
International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

23

A Survey on Problems and Solutions of Frequent Pattern

Mining with the use of Pre-Processing Techniques

Anupriya Babbar Anju Singh Divakar Singh

M TECH Scholar, CSE Deptt. Asst. Prof. of IT Deptt. HOD of CSE Deptt.
BUIT, Bhopal, India BUIT, Bhopal, India BUIT, Bhopal, India

ABSTRACT
Frequent pattern mining is a researched area which is used for

extracting interesting associations and correlations among item

sets in transactional and relational database. Many algorithms

of frequent pattern mining is been devised ranging from

efficient and scalable algorithms in transactional database to

numerous research frontiers and their wide applications. Many

researches been done into FPM [1], but there are still several

optimizations are required, so that FPM can be used more

efficiently in data mining applications. For optimization

purpose in many mining techniques data pre-processing plays

an important role in reducing data size and also in lessening the

time taken in database scans. This paper is a detailed study of

problems and solutions of FPM techniques incorporated with

pre-processing techniques. The intent of this paper is to

summarize all major problems of FPM and their solutions.

From this survey, it concludes that if FPM methods are merged

with pre-processing techniques will produce results with better

performance.

Keywords

Frequent Pattern Mining, Maximal frequent pattern, Data Pre-

Processing

1. INTRODUCTION
Association rule mining is one of the important technique of

data mining, it extracts interesting co-relations, frequent

patterns, associations or casual structures among sets of items

in the transaction databases or other data repositories [7].

Association rule mining is to find out association rules that

satisfy the user defined minimum support and confidence from

a given database. The problem is usually divided into two sub

problems. One is to find out those itemsets whose occurrences

exceed a user defined threshold in the database; those itemsets

are called frequent or large itemsets. And to generate

association rules from those large itemsets with the constraints

of minimal confidence is a second problem [14]. This is

explained with a help of an example.

Example 1.1 In an online shopping website, some tips are

always there after purchase of any product, for instance, once

you bought the microwave a list of related cook wares such as:

micro-cooker 50%, micro plates 15% etc, will be presented to

you as recommendation for further purchasing. In the above

example, the association rules are: when the microwave is

bought, 50% of the time micro cooker is bought together, and

15% of the time micro plates are bought together. Commodities

are rearranged in the store according to the rule discovered

which can further make purchasing much more convenient [3].

The organization of the paper is as follows. Section 2

introduces the problems and solutions of frequent pattern

mining. The result of comparison between the different

methods can be found in section 3. Finally, section 4 contains

the conclusion and future works.

2. PROBLEMS AND SOLUTIONS OF

FPM
The efficiency and scalability of the frequent pattern mining

algorithms is well studied. Nevertheless, it is obvious that the

runtime is not the single factor that measures the quality of the

FPM techniques. The common criticism of the FPM algorithms

today is the generation of prohibitively large set of frequent

patterns, which limits the avenues of exploring or reusing those

[2]. Limiting the number of discovered patterns using high

thresholds may reveal only the common knowledge while low

thresholds results an explosion of discovered patterns. This and

several other factors are the question of concern for existing

approaches of FPM.

2.1 Various frequent pattern mining

techniques with their problems and

proposed solutions

2.1.1 Mining Frequent Itemsets with candidate

generation

2.1.1.1 Apriori –based Algorithm

The first published frequent item set mining algorithm is

Apriori [16]. Apriori uses breadth first search (BFS). At each

level, Apriori uses downward closure property. This method is

based on candidate generation. Before scanning any database it

generates a candidate whose super set cannot be frequent or

which is MFP. During the database scan support of candidate

item set is counted Candidate k item sets, Ck are generated

with frequent (k –1) item sets. Apriori suffers from large

number of candidate generation which requires number of

database scans which reduces its efficiency and make it costly.

To overcome the disadvantage of Apriori Dynamic Item set

Counting; (DIC) is used, which distinguishes between

generation and counting of item sets [19]. By using such

methods, the number of data scans required by Apriori based

algorithms has been reduced up to a great extent.

2.1.1.2 Partition based Algorithms

Partition -based Algorithms [21] solves the problem of high

number of database scans, associated with Apriori –based

algorithm. Two complete database scans are required to mine

frequent item sets. This algorithm breaks the dataset into

number of sub sets so that each sub set can be placed into the

main memory.

The basic idea of the Partition based algorithm is that a

frequent item set must be frequent in at least 1 subset.

Partition-based algorithm, during the first data scan, it

generates local frequent item sets for each partitioned sub set.

These whole partitions can be accommodated into the main

International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

24

memory; I/O operations are not required to extract local

frequent item sets. The local frequent item sets is added to the

global candidate frequent item sets. In the next data scan,

candidates who are incorrect removed from the list of global

candidate frequent item set. In a rare case where each subset

have same local frequent item sets, All frequent item sets can

be mined with a single data scan. On contrary, when the data is

divided unevenly among the partitions, this algorithm may

generate a lot of wrong candidates from a small number of

partitions. By implementing the knowledge collected during

the mining process, false item sets are pruned when it is found

that they cannot be frequent. These types of algorithms reduce

the number of scans in the worse case to (2k-1)/k where k is

the number of partitions.

2.1.1.3 DFS and Hybrid Algorithms

Eclat and Clique [22] combine both depth first search (DFS)

and intersection counting. By using this method, there is no

need of using complex data structures. These hybrid algorithms

reduces the required memory space, only the TID sets of the

path item sets from the root to the leaves have to be kept in the

memory simultaneously. TID set intersection stopped as soon

as the remaining length of the shortest TID set is shorter than

the required support minus the counted support value. The

intersection of TID sets of 1item set to generate frequent 2 item

sets is very costly. The maximal hyper graph clique clustering

is applied to 2 frequent item sets to generate a refined set of

maximal item sets. A hybrid approach of BFS and DFS is

proposed [6]. It is much cheaper to use item set counting with

BFS to determine the supports, when the frequent item sets is

small. When the large number of candidate frequent item sets

is found, the hybrid algorithm jumps to TID set intersection

with DFS, since simple TID set intersections are more efficient

than occurrence counting when the number of candidate

frequent item sets is large. This results in add on costs on

generating TID sets. Then hash tree -like structure [18] is

proposed to minimize the cost of transition.

2.1.1.4 Incremental Update with Apriori-based

Algorithms

Complete dataset is normally large and the incremental portion

is relatively small as compared to the complete dataset. In most

of the cases, it is not feasible to perform a complete data

mining process while transactions are being added

simultaneously. Incremental data mining algorithms

implements the idea of reusing the existing information as

much as possible, so that computational cost and/or I/O cost

can be reduced up to an extent. Fast Update 2(FUP2), an

incremental mining algorithm, allows both insertion and

deletion of transactions [17]. The major idea of FUP2 is to

reduce the cost of generating candidate frequent item sets.

Incremental portion of the dataset is scanned; frequent patterns

in the incremental data are compared with the existing frequent

item sets in the complete dataset. Earlier calculated frequent

item sets are removed if they are no longer frequent after the

incremental portion of the data is inserted or deleted. The

support of earlier calculated frequent item sets that are still

frequent, are updated, so that it can reflect the changes occur

due to addition or deletion of incremental portion . By using

these methods, previously calculated frequent item sets that are

still frequent are not needed to be checked for their supports

again and again. New (m + 1) candidate frequent item sets are

generated from frequent m item sets. The complete updated

dataset is scanned to verify that newly added candidate item

sets if they are indeed frequent; the process is continue until the

set of candidate frequent item set becomes empty. FUP2 offers

some advantages over the classic Apriori algorithm. But, it still

requires multiple numbers of database scans. Sliding Window

Filtering (SWF) [19] is another incremental Apriori based

algorithm. SWF uses the main idea of Partition algorithm with

Apriori to allow incremental mining. SWF breaks the dataset

into number of subsets. During the partitions scan, a filtering

threshold is employed in each partition for the generation of

candidate frequent 2 item sets. If any item set found to be

frequent, its partition number and its frequency are stored.

Agglomerated information about candidate frequent 2 item sets

is carefully carried for subsequence partition scans.

Agglomerated frequencies of previously generated candidate

frequent 2 item sets are stored for the scanning of new

partitions. False candidates are removed when the cumulative

support of the candidate frequent item sets fall below the

threshold. Once the scanning of incremental portion is done,

scan reduction techniques are incorporated for the generation

of all subsequence frequent candidates Item sets. Once more

data scanning is done to confirm that the item sets are frequent.

Although SWF achieves better performance than pervious

algorithms, the performance of SWF still counts on the

selection of partition size and data pruning technique used.

2.1.1.5 SQL-based algorithms

DBMS can compliment data mining to become an online,

scalable and concurrent process by facilitating the existing

querying and inbuilt functions. The SETM algorithm was the

first attempt on frequent item set mining [23], expressed as

SQL queries working on relational tables. The Apriori

algorithm [16] opened up new prospects for FPM. The

database -coupled variations of the Apriori algorithm were

carefully examined. The SQL-92 based implementations were

very slow, but the SQL implementations enhanced with object-

relational extensions (SQL-OR) performed acceptable. SQL

based frequent mining implemented with FP-tree provides the

efficient results than the other SQL based techniques. It is

accepted that FP-tree is compact, but it is unrealistic to

construct a main memory-based FP-tree when the database is

huge. However using RDBMSs provides us the advantages of

using their buffer management systems specially developed for

freeing the user applications from the size constraints of the

data.

2.1.2 Mining frequent itemsets without candidate

generation

2.1.2.1 Pattern-Growth Algorithms

Two major expense of Apriori based algorithms are the

expense to generate candidate frequent item set t and the

expense associated with I/O operations. The issues related to

I/O have been resolved, but the issues related to candidate

frequent item set t generation remain untouched. If there is n

frequent 1 item set t, Apriori algorithms would require to

generate t2 /2 candidates approximately in frequent Item set t.

Secondly, the memory required to hold the candidate frequent

item set t and their supports could be substantial. Han et al. [9]

proposed a structured data called frequent pattern tree or FP-

Tree. FP-growth is a method to mine frequent item sets from

FP-Tree without generating candidate frequent item set t. FP-

Tree is an extension of prefix tree structure. Node of a tree is

used to store frequent items. Each node contains the item’s

label along with the number of occurrence of an item in a

particular set. Complete path from the zero level to the last

level are arranged according to the support value of the items

with the descending order of their frequency. That is, each

parent node is greater than or equal to the sum of its children’s

International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

25

node frequency. FP-Tree requires two database scans. In the

first scan, the support value of each item is found. This

computed support values are used in the second scan to sort the

items within transactions in higher to lower order. If some

transactions have a common prefix, then the frequencies of the

nodes are increased by merging the common prefixes. Nodes

with the same label are connected with an item link. The item

link is used to mine frequent patterns. Each FP -Tree has a

header that consists of all frequent items and pointers to the

beginning of their respective item links. FP-growth traces the

paths of FP-Tree recursively to generate frequent item sets.

Pattern fragments are merged to ensure all frequent item sets

are properly generated. Thus FP-growth implements the simple

methods for generation and testing of candidate item sets.

When the data is unevenly distributed, the compaction

achieved by the FP-Tree is small and the FP-Tree is bushy. As

a result, FP-growth would require a lot of effort to merge

fragmented patterns with no frequent item sets being found. A

new data structure called H -struct is introduced [20]. In this,

transactions are arranged with an arbitrary ordering scheme.

Only frequent items are used in the H-struct. H-struct consists

of selected transactions and these selected transactions contain

item label and a hyper link pointing to the next occurrence of

the item. A header table is created for H-struct which contains

frequencies of all items, their support values and hyper link to

the first transaction containing given item. H-mine uses a

method to mine the H-struct iteratively by developing a new

header table for each item in the original header with

subsequent headers and items that have been mined previously

are skipped. For each sub-header, H-mine traverses the H-

struct according to the hyper link s and search frequent item

sets for the local header. H-Mine also develops a links for

items that have not been mined in the local header. The process

is iteratively runs until all frequent item sets have been mined

completely. In case of a dense dataset, H-struct is not as

efficient as FP-Tree because FP-Tree allows compression.

2.2 Basic Problems are as follows:

(a) In many real applications mostly in dense data

with long frequent patterns enumerating all

possible subsets of a particular length pattern is

infeasible.

(b) The complexity of frequent pattern mining from

a large amount of data is generating a huge

number of patterns satisfying minimum support

threshold, especially when threshold value is

low.

(c) Generation of candidate item sets is expensive

(Huge candidate sets).

•104frequent 1-itemset will generate

107candidate 2-itemsets

• To discover a frequent pattern of size 100, e.g.,

{a1, a2 ..., a100}, one needs to generate

2100≈103 candidates.

(d) It is tedious to repeatedly scan the database and

check a large set of candidates by matching the

patterns, especially in the case of long pattern

mining [6].

2.3 Basic Proposed solutions
A major challenge in mining frequent patterns from a large

data set is the fact that such mining often generates a large

number of patterns satisfying the min_sup threshold, especially

when it is set low. If a pattern is frequent, it is much obvious

that each of its sub patterns is also frequent. A large pattern

will contain an n number of smaller sub-patterns, which are

frequent. To overcome this problem, closed frequent pattern

mining and maximal frequent pattern mining was proposed [9],

where an Apriori-based algorithm called A-Close for such

mining was proposed. Other closed pattern mining algorithms

include CLOSET [9], CHARM [8], CLOSET+ [10], FPClose

[11] and AFOPT [12]. The main challenge in closed (maximal)

frequent pattern mining is to check whether a pattern is closed

(maximal). There are two strategies to approach this issue: (1)

to keep track of the transaction ID (TID) list of a pattern and

index the pattern by using hash functions with TID values. This

method is used by CHARM, a diffset named compact list is

maintained by this algorithm which maintains TID values; and

(2) to maintain the discovered patterns in a pattern-tree similar

to FP-tree. Advantage of this method is taken by CLOSET+,

AFOPT and FPClose. Carpenter is a method for finding closed

patterns in multi-dimensional biological datasets, which

integrates the benefits of vertical data formats and pattern

growth methods. By changing the data into vertical data format

{item: TID_set}, the TID_set can be viewed as row set and the

FP-tree is so build that it can be viewed as a row enumeration

tree. Carpenter uses DFS traversal of the row enumeration tree

and checks weather each node in a row set is frequent or closed

[9]. Another method is COBBLER, to find frequent closed

itemsets by combining row enumeration with column

enumeration [11].TD-Close method is used for multi

dimensional data to find out the complete set of frequent closed

patterns. It take advantages of new search strategy, top-down

traversal, by starting from the maximal row set, integrated with

a novel row enumeration tree, which makes complete use of

the pruning power of the min_sup threshold to shorten the

search space. Furthermore, another effective closeness-

checking method is also developed that avoids scanning the

dataset multiple times. Even after various enhancements, the

above algorithms still encounter problems in mining large

(called colossal) patterns, since the process will require to

produce an explosive number of smaller frequent patterns.

Data pre-processing can be used as an efficient tool in the field

of FPM. It can be used to filter the data before input it into the

FPM algorithms. Data reduction, Data transformation is an

important step of data pre-processing, Data reduction are the

methods to produce compact representation of the data set

which is much smaller in size but yet produces the almost same

results. Data transformation is used to remove noise from the

data and transform the data into variable forms.

2.4 Various methods of data reduction and

data transformation are as follows:

 2.4.1 Data reduction techniques
2.4.1.1 Histograms
It is a popular data reduction technique, it Divides data into

buckets and store average (sum) for each bucket, it can be Can

be constructed optimally in single dimension using dynamic

programming Related to quantization problems [25]. This

technique may used with Apriori at the time of candidate

generation for better results.

2.4.1.2 Clustering
Partition data set into clusters, it can be very effective if data is

grouped but it is not if data is “smeared”, it can have

hierarchical clustering and be stored in multi-dimensional

index tree structures there are many options for clustering

definitions and clustering algorithm [25].

International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

26

2.4.1.3 Sampling
It allows a mining algorithm to execute in complexity that is

potentially sub-linear to the amount of the data. It chooses a

representative subset of the data. Random sampling may have

very poor performance in the presence of skew [26].

This reduction technique can be used with Partition based

algorithms, clustering or sampling may used with already done

partitions, it may generate frequent patterns more efficiently.

2.4.2 Data transformation techniques

Different trees are used such as FP-tree, Prefix tree etc so that

data can be compressed and the size needed to store it into the

memory can be reduced up to a certain extent which in turn

shortens the time required and number of database scans and

can produce frequent patterns efficiently [26]. Some of these

trees use data pre-processing techniques for efficient working

and other trees may use or can be implemented with data pre-

processing techniques, and could produce frequent patterns

more efficiently in less time and with reduced database scans

[27].

2.4.2.1 Prefix-tree

The itemsets are checked in the order of increasing size

(breadth-_first/level wise traversal of the prefix tree).This tree

uses the “Attribute” technique of data transformation and

convert item sets into canonical form. This canonical form of

item sets are merged with the developed prefix tree and are

used to check weather that each candidate item set is produced

once or not. The previously generated levels are used to

execute a priori pruning of the candidate item sets (using the

Apriori property). Transactions are represented as simple

arrays of items (horizontal transaction representation) [5]. The

support of a candidate item set is computed by checking

whether they are subsets of a transaction or producing or

searching subsets of a transaction.

2.4.2.2 FP-Tree

FP-Growth means Frequent Pattern Growth. The item sets are

traverse in lexicographic order (Depth-_first traversal of the

prefix tree). Step by step removal of items from the transaction

database. The transaction database is represented as an FP-tree.

An FP-tree is extended structure of prefix tree: nodes of this

tree that correspond to the same item are linked together. By

this, it combines horizontal and vertical database representation.

Conditional databases can be calculated by this data structures

much more efficiently. All transactions containing a given item

can easily be traced by the links between the nodes

corresponding to this item [8].

Algorithm: FP-Tree

Input: T; ¾; I µ I (initially called with I = fg)

Output: N[I](T; ¾)

1: N[I] := fg;

2: for all i 2 I occurring in T do

3: Add I [fig to N[I];

4: Ti := fg;H := fg;

5: for all j 2 I occurring in T such that j > i do

6: if support(I [fi; jg) ¸ ¾ then

7: Add j to H;

8: for all transaction X 2 T with i 2 X do

9: Add X \ H to Ti;

10: Compute N[I [fig](Ti; ¾)] recursively;

11: Add N[I [fig] to N[I]];.

2.4.2.3 PC_Tree

The data transformation is an essential process in data

preprocessing step which can reduce the size of database. This

method uses a prime-based data transformation technique to

compress the size of transaction database. It converts each

transaction into a positive number called Transaction Value

(TV) during of the PC_Tree construction.

PC_Tree (Prime-based encoded and Compressed Tree) is based

on prime number characteristics which can make use of both

data compressing and pruning techniques to enhance

efficiency. A PC_Tree includes of a root and some nodes that

formed sub trees as children of the root or descendants. The

node structure consists of several different fields: local-count,

status, value global-count and link. The Value field keeps track

of transaction value, it records which transaction is represented

by which node. The local-count field set by 1 during inserting

Current TV and it is increased by 1 if its TV and current TV

are equal. The global-count field registers support the pattern P

which contained by its TV. In fact during of insertion

procedure the support of all frequent and infrequent patterns is

registered in the global-count field [13].

2.4.2.4 CP-Tree

FP-growth technique, which produces frequent patterns

without candidate generation, requires two Database scans to

achieve a highly compact frequency-descending tree structure

(FP-tree). At the time of first scan, it produces a list of frequent

items in which items are arranged in decreasing order with

subject to frequency. According to the frequency-descending

list, the second Database scan produces a frequent-pattern tree

(FP-tree), which keeps the information on transactions having

frequent patterns. Two Database scans are required, which is a

problem for incremental, interactive, and stream data mining.

The CP-tree (compact pattern tree), constructs an FP-tree like

frequency-descending tree which is a compressed structure

with a single-pass of a transaction database. CP-tree

construction mainly consists of two phases:

(i)Insertion phase: scans transaction(s), inserts them in the

tree according to the current item order of I-list and revise the

frequency count of respective items in the I-list.

(ii)Reconstruction phase: rearranges the I-list according to

frequency-descending order of items and rebuild the tree nodes

according to this revised I-list [15].

Many researches is been done, many is been proposed there is

a lot to do in the field of frequent pattern mining to increase its

efficiency.

3. COMPARATIVE ANALYSIS OF

VARIOUS FPM TECHNIQUES

Every method of FPM has its own advantages and

disadvantages Comparison of different FPM techniques is

given in Table 1, where M represents the length of maximal

frequent item set and N represents the number of partitions. As

described in the table, various algorithms are compared on the

basis of some parameters, like

 I. Number of database scans required for best case,

 II. Number of database scans required for worst case,

International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

27

 III. Candidate generation technique required or not,

 IV. Incremental mining is possible or not,

 V. Accepts the change in user parameter [24].

Other approaches like Prefix tree checking whether a given

code word is canonically transformed can be faster than

building canonical code word from a scratch. FP growth is an

efficient technique for mining frequent pattern in frequent

patterns can be efficiently produced by implementing trees

with some other methods.

TABLE 1. Comparative Analysis Of Various FPM

Techniques

Data reduction and transformation techniques reduces the size

of data which in turn reduces memory space utilization and the

time taken for search a pattern from the bulk of data, it also

reduces number of database scans. FP growth improves

Apriori, as with this algorithm calculating frequent item set is

possible without candidate generation, with two Database scan.

4. CONCLUSION

Frequent pattern mining is one of the most intensely

investigated and challenging work domains in contemporary

work in the data mining discipline as a whole [3], In this study

we have tried to find some clues to the question of whether the

frequent patterns can be calculated more efficiently, what are

the problems and what will be the solutions using some

publicly available methods that are proven successful by

several studies. As a further study frequent patterns can be

calculated by using different empirical approaches with pre-

processing techniques, for the upcoming researcher to work in

the field of data mining.

5. REFRENCES
[1] Thashmee Karunaratne, “Is Frequent Pattern Mining

Useful In Building Predictive Models?” Stockholm

University, Forum 100, Se-164 40 Kista, Sweden.

[2] Jiawei Han , Hong Cheng , Dong Xin Xifeng Yan,

“Frequent Pattern Mining: Current Status And Future

Directions” Springer Science+Business Media, Llc 2007.

[3] Norwati Mustapha, Mohammad-Hossein Nadimi-

Shahraki, Ali B Mamat, Md. Nasir B Sulaiman “A

Numerical Method for Frequent Patterns Mining Journal

of Theoretical And Applied Information Technology”.

Journal of Theoretical and Applied Information

Technology, 2009.

[4] Renáta Iváncsy, István Vajk, “Frequent Pattern Mining In

Web Log Data” Acta Polytechnica Hungarica Vol. 3, No.

1, 2006.

[5] Bart Goethals, “Survey on Frequent Pattern Mining”

Journal On Computer Science And Engineering 2010.

[6] Jiawei Han ,Jian Pei , Iwen Yin , “Mining Frequent

Patterns Without Candidate Generation: A Frequent-

Pattern Tree Approach”, Received May 21, 2000; Revised

April 21, 2001.

[7] Qiankun Zhao,Sourav S. Bhowmick, “Association Rule

Mining: A Survey”, Technical Report, Cais, Nanyang

Technological University, Singapore, No. 2003116 , 2003.

[8] Bart Goethals, “Memory issues in frequent item set

mining” SAC’04, March 14–17, 2004.

[9] Pei J, Han J, Mortazavi-Asl B, Pinto H, Chen Q, Dayal U,

Hsu M-C, “ Prefixspan: Mining Sequential Patterns

Efficiently By Prefix-Projected Pattern Growth”. In:

Proceeding Of the 2001International Conference on Data

Engineering (ICDE’01), Heidelberg, Germany, 2011.

[10] Wang J, Han J, Pei J , “ CLOSET+: Searching For The

Best Strategies For Mining Frequent Closed Itemsets”. In:

Proceeding Of the 2003 ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining

(KDD’03), Washington, DC, Pp 236–245, 2003.

[11] Han J, Pei J, Yin Y , “ Mining Frequent Patterns without

Candidate Generation”. In: Proceeding Of the 2000 ACM-

SIGMOD International Conference on Management of

Data (SIGMOD’00), Dallas, TX, Pp 1–12, 2000.

[12] Liu J, Paulsen S, Sun X, Wang W, Nobel A, Prins J , “

Mining Approximate Frequent Itemsets In The Presence

Of Noise: Algorithm and Analysis”. In: Proceeding Of the

2006 SIAM International Conference on Data Mining

(SDM’06), Bethesda 2006.

[13] Nadimi-Shahraki M.H., N. Mustapha, M. NSulaiman, and

A. Mamat, “Incremental Updating of Frequent Pattern:

Basic Algorithms”, Proceedings of the

secondInternational Conference on InformationSystems

Technology and Management (ICISTM 08), pp. 145-148,

2008.D, Pp 405–416, 2006.

[14] Sotiris-Kotsiantis,Dimitris, “Association Rules Mining: A

Recent Overview”, GESTS International Transactions on

Computer Science and Engineering, Vol.32 (1), 2006

[15] Gosta Grahne and Jianfei Zhu,” Efficiently sing Prefix-

trees in Mining Frequent Itemsets”, on ordia University

Montreal,Canada,2002.

[16] Agrawal Rakesh, Imilienski T., and Swami Arun. “Mining

association rules between sets of items in large datasets”,

SIGMOD, 207-216, 1993.

[17] Cheung David W., Lee S. D., and Kao Benjamin. “A

General Incremental Technique for Maintaining

Discovered Association Rules”, Proc.International

Conference On Database Systems For Advanced

Applications, April 1997

[18] Hipp Jochen, Güntzer Ulrich, and Nakhaeizadeh

Gholamreza, “ Mining Association Rules: Deriving a

Superior Algorithm by Analyzing Today's Approaches”,

159-168, Lyon, France, September 2000.

[19] Lee Chang Hung, Lin Cheng Ru, and Chen Ming Syan, “

Sliding Window Filtering: An Efficient Method for

incremental Mining on a Time-Variant Database”,

Proceedings of 10th International Conference on

 Apriori Partition Incremental

Apriori

FP

Growth

SQL

Based

I 2 1 2 2 1

II M+1 (2N-1)/N M+1 2 1

III Yes Yes Yes No No

IV No No Yes No No

V Yes Yes Yes Yes Yes

International Journal of Computer Applications (0975 – 8887)

Volume 95 – No 1, June 2014

28

Information and Knowledge Management, 263-270,

November 2001.

[20] Pei Jian, Han Jiawei, Nishio Shojiro, Tang Shiwei, and

Yang Dongqing, “H-Mine: Hyper- Structure Mining of

Frequent Patterns in Large Databases”, Proc.2001

Int.Conf.on Data Mining, San Jose, CA, November 2001.

[21] Savasere Ashok, Omiecinski Edward, and Navathe

Shamkant. “An Efficient Algorithm for Mining

Association Rules in Large Databases”, Proceedings of

the Very Large Data Base Conference, September 1995.

[22] Zaïane Osmar R. and Oliveira Stanley R. M. “Privacy

preserving frequent itemset mining”, Workshop on

Privacy, Security, and Data Mining, in conjunction with

the IEEE International Conference on Data Mining, Japan,

December 2002.

[23] M. Houtsma and A. Swami, “Set-oriented data mining in

relational databases”, Data Knowl. Eng.,245–262, 1995.

[24] Han & Kamber ,”Data Pre-processing & Mining

Algorithm”, 3 edition ISCE,2001.

[25] Agrawal, Rakesh and Ramakrishnan Srikant, “Fast

Algorithms for Mining & Preprocessing Assosiation

Rules”, Proceedings of the 20th VLDB

Conference,Santiago, Chile (1994).

[26] Salleb, Ansaf and Christel Vrain, “An Application of

Assosiation Knowledge Discovery and Data Mining”

(PKDD) 2000 , LNAI 1910, pp. 613-618, Springer Verlag

(2000).

[27] Agrawal, R., and Psaila, G. “ Active Data Mining” In

Proceedings on Knowledge Discovery and Data Mining

(KDD -95), 3–8. Menlo Park, 1995.

IJCATM : www.ijcaonline.org

