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ABSTRACT 
Frequent pattern mining is a researched area which is used for 

extracting interesting associations and correlations among item 

sets in transactional and relational database. Many algorithms 

of frequent pattern mining is been devised ranging from 

efficient and scalable algorithms in transactional database to 

numerous research frontiers and their wide applications. Many 

researches been done into FPM [1], but there are still several 

optimizations are required, so that FPM can be used more 

efficiently in data mining applications. For optimization 

purpose in many mining techniques data pre-processing plays 

an important role in reducing data size and also in lessening the 

time taken in database scans. This paper is a detailed study of 

problems and solutions of FPM techniques incorporated with 

pre-processing techniques. The intent of this paper is to 

summarize all major problems of FPM and their solutions. 

From this survey, it concludes that if FPM methods are merged 

with pre-processing techniques will produce results with better 

performance.  
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1. INTRODUCTION 
Association rule mining is one of the important technique of 

data mining, it extracts interesting co-relations, frequent 

patterns, associations or casual structures among sets of items 

in the transaction databases or other data repositories [7]. 

Association rule mining is to find out association rules that 

satisfy the user defined minimum support and confidence from 

a given database. The problem is usually divided into two sub 

problems. One is to find out those itemsets whose occurrences 

exceed a user defined threshold in the database; those itemsets 

are called frequent or large itemsets. And to generate 

association rules from those large itemsets with the constraints 

of minimal confidence is a second problem [14]. This is 

explained with a help of an example. 

Example 1.1 In an online shopping website, some tips are 

always there after purchase of any product, for instance, once 

you bought the microwave a list of related cook wares such as: 

micro-cooker 50%, micro plates 15% etc, will be presented to 

you as recommendation for further purchasing. In the above 

example, the association rules are: when the microwave is 

bought, 50% of the time micro cooker is bought together, and 

15% of the time micro plates are bought together. Commodities 

are rearranged in the store according to the rule discovered 

which can further make purchasing much more convenient [3]. 

The organization of the paper is as follows. Section 2 

introduces the problems and solutions of frequent pattern 

mining. The result of comparison between the different 

methods can be found in section 3. Finally, section 4 contains 

the conclusion and future works. 

 

2. PROBLEMS AND SOLUTIONS OF 

FPM 
The efficiency and scalability of the frequent pattern mining 

algorithms is well studied. Nevertheless, it is obvious that the 

runtime is not the single factor that measures the quality of the 

FPM techniques. The common criticism of the FPM algorithms 

today is the generation of prohibitively large set of frequent 

patterns, which limits the avenues of exploring or reusing those 

[2]. Limiting the number of discovered patterns using high 

thresholds may reveal only the common knowledge while low 

thresholds results an explosion of discovered patterns. This and 

several other factors are the question of concern for existing 

approaches of FPM. 

2.1 Various frequent pattern mining 

techniques with their problems and 

proposed solutions 

2.1.1 Mining Frequent Itemsets with candidate 

generation 

2.1.1.1 Apriori –based Algorithm 

The first published frequent item set mining algorithm is 

Apriori [16]. Apriori uses breadth first search (BFS). At each 

level, Apriori uses downward closure property. This method is 

based on candidate generation. Before scanning any database it 

generates a candidate whose super set cannot be frequent or 

which is MFP. During the database scan support of candidate 

item set is counted Candidate k item sets, Ck are generated 

with frequent (k –1) item sets. Apriori suffers from large 

number of candidate generation which requires number of 

database scans which reduces its efficiency and make it costly. 

To overcome the disadvantage of Apriori Dynamic Item set 

Counting; (DIC) is used, which distinguishes between 

generation and counting of item sets [19]. By using such 

methods, the number of data scans required by Apriori based 

algorithms has been reduced up to a great extent. 

2.1.1.2 Partition based Algorithms 

Partition -based Algorithms [21] solves the problem of high 

number of database scans, associated with Apriori –based 

algorithm. Two complete database scans are required to mine 

frequent item sets. This algorithm breaks the dataset into 

number of sub sets so that each sub set can be placed into the 

main memory.  

The basic idea of the Partition based algorithm is that a 

frequent item set must be frequent in at least 1 subset. 

Partition-based algorithm, during the first data scan, it 

generates local frequent item sets for each partitioned sub set. 

These whole partitions can be accommodated into the main 
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memory; I/O operations are not required to extract local 

frequent item sets. The local frequent item sets is added to the 

global candidate frequent item sets. In the next data scan, 

candidates who are incorrect removed from the list of global 

candidate frequent item set. In a rare case where each subset 

have same local frequent item sets, All frequent item sets can 

be mined with a single data scan. On contrary, when the data is 

divided unevenly among the partitions, this algorithm may 

generate a lot of wrong candidates from a small number of 

partitions. By implementing the knowledge collected during 

the mining process, false item sets are pruned when it is found 

that they cannot be frequent. These types of algorithms reduce 

the number of scans in the worse case to (2k-1)/k where k is 

the number of partitions. 

2.1.1.3 DFS and Hybrid Algorithms  

Eclat and Clique [22] combine both depth first search (DFS) 

and intersection counting. By using this method, there is no 

need of using complex data structures. These hybrid algorithms 

reduces the required memory space,  only the TID sets of the 

path item sets from the root to the leaves have  to be kept in the 

memory simultaneously. TID set intersection stopped as soon 

as the remaining length of the shortest TID set is shorter than 

the required support minus the counted support value. The 

intersection of TID sets of 1item set to generate frequent 2 item 

sets is very costly. The maximal hyper graph clique clustering 

is applied to 2 frequent item sets to generate a refined set of 

maximal item sets. A hybrid approach of BFS and DFS is 

proposed [6]. It is much cheaper to use item set counting with 

BFS to determine the supports, when the frequent item sets is 

small. When the large number of candidate frequent item sets 

is found, the hybrid algorithm jumps to TID set intersection 

with DFS, since simple TID set intersections are more efficient 

than occurrence counting when the number of candidate 

frequent item sets is large. This results in add on costs on 

generating TID sets. Then hash tree -like structure [18] is 

proposed to minimize the cost of transition. 

2.1.1.4 Incremental Update with Apriori-based 

Algorithms 

Complete dataset is normally large and the incremental portion 

is relatively small as compared to the complete dataset. In most 

of the cases, it is not feasible to perform a complete data 

mining process while transactions are being added 

simultaneously. Incremental data mining algorithms 

implements the idea of reusing the existing information as 

much as possible, so that computational cost and/or I/O cost 

can be reduced up to an extent. Fast Update 2(FUP2), an 

incremental mining algorithm, allows both insertion and 

deletion of transactions [17]. The major idea of FUP2 is to 

reduce the cost of generating candidate frequent item sets. 

Incremental portion of the dataset is scanned; frequent patterns 

in the incremental data are compared with the existing frequent 

item sets in the complete dataset. Earlier calculated frequent 

item sets are removed if they are no longer frequent after the 

incremental portion of the data is inserted or deleted. The 

support of earlier calculated frequent item sets that are still 

frequent, are updated, so that it can  reflect the changes occur 

due to addition or deletion of incremental portion . By using 

these methods, previously calculated frequent item sets that are 

still frequent are not needed to be checked for their supports 

again and again. New (m + 1) candidate frequent item sets are 

generated from frequent m item sets. The complete updated 

dataset is scanned to verify that newly added candidate item 

sets if they are indeed frequent; the process is continue until the 

set of candidate frequent item set becomes empty. FUP2 offers 

some advantages over the classic Apriori algorithm. But, it still 

requires multiple numbers of database scans. Sliding Window 

Filtering (SWF) [19] is another incremental Apriori based 

algorithm. SWF uses the main idea of Partition algorithm with 

Apriori to allow incremental mining. SWF breaks the dataset 

into number of subsets. During the partitions scan, a filtering 

threshold is employed in each partition for the generation of 

candidate frequent 2 item sets. If any item set found to be 

frequent, its partition number and its frequency are stored. 

Agglomerated information about candidate frequent 2 item sets 

is carefully carried for subsequence partition scans. 

Agglomerated frequencies of previously generated candidate 

frequent 2 item sets are stored for the scanning of new 

partitions. False candidates are removed when the cumulative 

support of the candidate frequent item sets fall below the 

threshold. Once the scanning of incremental portion is done, 

scan reduction techniques are incorporated for the generation 

of all subsequence frequent candidates Item sets. Once more 

data scanning is done to confirm that the item sets are frequent. 

Although SWF achieves better performance than pervious 

algorithms, the performance of SWF still counts on the 

selection of partition size and data pruning technique used. 

2.1.1.5 SQL-based algorithms  

DBMS can compliment data mining to become an online, 

scalable and concurrent process by facilitating the existing 

querying and inbuilt functions. The SETM algorithm was the 

first attempt on frequent item set mining [23], expressed as 

SQL queries working on relational tables. The Apriori 

algorithm [16] opened up new prospects for FPM. The 

database -coupled variations of the Apriori algorithm were 

carefully examined. The SQL-92 based implementations were 

very slow, but the SQL implementations enhanced with object-

relational extensions (SQL-OR) performed acceptable. SQL 

based frequent mining implemented with FP-tree provides the 

efficient results than the other SQL based techniques. It is 

accepted that FP-tree is compact, but it is unrealistic to 

construct a main memory-based FP-tree when the database is 

huge. However using RDBMSs provides us the advantages of 

using their buffer management systems specially developed for 

freeing the user applications from the size constraints of the 

data.  

2.1.2 Mining frequent itemsets without candidate 

generation 

2.1.2.1 Pattern-Growth Algorithms 

Two major expense of Apriori based algorithms are the 

expense to generate candidate frequent item set t and the 

expense associated with I/O operations. The issues related to 

I/O have been resolved, but the issues related to candidate 

frequent item set t generation remain untouched. If there is n 

frequent 1 item set t, Apriori algorithms would require to 

generate t2 /2 candidates approximately in frequent Item set t. 

Secondly, the memory required to hold the candidate frequent 

item set t and their supports could be substantial. Han et al. [9] 

proposed a structured data called frequent pattern tree or FP-

Tree. FP-growth is a method to mine frequent item sets from 

FP-Tree without generating candidate frequent item set t. FP-

Tree is an extension of prefix tree structure. Node of a tree is 

used to store frequent items. Each node contains the item’s 

label along with the number of occurrence of an item in a 

particular set. Complete path from the zero level to the last 

level are arranged according to the support value of the items 

with the descending order of their frequency. That is, each 

parent node is greater than or equal to the sum of its children’s 
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node frequency. FP-Tree requires two database scans. In the 

first scan, the support value of each item is found. This 

computed support values are used in the second scan to sort the 

items within transactions in higher to lower order. If some 

transactions have a common prefix, then the frequencies of the 

nodes are increased by merging the common prefixes. Nodes 

with the same label are connected with an item link. The item 

link is used to mine frequent patterns. Each FP -Tree has a 

header that consists of all frequent items and pointers to the 

beginning of their respective item links. FP-growth traces the 

paths of FP-Tree recursively to generate frequent item sets. 

Pattern fragments are merged to ensure all frequent item sets 

are properly generated. Thus FP-growth implements the simple 

methods for generation and testing of candidate item sets. 

When the data is unevenly distributed, the compaction 

achieved by the FP-Tree is small and the FP-Tree is bushy. As 

a result, FP-growth would require a lot of effort to merge 

fragmented patterns with no frequent item sets being found. A 

new data structure called H -struct is introduced [20]. In this, 

transactions are arranged with an arbitrary ordering scheme. 

Only frequent items are used in the H-struct. H-struct consists 

of selected transactions and these selected transactions contain 

item label and a hyper link pointing to the next occurrence of 

the item. A header table is created for H-struct which contains 

frequencies of all items, their support values and hyper link to 

the first transaction containing given item. H-mine uses a 

method to mine the H-struct iteratively by developing a new 

header table for each item in the original header with 

subsequent headers and items that have been mined previously 

are skipped. For each sub-header, H-mine traverses the H-

struct according to the hyper link s and search frequent item 

sets for the local header. H-Mine also develops a links for 

items that have not been mined in the local header. The process 

is iteratively runs until all frequent item sets have been mined 

completely. In case of a dense dataset, H-struct is not as 

efficient as FP-Tree because FP-Tree allows compression. 

2.2 Basic Problems are as follows: 

(a) In many real applications mostly in dense data 

with long frequent patterns enumerating all 

possible subsets of a particular length pattern is 

infeasible. 

(b) The complexity of frequent pattern mining from 

a large amount of data is generating a huge 

number of patterns satisfying minimum support 

threshold, especially when threshold value is 

low. 

(c) Generation of candidate item sets is expensive 

(Huge candidate sets). 

•104frequent 1-itemset will generate 

107candidate 2-itemsets  

• To discover a frequent pattern of size 100, e.g., 

{a1, a2 ..., a100}, one needs to generate 

2100≈103 candidates. 

(d) It is tedious to repeatedly scan the database and 

check a large set of candidates by matching the 

patterns, especially in the case of long pattern 

mining [6].  

 

2.3 Basic Proposed solutions 
A major challenge in mining frequent patterns from a large 

data set is the fact that such mining often generates a large 

number of patterns satisfying the min_sup threshold, especially 

when it is set low. If a pattern is frequent, it is much obvious 

that each of its sub patterns is also frequent. A large pattern 

will contain an n number of smaller sub-patterns, which are 

frequent. To overcome this problem, closed frequent pattern 

mining and maximal frequent pattern mining was proposed [9], 

where an Apriori-based algorithm called A-Close for such 

mining was proposed. Other closed pattern mining algorithms 

include CLOSET [9], CHARM [8], CLOSET+ [10], FPClose 

[11] and AFOPT [12]. The main challenge in closed (maximal) 

frequent pattern mining is to check whether a pattern is closed 

(maximal). There are two strategies to approach this issue: (1) 

to keep track of the transaction ID (TID) list of a pattern and 

index the pattern by using hash functions with TID values. This 

method is used by CHARM, a diffset named compact list is 

maintained by this algorithm which maintains TID values; and 

(2) to maintain the discovered patterns in a pattern-tree similar 

to FP-tree. Advantage of this method is taken by CLOSET+, 

AFOPT and FPClose. Carpenter is a method for finding closed 

patterns in multi-dimensional biological datasets, which 

integrates the benefits of vertical data formats and pattern 

growth methods. By changing the data into vertical data format 

{item: TID_set}, the TID_set can be viewed as row set and the 

FP-tree is so build that it can be viewed as a row enumeration 

tree. Carpenter uses DFS traversal of the row enumeration tree 

and checks weather each node in a row set is frequent or closed 

[9]. Another method is COBBLER, to find frequent closed 

itemsets by combining row enumeration with column 

enumeration [11].TD-Close method is used for multi 

dimensional data to find out the complete set of frequent closed 

patterns. It take advantages of  new search strategy, top-down 

traversal, by starting from the maximal row set, integrated with 

a novel row enumeration tree, which makes complete use of 

the pruning power of the min_sup threshold to shorten the 

search space. Furthermore, another effective closeness-

checking method is also developed that avoids scanning the 

dataset multiple times. Even after various enhancements, the 

above algorithms still encounter problems in mining large 

(called colossal) patterns, since the process will require to 

produce an explosive number of smaller frequent patterns.  

Data pre-processing can be used as an efficient tool in the field 

of FPM. It can be used to filter the data before input it into the 

FPM algorithms. Data reduction, Data transformation is an 

important step of data pre-processing, Data reduction are the 

methods to produce compact representation of the data set 

which is much smaller in size but yet produces the almost same 

results. Data transformation is used to remove noise from the 

data and transform the data into variable forms. 

2.4 Various methods of data reduction and 

data transformation are as follows: 

 2.4.1 Data reduction techniques 
2.4.1.1 Histograms 
It is a popular data reduction technique, it Divides data into 

buckets and store average (sum) for each bucket, it can be Can 

be constructed optimally in single dimension using dynamic 

programming Related to quantization problems [25]. This 

technique may used with Apriori at the time of candidate 

generation for better results. 

2.4.1.2 Clustering 
Partition data set into clusters, it can be very effective if data is 

grouped but it is not if data is “smeared”, it can have 

hierarchical clustering and be stored in multi-dimensional 

index tree structures there are many options for clustering 

definitions and clustering algorithm [25]. 
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2.4.1.3 Sampling 
It allows a mining algorithm to execute in complexity that is 

potentially sub-linear to the amount of the data. It chooses a 

representative subset of the data. Random sampling may have 

very poor performance in the presence of skew [26]. 

This reduction technique can be used with Partition based 

algorithms, clustering or sampling may used with already done 

partitions, it may generate frequent patterns more efficiently. 

2.4.2 Data transformation techniques 

Different trees are used such as FP-tree, Prefix tree etc so that 

data can be compressed and the size needed to store it into the 

memory can be reduced up to a certain extent which in turn 

shortens the time required and number of database scans and 

can produce frequent patterns efficiently [26]. Some of these 

trees use data pre-processing techniques for efficient working 

and other trees may use or can be implemented with data pre-

processing techniques, and could produce frequent patterns 

more efficiently in less time and with reduced database scans 

[27]. 

2.4.2.1 Prefix-tree 

The itemsets are checked in the order of increasing size 

(breadth-_first/level wise traversal of the prefix tree).This tree 

uses the “Attribute” technique of data transformation and 

convert item sets into canonical form. This canonical form of 

item sets are merged with the developed prefix tree and are 

used to check weather that each candidate item set is produced 

once or not. The previously generated levels are used to 

execute a priori pruning of the candidate item sets (using the 

Apriori property). Transactions are represented as simple 

arrays of items (horizontal transaction representation) [5].  The 

support of a candidate item set is computed by checking 

whether they are subsets of a transaction or producing or 

searching subsets of a transaction. 

2.4.2.2 FP-Tree 

FP-Growth means Frequent Pattern Growth. The item sets are 

traverse in lexicographic order (Depth-_first traversal of the 

prefix tree). Step by step removal of items from the transaction 

database. The transaction database is represented as an FP-tree. 

An FP-tree is extended structure of prefix tree: nodes of this 

tree that correspond to the same item are linked together. By 

this, it combines horizontal and vertical database representation. 

Conditional databases can be calculated by this data structures 

much more efficiently. All transactions containing a given item 

can easily be traced by the links between the nodes 

corresponding to this item [8]. 

Algorithm: FP-Tree 

Input: T; ¾; I µ I (initially called with I = fg) 

Output: N[I](T; ¾) 

1: N[I] := fg; 

2: for all i 2 I occurring in T do 

3: Add I [ fig to N[I]; 

4: Ti := fg;H := fg; 

5: for all j 2 I occurring in T such that j > i do 

6: if support(I [ fi; jg) ¸ ¾ then 

7: Add j to H; 

8: for all transaction X 2 T with i 2 X do 

9: Add X \ H to Ti; 

10: Compute N[I [ fig](Ti; ¾)] recursively; 

11: Add N[I [ fig] to N[I]];. 

2.4.2.3 PC_Tree 

The data transformation is an essential process in data 

preprocessing step which can reduce the size of database. This 

method uses a prime-based data transformation technique to 

compress the size of transaction database. It converts each 

transaction into a positive number called Transaction Value 

(TV) during of the PC_Tree construction. 

PC_Tree (Prime-based encoded and Compressed Tree) is based 

on prime number characteristics which can make use of both 

data compressing and pruning techniques to enhance 

efficiency. A PC_Tree includes of a root and some nodes that 

formed sub trees as children of the root or descendants. The 

node structure consists of several different fields: local-count, 

status, value global-count and link. The Value field keeps track 

of transaction value, it records which transaction is represented 

by which node. The local-count field set by 1 during inserting 

Current TV and it is increased by 1 if its TV and current TV 

are equal. The global-count field registers support the pattern P 

which contained by its TV. In fact during of insertion 

procedure the support of all frequent and infrequent patterns is 

registered in the global-count field [13]. 

2.4.2.4 CP-Tree 

FP-growth technique, which produces frequent patterns 

without candidate generation, requires two Database scans to 

achieve a highly compact frequency-descending tree structure 

(FP-tree). At the time of first scan, it produces a list of frequent 

items in which items are arranged in decreasing order with 

subject to frequency. According to the frequency-descending 

list, the second Database scan produces a frequent-pattern tree 

(FP-tree), which keeps the information on transactions having 

frequent patterns. Two Database scans are required, which is a 

problem for incremental, interactive, and stream data mining. 

The CP-tree (compact pattern tree), constructs an FP-tree like 

frequency-descending tree which is a compressed structure 

with a single-pass of a transaction database. CP-tree 

construction mainly consists of two phases: 

(i)Insertion phase: scans transaction(s), inserts them in the 

tree according to the current item order of I-list and revise the 

frequency count of respective items in the I-list. 

(ii)Reconstruction phase: rearranges the I-list according to 

frequency-descending order of items and rebuild the tree nodes 

according to this revised I-list [15]. 

Many researches is been done, many is been proposed there is 

a lot to do in the field of frequent pattern mining to increase its 

efficiency. 

3. COMPARATIVE ANALYSIS OF 

VARIOUS FPM TECHNIQUES 

Every method of FPM has its own advantages and 

disadvantages Comparison of different FPM techniques is 

given in Table 1, where M represents the length of maximal 

frequent item set and N represents the number of partitions. As 

described in the table, various algorithms are compared on the 

basis of some parameters, like  

 I. Number of database scans required for best case, 

 II. Number of database scans required for worst case, 
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 III. Candidate generation technique required or not,  

 IV. Incremental mining is possible or not, 

 V.  Accepts the change in user parameter [24]. 

Other approaches like Prefix tree checking whether a given 

code word is canonically transformed can be faster than 

building canonical code word from a scratch. FP growth is an 

efficient technique for mining frequent pattern in frequent 

patterns can be efficiently produced by implementing trees 

with some other methods. 

TABLE 1. Comparative Analysis Of Various FPM 

Techniques 

 

Data reduction and transformation techniques reduces the size 

of data which in turn reduces memory space utilization and  the 

time taken for search a pattern from the bulk of data, it also 

reduces number of database scans.  FP growth improves 

Apriori, as with this algorithm calculating frequent item set is 

possible without candidate generation, with two Database scan. 

4. CONCLUSION 

Frequent pattern mining is one of the most intensely 

investigated and challenging work domains in contemporary 

work in the data mining discipline as a whole [3], In this study 

we have tried to find some clues to the question of whether the 

frequent patterns can be calculated more efficiently, what are 

the problems and what will be the solutions using some 

publicly available methods that are proven successful by 

several studies. As a further study frequent patterns can be 

calculated by using different empirical approaches with pre-

processing techniques, for the upcoming researcher to work in 

the field of data mining. 
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