
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

46

Proactive and Adaptive Data Migration in Hierarchical

Storage Systems using Reinforcement Learning Agent

T.G.Lakshmi
Department of Computer Engineering

Thakur College of Engineering and Technology
Mumbai, India - 400101

R.R.Sedamkar
Department of Computer Engineering,

Thakur College of Engineering and Technology
Mumbai, India - 400101

ABSTRACT
 With the data generation rates growing exponentially,

businesses are having a difficult time maintaining data center

infrastructure. Hierarchical storage systems has evolved as a

better alternate to managing data, as frequently accessed data

is placed on higher tiers and the least frequently accessed data

on lower tiers. But the data arrangement is not always static.

Data Migration is an operation in which the selected data is

physically moved, or migrated, to different storage

components. The existing method of data migration in

hierarchical storage systems has several shortcomings –

reactive, heuristic policies and proprietary software. This

paper attempts to overcome the above limitations by applying

a reinforcement learning (RL) agent in the data migration of

hierarchical storage systems. By the addition of RL agent the

data migration which earlier was responsive, is made

proactive and adaptive. Experimental results demonstrate the

effectiveness of the proposed RL agent. The results indicate

that: (i) the average queue size of storage devices is reduced to

almost zero as the RL agent proactively migrates data and (ii)

at 95 % confidence level the RL agent has no affect on the

read and write operation of certain file sizes.

General Terms
Data Migration, Hierarchical Storage Management

Keywords
 HSS, Multi-Tier storage, Data Management, Data Migration,

AI, Reinforcement Learning, Q-Learning

1. INTRODUCTION
Storage of information is the most vital function in an

organization. A large quantity of digital information is being

created every moment by individual and corporate businesses

[1].Storage area networks are now recognized as the preferred

solution for fulfilling a wide range of critical data storage

needs for institutions and enterprises [2]. But in recent times

the data is exploding and to keep pace with it the primary and

backup infrastructure is growing massively. There seems to be

one more problem that accompanies the data and

infrastructure growth – data utilization. Even though the data

and infrastructure are growing exponentially the utilization of

data does not increase at the same rate. It becomes more

difficult to determine whether such data can be erased or

deleted permanently due to compliance policies such as PCI

DSS [3].

The cost of the data center operations is becoming difficult to

contain. The problem is not only with the data growth which

leads to the acquisition of new disk arrays but it gets

compounded by the (1) backup,(2)floor space and (3)

electricity costs. Hierarchical Storage Management (HSM)

provides an automatic way of managing and distributing data

between the different storage layers to meet user needs for

accessing data while minimizing the overall cost [4].

Hierarchical Storage Management (HSM) is used to

effectively utilize the storage space according to its capability

and also meet customer demands [4]. In HSM the storage

devices are categorized into tiers based on their access speed.

TIER-I storage would consists of devices which have higher

I/O throughput and hence expensive. The most frequently

used data is placed on TIER-I. The data arrangement is not

static as the value of data changes through its lifetime. The

purpose of HSM would be defeated if data once placed on a

storage tier remains there till the end. Data needs to be

relocated or migrated as and when its value decreases or

increases.

Data Migration is the term given to the action of displacing

data from one storage tier to another storage tier. In a typical

SAN, this action can be initiated either from the storage

controller end or host end as seen from figure 1. Data

migration when implemented at the storage controller tends to

become proprietary and hence would not work on

heterogeneous systems. At the host end data migration

techniques have been reactive and rule-based policies. A

typical example of a rule based policy - IF space utilization in

TIER-I is greater than 80%, THEN migrate *.tmp files greater

than 1MB ordered by size to TIER-III until the space

utilization of TIER-I is 60% [4].

To overcome the above flaws in data migration, in this paper a

Reinforcement Learning (RL) agent to perform data migration

in hierarchical storage systems is used. The RL agent

performs anticipatory data migration based on the device’s

characteristics – (i) transfers per second, (ii) read/write per

second and (iii) average queue size. The RL agent keeps

observing the device characteristics and as it sees the value

deteriorate it schedules for data migration appropriately. The

data migration rules are learnt over a period of time based on

positive and negative rewards. To evaluate the effectiveness

of the RL agent the following study was conducted. With the

same Input/output (I/O) traffic we compared the average

queue size of 3 separate devices. After around 500

observations, the RL agent brought down the queue size to

almost zero in all the three devices. The write and read

performance of devices with and without RL agent was

compared using t-tests. For certain file sizes the t-test

evaluation supports the premise at 95 % confidence levels,

that the RL agent does not affect the I/O performance of the

device.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

47

Fig

1: Typical Storage Area Network

The next section is organized as follows: Section 2 introduces

the related work and also provides a background on the

application of reinforcement learning. In Section 3 and 4, we

describe the research questions and details of the

implementation. In Section 5 we present the experiment

settings and results thereof. We conclude with a discussion in

Section 6.

2. RELATED WORK
Goal oriented learning involves constant interaction with the

environment. The environment interface gives a lot of

information about the cause – effect relationship leading to the

knowledge about the consequences of action. The knowledge

gained, helps in determining the actions required to achieve

the goal. Animal learning, including human infants is based

on the above approach. Reinforcement Learning (RL) is a

goal- directed computational approach to learning from

interaction [5]. Work by A. Harry Klopf (late 1979) on

“Heterostatic theory of adaptive systems” became the base for

future work in RL [5]. RL dates back to the early days of

cybernetics and work in statistics, psychology, neuroscience,

and computer science [6]. RL is one of the most active

research areas in machine learning and artificial intelligence.

Reinforcement Learning does not need prior knowledge; it

autonomously gets optimal policy with the knowledge

obtained from trial and error and continuous interaction with

the dynamic environment. It has characteristics of self-

improvement and online learning. In RL the learner is learning

how to map situations to actions so as to maximize the long

term reward [6]. The learner is not told the best action for a

situation but discovers the best action for a situation by trial

and error [6]. There are several differences between RL and

standard supervised learning. In RL correct input/output pairs

are never presented and there is no correction mechanism for

sub-optimal actions. RL has an additional focus towards

striking the balance between exploration and exploitation.

Data Migration closely resembles a ‘Markov Decision

Process’ (MDP). A MDP is a discrete time stochastic control

process [7]. At each time step, the process is in some state S,

and the decision maker/agent may choose any action ‘a’ that is

available in state ‘S’. The process responds at the next time

step by randomly moving into a new state S’, and giving the

agent a corresponding reward Ra (S, S’). MDP can be solved

via Dynamic Programming and Reinforcement Learning [7].

Dynamic Programming has several shortcomings: (1)

knowledge of the complete environment is unobtainable; (2)

number of states becomes computationally intractable as the

problem size increases. The Reinforcement learning model is

presented in figure 2.

Fig 2: Reinforcement Learning Model

2.1 Data Storage Management using

Artificial Intelligence Methods
AI techniques have been exploited in the proactive
management of computer networks. The study investigated
the use of 2 artificial intelligence methods fuzzy logic and
rules for data location and replica management in distributed
data storage [8]. The proposed system helped select the
cheapest location for file creation and download. It also
performed replica management such as creation and deletion
of replica. The study was performed with the help of 43 events
and it was observed that the system was able to adapt to the
observed situation in the monitored infrastructure and it
minimized the cost of storage [8].

2.2 Reinforcement Learning Model,

Algorithms and Its Application
Machine Learning is a branch of Artificial Intelligence which
concerns learning of machines from data. One of the
approaches of machine learning is through reinforcement
learning. The study surveys the model and theory of
reinforcement learning and presents the four main algorithms
Sarsa, temporal difference, Q-learning and function
approximation [9]. In a RL system there are 2 main
components the agent and the environment and four
essentials: policy, reward function, value function and model
of the environment. All reinforcement learning algorithms
involve estimating value of a state (vπ(s)) or value of a state
action pair (q π (s, a)). The functions give an estimate of how
good it is for the agent to be in a given state or how good is
the action that leads to the current state. The comparison of
the algorithms is presented in table 1 as below. Reinforcement
Learning is mainly used in process control, dispatch
management, robot control, game competition and
information retrieval etc., the widest application is the field of
intelligent control and intelligent robot [9].

Table 1. Comparison of RL Algorithms

Sno Algorithm Complexity Function

Space Time

1 SARSA Linear Linear Q-

Function

2 Temporal

Difference

Linear Linear Value

Function

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

48

3 Q-Learning Linear Linear Q-

Function

4 Function

Approximation

Depends Depends Construct

from data

2.3 A RL approach to Virtual Machine

Auto-configuration
VCONF [10] is a RL based approach for the automation of the

VM configuration process. Virtual machines enable multiple

machines to share the same hardware resources. Based on the

demand of the application executing in the virtual machine the

resources of the VM have to be dynamically reconfigured.

The state in the RL system is the hardware configuration of

the VMs. Actions are the change in the configurable

parameters. The reward signal in the VCONF is based on the

summarized performance of each VM [10]. The VCONF

implemented a basic look-up table based Q function [10]. The

system automated the VM reconfiguration process by

generating policies learned from iterations with the

environment. The VCONF performance was tested on both a

controlled environment as well as cloud test bed. The

workload was given in the form of E-commerce, OLTP and

web server. In the presence of workload dynamics, VCONF

was able to adapt to a good configuration within 7 steps and

showed 20% to 100% throughput improvement over basic RL

methods [10].

2.4 A RL framework for online data

migration in hierarchical storage

systems
In multi-tier storage systems, a very important performance

indicator is the response time of the file I/O requests. The

response time can be minimized if the frequently accessed

files are located in the fastest storage tier. The challenge is

that the file access patterns change over time. David Vengerov

[11] proposed a framework that minimizes the average request

response time. It is achieved by a RL agent that learns to tune

the file migration policies. File migration is the process of

displacing the file storage location to other tiers based on the

file’s access frequency. The migration rules are formed as

policies which associate every situation to an action. The

proposed framework uses a Reinforcement Learning (RL)

methodology for tuning parameters of tier cost functions

based on which file migration is performed. A temporal

difference (TD) method is employed to learn the policy cost

for all states of the system. The file migration is I/O triggered.

The RL methodology applied here is the I/O triggered

migration policy. The RL methodology was applied to tuning

the parameters of the fuzzy rule base, which resulted in a 35%

performance improvement relative to the best found pre-

specified file migration policy [11].

Hierarchical Storage Management (HSM) effectively utilizes

the storage space and meets customer demands. Data

migration seamlessly moves data across tiers as the value of

data changes over time. There are several shortcomings in the

existing data migration techniques: (1) policies are user

defined and hence static and reactive and (2) data migration at

the host side is not yet completely explored. It has been

observed in the past that RL framework has been used to

perform data migration. But the approach has certain

constraints: (1) each storage tier is modeled as an agent and

the data migration is a joint decision between the 2 agents; (2)

the data migration methodology is I/O triggered; and (3) tier

cost represented as a complex fuzzy rule base (FRB). To

address the above inadequacies this paper proposes to study

the effect of a “Proactive and Adaptive Data Migration in

Hierarchical Storage Systems Using Reinforcement

Learning”. As a part of implementation a single data

migration agent in a Hierarchical Storage System (HSS) was

developed and set up. The data migration agent is a standalone

daemon which is proactive and adaptive. The proactive

characteristic will ensure that the agent keeps in check the

average response time of all storage tiers and perform data

migrations before the waiting time deteriorates.

Correspondingly the adaptive nature of the agent will adjust

the data migration rate to avoid QoS violations for the

applications. The above characteristics will be achieved by

implementing the RL algorithm (Q-Learning) in the agent

which will formulate and tune policies based on which the

data migration will take place.

3. RESEARCH QUESTIONS
This paper aims to answer the following research questions:

(i) Does the RL agent learn to perform data migration

when the average queue size of a device increases?

(ii) Does the RL agent reduce the queue size of devices

by performing data migration to the appropriate

devices?

(iii) Does the RL agent based data migration have no or

zero effect on the write and read performance at the

host end?

4. REINFORCEMENT LEARNING FOR

DATA MIGRATION IN HSS
A single data migration agent in a Hierarchical Storage

System (HSS) in Linux OS was implemented [12]. The data

migration agent is a standalone daemon. The agent performs

migration proactively thereby keeping in check the average

response time of all storage tiers. The average response time is

controlled by monitoring the average queue size. The data

migrations will be performed before the waiting time in the

storage tiers deteriorates. The agent would provide interfaces

to adjust the data migration rate to avoid QoS violations for

the applications. The agent utilizes the Q-Learning algorithm

to formulate and tune policies based on which the data

migration will take place. Figure 3 illustrates the bird’s eye

view of the environment and Figure 4 the organization of the

RL agent.

Fig 3: System Design

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

49

A storage tier is chosen as a candidate for data migration by

the agent based on the values of state variable. The state

variables of each storage tier are based on the notion of

temperature of each file, which approximates it access rate

[12]. The three state variables formed: (i) S1- no of transfers

per second (tps), (ii) S2 - no of read/write requests per second

(r/s &w/s) and (iii) S3- the average queue size of the device

(avgqu_sz). Before the devices can be monitored, the

hardware abstraction layer (HAL) in Linux is utilized to

ascertain the no of devices and the file system mount point of

the devices.

Fig 4: RL Agent Organization

4.1 Migration Environment
The migration environment keeps monitoring the 3 state

variables tps, r/s&w/s and avgqu_sz using the command

iostat. The iostat command is used to monitor the system

input/output devices. It generates reports which can help us

perform load balancing between the devices. The values of

S1, S2 and S3 will help us identify the tier under load. The

command iostat gives the value of the three state variables.

The values are recorded with timestamp so as to track the

improvement/decline of the state variables as a result of

migration.

4.2 Migration Agent

The agent looks at the values of the state variables at regular

intervals. If it is found that a particular tier is under a heavy

load, that tier becomes a candidate for data migration. The RL

algorithm updates the data migration rules and stores them as

CRON entries. The cron is software utility in UNIX. It is a

time-based job scheduler. Cron is a daemon that executes

scheduled commands. Administrators use cron to schedule job

to run periodically at fixed times, dates or interval.

Crontab is the program used to install/uninstall/run the cron

daemon. When the minute, hour, and date match the current

time commands are executed by cron. This helps us to initiate

data migration at appropriate time so as to not disrupt the

application performance. The “data migration rate” is

determined by the administrator. It determines the frequencies

at which the data migration can be triggered by the agent The

CRON entries are triggered to perform the data migration. The

table 2 depicts the algorithm for the RL agent.

Table 2. Data Migration RL agent

Algorithm RL agent for Data Migration

1: Initialize the devices using HAL

2: Initialize t ←0

3: repeat

4: st ← get_current_state()

5: rt+1 ← observe_reward()

6: at+1 ← get_next_action()

7: st+1 ← perform action(at+1)

8: t ← t+1

9: until RL agent terminates

The RL-based agent keeps track of the values of the state

variables after a data migration has happened. The state

variables with most recent timestamps can be compared to

find out if the migration task has performed well. If a

deterioration of the values is observed a penalty is added to

the migration rule, similarly the migration rule which results

in improvement of the observed values is rewarded. The

migration rules are stored as simple lookup table. Based on

the rewards/penalty the agent modifies the destination tiers in

the CRON entries. After some trials, the agent would use the

knowledge it learnt to perform near optimal migrations which

improves the average I/O request response time of all the

storage tiers. The figure 5 illustrates the implementation

components along with the tools used to implement them.

Fig 5: Implementation components

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

50

5. RESULTS
A single host (Ubuntu 12.04 LTS, 32-bit) with Intel dual CPU

at 2.17 GHz, 2.00 GB RAM was connected to 3 devices each

of 222 GB HDD, 8 GB USB and 4 GB USB devices. The

transfer rates of each of the device are available in table 3.The

RL agent was installed onto the host.

Table 3. Test Bed Setup

Sno Storage

Tier

Device Transfer

Speed

(MBps)

Storage

(GB)

1 Tier -I ATA

HDD

300 222

2 Tier -II USB 35 8

3 Tier -III USB 35 4

5.1 Test for average queue size of devices
 A script was developed which in each of the device does the

following in a loop:

 Create folders from A-Z

 In each folder creates files from A-Z of 5MB size

each

 Deletes all folders and files
The above script was executed before RL agent is invoked and
average queue size of all the 3 devices tabulated for about
1000 observations. The same script performed during RL
agent execution and average queue size of all the 3 devices
tabulated for about 1000 observations. The average queue size
before and after the RL agent execution were compared for all
the three devices. In total there were about 1000 observations,
and in all the three devices with RL agent execution the
maximum queue size was about 2.5, whereas the maximum
queue size before the RL agent went to about 8, 22 and 32 in
each of the three devices. The Figure 6 presents the
comparison of the average queue size of a device without RL
agent (in blue) and with RL agent (in red). This validates the
premise that the RL agent improves the average queue size by
performing proactive data migration. Figure 7 contains the
impact on the average queue size of a device for 1000
observations. The graph shows that after about 500
observations, the average queue size of the device almost
becomes negligible.

5.2 Test for RL agent effect on write/read

performance
I/O load using iozone was created and output saved to excel

worksheet. The measurement of file response characteristics

(kbytes/sec) also monitored using tool iozone. The command

used “iozone -a -b <name of excel file>.xls -i 0 -i 1 “. The

above experiment was performed before RL agent is invoked

and results tabulated. The same experiment is performed

during the RL agent execution and results were tabulated.
A t-test was performed on the values of file response
characteristics (Kilobytes per second) which were collected to
measure the write/read performance for every file size on the
paired sample group (before and during the RL agent
execution). The t-test checks if the 2 means are reliably
different from each other. In our case we do not want the
means to be different from each other, as we would want to
prove our hypothesis that the RL agent does not impact the
I/O performance. The figure 8 tabulates the t-test results.

6. DISCUSSION AND CONCLUSION
The analysis of the results obtained in the previous section

(section 6) leads to the answers of the research questions

formulated in section 3. The answers are as follows:

 In 960 observations the average queue size of the 3

devices is about 4.301001

 With RL agent , in 960 observations the average queue

size is reduced to 0.033069

 After an average of 500 cycles the RL agent brings down

the average queue size of the device (avgqu-sz) to almost

zero

 At 95 % confidence level, the RL agent does not affect

the write performance of file sizes 128, 256, 512, 1024,

2048, 4096 and 8192 kilobytes

• At 95 % confidence level, the RL agent does not affect
the read (with buffer) performance of file sizes 64, 128,
256, 512, 2048, 4096 and 16384 kilobytes

The data analysis that we have performed on the collected

data in this paper answers all our research questions in

affirmative. A proactive and adaptive data migration RL agent

whilst performing data migration will be able to reduce the

migration and data mobility costs. Though these costs may be

soft in nature, but nevertheless it will be good enough to lower

the total OPEX (Operational Expenses). A proactive and

adaptive data migration technique at the host end of SAN

would also improve the effective utilization of storage tiers

and thereby enhance the TCO (Total cost of Ownership) of the

storage components.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

51

Fig 6: Comparision of average queue size in device 1

Fig 7: RL agent impact on the average queue size of device 1

To expand the study repetition of the experiment, at both

content and period level would need to be performed. To

further investigate the effect and study the impact better

integration and implementation of the code on real life system

HSS needs to be performed. This system can be further

improved by:

 investigating the performance impact on read /write of

file sizes greater than 16 MB

 reduction in the cycles taken by the RL agent to get a

positive reward.

VCONF [10] was able to adapt to a good configuration within

7 steps and showed 20% to 100% throughput improvement

over basic RL methods. In the model proposed by David

Vengerov [11] it was found that statistically significant

performance improvement was achieved only during the first

three iterations of the learning cycle, reducing AWRT by 35%

in comparison to the initial policy. The proposed system has

comparable performance in terms of reducing the queue size

of devices, but the number cycles taken to do so can be further

deliberated. The study can be further broadened by the

addition of the "Predictive" edge to the data migration

strategy, where the agent can also predict based on learning

what the data/device temperatures will be.

Fig
8: t-test results of I/O performance

-1

0

1

2

3

4

5

6

7

8

9

0 200 400 600 800 1000

A
ve

ra
ge

 Q
u

e
u

e
 S

iz
e

Observations

COMPARISON

No RL Agent

RL Agent

0

0.5

1

1.5

2

2.5

3

1

4
3

8

5

1
2

7

1
6

9

2
1

1

2
5

3

2
9

5

3
3

7

3
7

9

4
2

1

4
6

3

5
0

5

5
4

7

5
8

9

6
3

1

6
7

3

7
1

5

7
5

7

7
9

9

8
4

1

8
8

3

9
2

5

A
ve

ra
ge

 Q
u

e
u

e
 S

iz
e

Observations

RL Agent

RL Agent

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

52

7. ACKNOWLEDGMENTS
Our thanks to the principal of Thakur College of Engineering

and Technology, Dr.B.K.Mishra for his constant motivation

and support.

8. REFERENCES
[1] Somasundaram, G., & Shrivastava, A. (2009),

“Information storage and management”, Wiley

Publishing, Inc.

[2] Clark, Tom (2003), “Designing Storage Area Networks:

A Practical Reference for Implementing Storage Area

Networks”, Addison-Wesley Longman Publishing Co.,

Inc.,

[3] Morse, E. A., & Raval, V. (2008), “PCI DSS: Payment

card industry data security standards in context”,

Computer Law & Security Review, 24(6), 540-554.

[4] IBM Redbook(1999), “Hierarchical Storage Management

- AS/400e” IBM

[5] Sutton, R. S., & Barto, A. G. (1998), “Reinforcement

learning: An intro-duction”, Cambridge, MA: MIT Press

[6] L. P. Kaelbling, L. M. Littman, and A. W. Moore (1996),

“Reinforcementlearning: A survey,” Journal of Artificial

Intelligence Research, vol. 4, pp. 237–285

[7] Puterman, M. L. (2009),”Markov decision processes:

discrete stochastic dynamic programming” (Vol. 414),

New Jersey, John Wiley & Sons.

[8] Lodzimierz Funika, W., & Szura, F. (2013), “Data

Storage Using AI Methods”. Computer Science, 14, 2.

[9] Qiang, W., & Zhongli, Z. (2011, August),

“Reinforcement learning model, algorithms and its

application”, In Mechatronic Science, Electric

Engineering and Computer (MEC), 2011 International

Conference on (pp. 1143-1146). IEEE.

[10] Rao, J., Bu, X., Xu, C. Z., Wang, L., & Yin, G. (2009,

June), “VCONF: a reinforcement learning approach to

virtual machines auto-configuration”, In Proceedings of

the 6th international conference on Autonomic

computing (pp. 137-146). ACM.

[11] Vengerov, D. (2008),” A reinforcement learning

framework for online data migration in hierarchical

storage systems” The Journal of Supercomputing, 43(1),

1-19.

[12] Lakshmi T.G., Sedamkar R.R., Patil H (Nov.-Dec.,

2013), “Reinforcement Learning Approach for Data

Migration in Hierarchical Storage Systems”,

International Journal of Enhanced Research in

Management & Computer Applications, ISSN: 2319-

7471,Vol. 2 Issue 9, pp: (30-35)

IJCATM : www.ijcaonline.org

