IJCATM : www.ijcaonline.org

http://www.researchgate.net/researcher/74510084_R_Amornchewin/
http://www.researchgate.net/researcher/74878168_W_Kreesuradej/
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://dl.acm.org/citation.cfm?id=221320&CFID=320803426&CFTOKEN=20311325
http://doi.acm.org/10.1145/221270.221320

