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ABSTRACT  
 With the data generation rates growing exponentially, 

businesses are having a difficult time maintaining data center 

infrastructure. Hierarchical storage systems has evolved as a 

better alternate to managing data, as frequently accessed data 

is placed on higher tiers and the least frequently accessed data 

on lower tiers. But the data arrangement is not always static. 

Data Migration is an operation in which the selected data is 

physically moved, or migrated, to different storage 

components. The existing method of data migration in 

hierarchical storage systems has several shortcomings – 

reactive, heuristic policies and proprietary software.  This 

paper attempts to overcome the above limitations by applying 

a reinforcement learning (RL) agent in the data migration of 

hierarchical storage systems. By the addition of RL agent the 

data migration which earlier was responsive, is made 

proactive and adaptive. Experimental results demonstrate the 

effectiveness of the proposed RL agent. The results indicate 

that: (i) the average queue size of storage devices is reduced to 

almost zero as the RL agent proactively migrates data and (ii) 

at 95 % confidence level the RL agent has no affect on the 

read and write operation of certain file sizes.  
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1.  INTRODUCTION 
Storage of information is the most vital function in an 

organization. A large quantity of digital information is being 

created every moment by individual and corporate businesses 

[1].Storage area networks are now recognized as the preferred 

solution for fulfilling a wide range of critical data storage 

needs for institutions and enterprises [2]. But in recent times 

the data is exploding and to keep pace with it the primary and 

backup infrastructure is growing massively. There seems to be 

one more problem that accompanies the data and 

infrastructure growth – data utilization. Even though the data 

and infrastructure are growing exponentially the utilization of 

data does not increase at the same rate. It becomes more 

difficult to determine whether such data can be erased or 

deleted permanently due to compliance policies such as PCI 

DSS [3]. 

The cost of the data center operations is becoming difficult to 

contain. The problem is not only with the  data growth which 

leads to the acquisition of new disk arrays but it gets 

compounded by the (1) backup,(2)floor space and (3) 

electricity costs. Hierarchical Storage Management (HSM) 

provides an automatic way of managing and distributing data 

between the different storage layers to meet user needs for 

accessing data while minimizing the overall cost [4]. 

Hierarchical Storage Management (HSM) is used to 

effectively utilize the storage space according to its capability 

and also meet customer demands [4]. In HSM the storage 

devices are categorized into tiers based on their access speed. 

TIER-I storage would consists of devices which have higher 

I/O throughput and hence expensive. The most frequently 

used data is placed on TIER-I. The data arrangement is not 

static as the value of data changes through its lifetime. The 

purpose of HSM would be defeated if data once placed on a 

storage tier remains there till the end. Data needs to be 

relocated or migrated as and when its value decreases or 

increases.  

Data Migration is the term given to the action of displacing 

data from one storage tier to another storage tier. In a typical 

SAN, this action can be initiated either from the storage 

controller end or host end as seen from figure 1. Data 

migration when implemented at the storage controller tends to 

become proprietary and hence would not work on 

heterogeneous systems. At the host end data migration 

techniques have been reactive and rule-based policies. A 

typical example of a rule based policy - IF space utilization in 

TIER-I is greater than 80%, THEN migrate *.tmp files greater 

than 1MB ordered by size to TIER-III until the space 

utilization of TIER-I is 60% [4].  

To overcome the above flaws in data migration, in this paper a 

Reinforcement Learning (RL) agent to perform data migration 

in hierarchical storage systems is used. The RL agent 

performs anticipatory data migration based on the device’s 

characteristics – (i) transfers per second, (ii) read/write per 

second and (iii) average queue size. The RL agent keeps 

observing the device characteristics and as it sees the value 

deteriorate it schedules for data migration appropriately. The 

data migration rules are learnt over a period of time based on 

positive and negative rewards. To evaluate the effectiveness 

of the RL agent the following study was conducted. With the 

same Input/output (I/O) traffic we compared the average 

queue size of 3 separate devices. After around 500 

observations, the RL agent brought down the queue size to 

almost zero in all the three devices. The write and read 

performance of devices with and without RL agent was 

compared using t-tests. For certain file sizes the t-test 

evaluation supports the premise at 95 % confidence levels, 

that the RL agent does not affect the I/O performance of the 

device. 
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Fig 

1: Typical Storage Area Network 

The next section is organized as follows: Section 2 introduces 

the related work and also provides a background on the 

application of reinforcement learning. In Section 3 and 4, we 

describe the research questions and details of the 

implementation. In Section 5 we present the experiment 

settings and results thereof. We conclude with a discussion in 

Section 6. 

2.  RELATED WORK 
Goal oriented learning involves constant interaction with the 

environment. The environment interface gives a lot of 

information about the cause – effect relationship leading to the 

knowledge about the consequences of action. The knowledge 

gained, helps in determining the actions required to achieve 

the goal. Animal learning, including human infants is based 

on the above approach. Reinforcement Learning (RL) is a 

goal- directed computational approach to learning from 

interaction [5]. Work by A. Harry Klopf (late 1979) on 

“Heterostatic theory of adaptive systems” became the base for 

future work in RL [5]. RL dates back to the early days of 

cybernetics and work in statistics, psychology, neuroscience, 

and computer science [6]. RL is one of the most active 

research areas in machine learning and artificial intelligence. 

Reinforcement Learning does not need prior knowledge; it 

autonomously gets optimal policy with the knowledge 

obtained from trial and error and continuous interaction with 

the dynamic environment. It has characteristics of self-

improvement and online learning. In RL the learner is learning 

how to map situations to actions so as to maximize the long 

term reward [6]. The learner is not told the best action for a 

situation but discovers the best action for a situation by trial 

and error [6]. There are several differences between RL and 

standard supervised learning. In RL correct input/output pairs 

are never presented and there is no correction mechanism for 

sub-optimal actions. RL has an additional focus towards 

striking the balance between exploration and exploitation. 

Data Migration closely resembles a ‘Markov Decision 

Process’ (MDP). A MDP is a discrete time stochastic control 

process [7]. At each time step, the process is in some state S, 

and the decision maker/agent may choose any action ‘a’ that is 

available in state ‘S’. The process responds at the next time 

step by randomly moving into a new state S’, and giving the 

agent a corresponding reward Ra (S, S’). MDP can be solved 

via Dynamic Programming and Reinforcement Learning [7]. 

Dynamic Programming has several shortcomings: (1) 

knowledge of the complete environment is unobtainable; (2) 

number of states becomes computationally intractable as the 

problem size increases. The Reinforcement learning model is 

presented in figure 2. 

 
Fig 2: Reinforcement Learning Model 

 

2.1 Data Storage Management using 

Artificial Intelligence Methods 
AI techniques have been exploited in the proactive 
management of computer networks. The study investigated 
the use of 2 artificial intelligence methods fuzzy logic and 
rules for data location and replica management in distributed 
data storage [8]. The proposed system helped select the 
cheapest location for file creation and download. It also 
performed replica management such as creation and deletion 
of replica. The study was performed with the help of 43 events 
and it was observed that the system was able to adapt to the 
observed situation in the monitored infrastructure and it 
minimized the cost of storage [8]. 

 

2.2 Reinforcement Learning Model, 

Algorithms and Its Application 
Machine Learning is a branch of Artificial Intelligence which 
concerns learning of machines from data. One of the 
approaches of machine learning is through reinforcement 
learning. The study surveys the model and theory of 
reinforcement learning and presents the four main algorithms 
Sarsa, temporal difference, Q-learning and function 
approximation [9].  In a RL system there are 2 main 
components the agent and the environment and four 
essentials: policy, reward function, value function and model 
of the environment. All reinforcement learning algorithms 
involve estimating value of a state (vπ(s)) or value of a state 
action pair (q π (s, a)). The functions give an estimate of how 
good it is for the agent to be in a given state or how good is 
the action that leads to the current state.  The comparison of 
the algorithms is presented in table 1 as below. Reinforcement 
Learning is mainly used in process control, dispatch 
management, robot control, game competition and 
information retrieval etc., the widest application is the field of 
intelligent control and intelligent robot [9]. 

 
Table 1. Comparison of RL Algorithms 

Sno Algorithm Complexity Function 

Space Time 

1 SARSA Linear Linear Q-

Function 

2 Temporal 

Difference 

Linear Linear Value 

Function 
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3 Q-Learning Linear Linear Q- 

Function 

4 Function 

Approximation 

Depends Depends Construct 

from data 

 

2.3 A RL approach to Virtual Machine 

Auto-configuration 
VCONF [10] is a RL based approach for the automation of the 

VM configuration process. Virtual machines enable multiple 

machines to share the same hardware resources. Based on the 

demand of the application executing in the virtual machine the 

resources of the VM have to be dynamically reconfigured. 

The state in the RL system is the hardware configuration of 

the VMs. Actions are the change in the configurable 

parameters. The reward signal in the VCONF is based on the 

summarized performance of each VM [10]. The VCONF 

implemented a basic look-up table based Q function [10]. The 

system automated the VM reconfiguration process by 

generating policies learned from iterations with the 

environment. The VCONF performance was tested on both a 

controlled environment as well as cloud test bed. The 

workload was given in the form of E-commerce, OLTP and 

web server. In the presence of workload dynamics, VCONF 

was able to adapt to a good configuration within 7 steps and 

showed 20% to 100% throughput improvement over basic RL 

methods [10]. 

 

2.4  A RL framework for online data 

migration in hierarchical storage 

systems 
In multi-tier storage systems, a very important performance 

indicator is the response time of the file I/O requests. The 

response time can be minimized if the frequently accessed 

files are located in the fastest storage tier. The challenge is 

that the file access patterns change over time. David Vengerov 

[11] proposed a framework that minimizes the average request 

response time. It is achieved by a RL agent that learns to tune 

the file migration policies. File migration is the process of 

displacing the file storage location to other tiers based on the 

file’s access frequency. The migration rules are formed as 

policies which associate every situation to an action. The 

proposed framework uses a Reinforcement Learning (RL) 

methodology for tuning parameters of tier cost functions 

based on which file migration is performed. A temporal 

difference (TD) method is employed to learn the policy cost 

for all states of the system. The file migration is I/O triggered. 

The RL methodology applied here is the I/O triggered 

migration policy. The RL methodology was applied to tuning 

the parameters of the fuzzy rule base, which resulted in a 35% 

performance improvement relative to the best found pre-

specified file migration policy [11]. 

Hierarchical Storage Management (HSM) effectively utilizes 

the storage space and meets customer demands. Data 

migration seamlessly moves data across tiers as the value of 

data changes over time. There are several shortcomings in the 

existing data migration techniques: (1) policies are user 

defined and hence static and reactive and (2) data migration at 

the host side is not yet completely explored. It has been 

observed in the past that RL framework has been used to 

perform data migration. But the approach has certain 

constraints: (1) each storage tier is modeled as an agent and 

the data migration is a joint decision between the 2 agents; (2) 

the data migration methodology is I/O triggered; and (3) tier 

cost represented as a complex fuzzy rule base (FRB). To 

address the above inadequacies this paper proposes to study 

the effect of a “Proactive and Adaptive Data Migration in 

Hierarchical Storage Systems Using Reinforcement 

Learning”. As a part of implementation a single data 

migration agent in a Hierarchical Storage System (HSS) was 

developed and set up. The data migration agent is a standalone 

daemon which is proactive and adaptive. The proactive 

characteristic will ensure that the agent keeps in check the 

average response time of all storage tiers and perform data 

migrations before the waiting time deteriorates. 

Correspondingly the adaptive nature of the agent will adjust 

the data migration rate to avoid QoS violations for the 

applications. The above characteristics will be achieved by 

implementing the RL algorithm (Q-Learning) in the agent 

which will formulate and tune policies based on which the 

data migration will take place. 

 

3. RESEARCH QUESTIONS 
This paper aims to answer the following research questions: 

(i) Does the RL agent learn to perform data migration 

when the average queue size of a device increases? 

(ii) Does the RL agent reduce the queue size of devices 

by performing data migration to the appropriate 

devices? 

(iii) Does the RL agent based data migration have no or 

zero effect on the write and read performance at the 

host end? 

 

4. REINFORCEMENT LEARNING FOR 

DATA MIGRATION IN HSS 
A single data migration agent in a Hierarchical Storage 

System (HSS) in Linux OS was implemented [12]. The data 

migration agent is a standalone daemon.  The agent performs 

migration proactively thereby keeping in check the average 

response time of all storage tiers. The average response time is 

controlled by monitoring the average queue size. The data 

migrations will be performed before the waiting time in the 

storage tiers deteriorates. The agent would provide interfaces 

to adjust the data migration rate to avoid QoS violations for 

the applications. The agent utilizes the Q-Learning algorithm 

to formulate and tune policies based on which the data 

migration will take place. Figure 3 illustrates the bird’s eye 

view of the environment and Figure 4 the organization of the 

RL agent. 

 
Fig 3: System Design 
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A storage tier is chosen as a candidate for data migration by 

the agent based on the values of state variable. The state 

variables of each storage tier are based on the notion of 

temperature of each file, which approximates it access rate 

[12]. The three state variables formed: (i) S1- no of transfers 

per second (tps), (ii) S2 - no of read/write requests per second 

(r/s &w/s) and (iii) S3- the average queue size of the device 

(avgqu_sz). Before the devices can be monitored, the 

hardware abstraction layer (HAL) in Linux is utilized to 

ascertain the no of devices and the file system mount point of 

the devices. 

 

 

Fig 4: RL Agent Organization 

4.1 Migration Environment 
The migration environment keeps monitoring the 3 state 

variables tps, r/s&w/s and avgqu_sz using the command 

iostat. The iostat command is used to monitor the system 

input/output devices. It generates reports which can help us 

perform load balancing between the devices. The values of 

S1, S2 and S3 will help us identify the tier under load. The 

command iostat gives the value of the three state variables. 

The values are recorded with timestamp so as to track the 

improvement/decline of the state variables as a result of 

migration.  

4.2 Migration Agent 

The agent looks at the values of the state variables at regular 

intervals. If it is found that a particular tier is under a heavy 

load, that tier becomes a candidate for data migration. The RL 

algorithm updates the data migration rules and stores them as 

CRON entries. The cron is software utility in UNIX. It is a 

time-based job scheduler. Cron is a daemon that executes 

scheduled commands. Administrators use cron to schedule job 

to run periodically at fixed times, dates or interval. 

Crontab is the program used to install/uninstall/run the cron 

daemon. When the minute, hour, and date match the current 

time commands are executed by cron. This helps us to initiate 

data migration at appropriate time so as to not disrupt the 

application performance. The “data migration rate” is 

determined by the administrator. It determines the frequencies 

at which the data migration can be triggered by the agent The 

CRON entries are triggered to perform the data migration. The 

table 2 depicts the algorithm for the RL agent. 

 

Table 2. Data Migration RL agent 

Algorithm RL agent for Data Migration 

1: Initialize the devices using HAL 

2: Initialize t ←0 

3: repeat 

4: st ← get_current_state( ) 

5: rt+1 ← observe_reward( ) 

6: at+1 ← get_next_action( ) 

7: st+1   ← perform action(at+1) 

8: t ← t+1 

9: until RL agent terminates 

 

The RL-based agent keeps track of the values of the state 

variables after a data migration has happened. The state 

variables with most recent timestamps can be compared to 

find out if the migration task has performed well. If a 

deterioration of the values is observed a penalty is added to 

the migration rule, similarly the migration rule which results 

in improvement of the observed values is rewarded. The 

migration rules are stored as simple lookup table. Based on 

the rewards/penalty the agent modifies the destination tiers in 

the CRON entries. After some trials, the agent would use the 

knowledge it learnt to perform near optimal migrations which 

improves the average I/O request response time of all the 

storage tiers. The figure 5 illustrates the implementation 

components along with the tools used to implement them. 

 

 
 

Fig 5: Implementation components 
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5. RESULTS 
A single host (Ubuntu 12.04 LTS, 32-bit) with Intel dual CPU 

at 2.17 GHz, 2.00 GB RAM was connected to 3 devices each 

of 222 GB HDD, 8 GB USB and 4 GB USB devices. The 

transfer rates of each of the device are available in table 3.The 

RL agent was installed onto the host. 

Table 3. Test Bed Setup 

Sno Storage 

Tier 

Device Transfer 

Speed 

(MBps) 

Storage 

(GB) 

1 Tier -I ATA 

HDD 

300  222  

2 Tier -II USB 35  8 

3 Tier -III USB 35 4 

 

5.1  Test for average queue size of devices  
 A script was developed which in each of the device does the 

following in a loop: 

 Create folders from A-Z 

 In each folder creates files from A-Z of 5MB size 

each 

 Deletes all folders and files 
The above script was executed before RL agent is invoked and 
average queue size of all the 3 devices tabulated for about 
1000 observations. The same script performed during RL 
agent execution and average queue size of all the 3 devices 
tabulated for about 1000 observations. The average queue size 
before and after the RL agent execution were compared for all 
the three devices. In total there were about 1000 observations, 
and in all the three devices with RL agent execution the 
maximum queue size was about 2.5, whereas the maximum 
queue size before the RL agent went to about 8, 22 and 32 in 
each of the three devices. The Figure 6 presents the 
comparison of the average queue size of a device without RL 
agent (in blue) and with RL agent (in red). This validates the 
premise that the RL agent improves the average queue size by 
performing proactive data migration. Figure 7 contains the 
impact on the average queue size of a device for 1000 
observations. The graph shows that after about 500 
observations, the average queue size of the device almost 
becomes negligible. 

 

5.2 Test for RL agent effect on write/read 

performance  
I/O load using iozone was created and output saved to excel 

worksheet. The measurement of file response characteristics 

(kbytes/sec) also monitored using tool iozone. The command 

used “iozone -a -b <name of excel file>.xls -i 0 -i 1 “. The 

above experiment was performed before RL agent is invoked 

and results tabulated. The same experiment is performed 

during the RL agent execution and results were tabulated. 
A t-test was performed on the values of file response 
characteristics (Kilobytes per second) which were collected to 
measure the write/read performance for every file size on the 
paired sample group (before and during the RL agent 
execution). The t-test checks if the 2 means are reliably 
different from each other.  In our case we do not want the 
means to be different from each other, as we would want to 
prove our hypothesis that the RL agent does not impact the 
I/O performance. The figure 8 tabulates the t-test results. 

 

6. DISCUSSION AND CONCLUSION 
The analysis of the results obtained in the previous section 

(section 6) leads to the answers of the research questions 

formulated in section 3. The answers are as follows: 

 In 960 observations the average queue size of the 3 

devices is about 4.301001  

 With RL agent , in 960 observations the average queue 

size is reduced to 0.033069  

 After an average of 500 cycles the RL agent brings down 

the average queue size of the device (avgqu-sz) to almost 

zero 

 At 95 % confidence level, the RL agent does not affect 

the write performance of file sizes 128, 256, 512, 1024, 

2048, 4096 and 8192 kilobytes 

• At 95 % confidence level, the RL agent does not affect 
the read (with buffer) performance of file sizes 64, 128, 
256, 512, 2048, 4096 and 16384 kilobytes 

The data analysis that we have performed on the collected 

data in this paper answers all our research questions in 

affirmative. A proactive and adaptive data migration RL agent 

whilst performing data migration will be able to reduce the 

migration and data mobility costs. Though these costs may be 

soft in nature, but nevertheless it will be good enough to lower 

the total OPEX (Operational Expenses). A proactive and 

adaptive data migration technique at the host end of SAN 

would also improve the effective utilization of storage tiers 

and thereby enhance the TCO (Total cost of Ownership) of the 

storage components. 
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Fig 6: Comparision of average queue size in device 1 

 

 
Fig 7: RL agent impact on the average queue size of device 1 

 

 

To expand the study repetition of the experiment, at both 

content and period level would need to be performed. To 

further investigate the effect and study the impact better 

integration and implementation of the code on real life system 

HSS needs to be performed. This system can be further 

improved by: 

 investigating the performance impact on read /write of 

file sizes greater than 16 MB 

 reduction in the cycles taken by the RL agent to get a 

positive reward. 

 

VCONF [10] was able to adapt to a good configuration within 

7 steps and showed 20% to 100% throughput improvement 

over basic RL methods. In the model proposed by David 

Vengerov [11] it was found that statistically significant 

performance improvement was achieved only during the first 

three iterations of the learning cycle, reducing AWRT by 35% 

in comparison to the initial policy. The proposed system has 

comparable performance in terms of reducing the queue size 

of devices, but the number cycles taken to do so can be further 

deliberated. The study can be further broadened by the 

addition of the "Predictive" edge to the data migration 

strategy, where the agent can also predict based on learning 

what the data/device temperatures will be. 

Fig 
8: t-test results of I/O performance 
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