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ABSTRACT 

With the rapidly growing uses of World Wide Web for 

various important and sensitive purposes it becomes a sensible 

necessity to find out the interesting web access patterns from 

the web access sequences tracked by users frequently. Web 

access sequential patterns can be used to achieve business 

intelligence for e-commerce sites and also can be used to 

analyze system performance. This paper proposes a more 

efficient web mining algorithm which mines all the sequential 

patterns from the web access sequences and totally eliminates 

the concept of linking between nodes. The algorithm uses the 

aggregate tree structure for mining and then mines from the 

tree using RST (Root-set of Suffix Trees) for same prefix 

items. The algorithm finds the frequent sequential patterns by 

recursively traversing the tree from root-nodes to child-nodes 

for the length-1 frequent items. The proposed approach 

doesn’t need to generate any projected tree; it needs only the 

root-set for each prefix that got in previous step. Experimental 

results show huge performance gain over the FOF and WAP-

tree mining techniques by considerably reducing the mining 

time. 
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1. INTRODUCTION 
Web access mining, also known as web log mining, aims to 

discover interesting and frequent user access patterns from the 

web log data gained from the interactions of users while 

surfing the web. For mining purposes, the web browsing data 

can be stored in web server logs, proxy server logs or browser 

logs. The mined knowledge can then be used in many 

practical applications, such as improving the design of web 

sites, analyzing user behaviors for personalized services, and 

developing adaptive web sites according to different usage 

scenarios. Web log mining is a part of sequential pattern 

mining which is based on association rule mining concepts. In 

sequential pattern mining sequences of data are mined from 

the sequence database. In case of web log database each 

sequence consists URLs accessed by the same user and the 

database contains multiple sequences of different customers. 

Due to the importance and various applications of web log 

mining, now-a-days it becomes an important research field. In 

recent years many web access pattern mining algorithms are 

proposed to extract significant information from web log 

database. The most important and popular web mining 

algorithms are GSP [1] which is an apriori based algorithm 

and WAP-tree [2], PLWAP-tree [3], FLWAP-tree [4], and 

FOF [5] mining algorithm etc which are pattern-growth 

approach. We know that, apriori based algorithms create lots 

of candidate sets during mining which degrades the 

performance of those algorithms. To overcome this problem, 

in recent years various pattern growth approaches were 

proposed which can generate the frequent patterns without 

creating any candidate set. We know WAP [2] is a pattern 

growth approach used to find frequent sequential patterns 

from web access database without generating any candidate 

set but the main drawback of it is creation of intermediate 

WAP-trees during mining which needs more execution time 

and also needs large memory spaces to store those trees. 

There are also some approaches those avoid generating 

intermediate trees during mining. PLWAP [3] and FOF [5] are 

such algorithms which do not generate any intermediate tree 

during mining instead they use the concept of suffix tree. But 

PLWAP and FOF also have some drawback that reduces their 

performance. We know that, PLWAP uses position codes for 

uniquely identifying the tree nodes and also it has an extra 

burden of maintain queues for storing the nodes with same 

labels. Though FOF algorithm avoids storing any node link 

and position code information but its traversing process is 

very time consuming i.e. to generate a single sequential 

pattern it needs a traverse through the tree. So, to generate n 

frequent sequential patterns it needs at least n number of tree 

traversing. For example, if maximum sequence size is m for 

any database and let n is the number of length-1 frequent 

items so to generate maximum number of patterns(where 

pattern size >= 2) it needs number of traversing = 

n2+n3+n4+…+nm. 

In this paper, we have proposed an efficient web log mining 

algorithm based on root-nodes of suffix trees. The proposed 

mining approach finds all the frequent sequential patterns 

from the web log database using Root-set of Suffix Trees 

(RST). As a tree structure it uses simple original aggregate 

tree which has no links between nodes and also it does not 

regenerate any intermediate tree during mining that WAP-tree 

mining [2] does. The main effectiveness of the proposed 

algorithm is that, it needs few numbers of tree traverses than 

others. It can generate all the patterns with same prefix by a 

single traverse through the tree while FOF mining [5] 

traverses the tree for each single pattern. Traversing for only a 

single pattern is an overhead of FOF mining [5] and our 

proposed approach overcomes this by maintaining a table 

which stores all the items and their corresponding counts that 

found during traversing for a specific prefix. After traversing, 

it generates the frequent patterns from the table and start 

traversing with new prefixes recursively. So to generate 

maximum number of patterns (where pattern size >= 2) the 

proposed approach needs number of traversing = 

n+n2+n3+…+nm-1. The experimental results show that the 
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proposed approach is faster than the WAP [2] and also FOF 

[5] because of its less number of tree traversing than others. 

In the rest of the paper, section 2 contains related work; the 

proposed RST-based approach for web access database with 

an example has been presented in section 3. Section 4 

concentrates on the results of the findings and comparisons of 

our approach with two existing approaches using two datasets 

and finally, section 5 draws conclusion that points out the 

potentiality of our work  

2. RELATED WORKS 
We have compared our proposed approach with two existing 

algorithms. These algorithms are presented sequentially in this 

section.   

2.1 Web Access Pattern tree (WAP-tree) 
Web Access Pattern tree mining [2] is a sequential pattern 

mining approach for Web access database proposed by 

Peijian, Han, Mortajav, and Hzsua in April, 2000. This paper 

proposed a tree structure WAP-tree almost similar to FP-tree 

[6] to store the Web access subsequences with only frequent 

items in a compressed form .While FP-tree [6] links only the 

first occurrences of items in the tree branches, the WAP-tree 

[2] links together all the items in the tree with same symbol. 

WAP-tree algorithm [2] then mines the frequent sequences 

from the WAP-tree by recursively reconstructing the 

intermediate tree using suffix sequences. The main 

contributions of WAP-mining [2] are as follows: First, a 

concise, highly compressed WAP-tree structure is designed 

and implemented which handles the sequences elegantly. 

Second, an efficient mining algorithm (Like FP-growth), 

WAP-mine, is developed for mining the complete (but non 

redundant) Web access patterns from large set of pieces of 

Web log. Third, a performance study has been conducted 

which demonstrates that the WAP-mine algorithm is an order 

of magnitude faster than its apriori-based counterpart for 

mining Web access sequences. Although it is better than 

apriori-based algorithms but it has some drawbacks. Firstly, it 

has to maintain lots of links information among the tree nodes 

and secondly, it generates lots of intermediate trees during 

mining. So it needs large memory space to store the links 

information and intermediate trees. Because of intermediate 

tree generation, the performance of this algorithm is lower 

than other newly proposed techniques. 

2.2 First-Occurrence Forests (FOF) mining 
First-Occurrence Forests [5] is a pattern growth mining 

technique used to mine Web log sequential patterns proposed 

by Erich A. Peterson and Peiyi Tang in March 2008. They use 

the simple Aggregate tree structure for mining and totally 

removed the concept of linked tree. Figure 1 shows the tree 

structure for FOF mining using the database sequences <a b a 

c>, <a b c a c>, <b a b a>, <a b a c c>, and <a b>. They use 

forests of first-occurrence subtrees as the basic data structure 

for the database representation, and employ a simple list of 

tree node pointers to first-occurrences in the aggregate tree. 

There is no need to rebuild aggregate trees for projection 

databases. The first-occurrences of a symbol are found using a 

depth-first search of the aggregate tree on-the-fly. Given a 

symbol 'a', each subtree rooted at a first-occurrence of ‘a’ is 

called first-occurrence subtree of ‘a’. The forest of first-

occurrence subtrees of ‘a’ symbol is simply a list of pointers 

to the first-occurrences of 'a' in the aggregate tree. Figure 2 

shows the forest of first-occurrence subtrees of 'a' using the 

same database sequences. The root-nodes of the first-

occurrence subtrees form part (i). The subtrees rooted at the 

children of the nodes in part (i) form part (ii) which represents 

the projection database Da. The algorithm recursively creates 

the pointers for the first-occurrence forest trees and explores 

the frequent patterns as pattern-growth approach using the 

depth-first search. Since, every time FOF mining [5] traverses 

the tree for generating a single pattern i.e. it creates one 

frequent sequential pattern by one traversing. For each prefix 
pattern it needs to traverse as same as the number of length-1 

frequent patterns i.e. if the number of length-1 frequent 

patterns is three for the given database, it will traverse the tree 

three times for same prefix pattern. This is the drawback of 

this technique and may degrade its performance.  

  

  

Fig 1: Initial Tree for FOF 

Mining 

Fig 2:  FOF for Da 

 

3. PROPOSED RST-BASED MINING 

APPROACH 
In this paper, we have proposed a new efficient web pattern 

mining algorithm based on RST. The algorithm searches 

frequent patterns using the Root-set of Suffix Trees (RST) for 

each prefix pattern. In every state it stores the root-nodes of 

suffix trees for each frequent item created on-the-fly and uses 

those root-nodes pointers in the next step. In this way it 

explores the patterns as pattern growth approach. It traverses 

the original aggregate tree [7] for every prefix sequences 

using the depth-first search manner. Although it uses the 

suffix trees' root-nodes but it does not generate the suffix trees 

physically instead; it uses the root-nodes as pointers and starts 

traversing from those pointers. 

3.1 The Proposed Web Mining Algorithm 

3.1.1 Notation 
Here, 

α = Individual frequent item 

Ʃ = Length-1 Frequent itemset 

μ = Minimum support 

3.1.2 The Proposed Algorithm 
The proposed RST based Web log mining algorithm is given 

below: 

Input: A Web access sequence database with user-id and web 

access sequence and a minimum support threshold. 

Output: The complete set of frequent sequential patterns for 

Web log database. 

Algorithm: (RST based Mining) 
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Tree Creation: 

1. Scan the whole database to find the frequent items and 

frequent subsequences; 

2. Create the Root-node of the aggregate tree with zero count 

value; 

3. For each frequent subsequence S' 

4.  Scan S' and insert it into the tree; 

RST Mining: 

1. For each item α in Ʃ 

2.  Create Root-set of suffix trees rooted at α; 

3.  Pattern = α; 

4.  Call RST Mine (Root-set, Pattern); 

Function RST Mine (Root-set, Pattern) 

1. For each Root-node of Root-set 

2.  Call Create Table (Root-node, Table); 

3. For each item of Table 

4.  If (item. support-count >= μ) 

5.   Print (Pattern U item. name); 

6.  Call RST Mine (Root-list, Pattern'); 

Function Create Table (Root-node, Table) 

1. For each child-node of Root-node 

2.  If (The child-node not exists in Table) 

3.   Insert the child-node into its   

   corresponding Root-list on the Table; 

4.  Call Create Table (child-node, Table); 

3.2 An Example: Mining from Aggregate 

Tree Based on RST 
For proper understanding of the proposed approach, the 

algorithm is briefly described step by step with the help of an 

example in this section. As for input, the algorithm just takes 

a web access database and minimum support threshold. The 

example database is shown in Table 1 which has five user 

sequences and eight items a, b, c, d, e, f, g and h. Let, the 

minimum support is 50% i.e. to be frequent; a pattern should 

appear at least three sequences. From the given web access 

database we can get three frequent items a: 5, b: 5, and c: 3. 

Since the support counts for d, e, f, g and h are less than the 

minimum support count so they are infrequent for the given 

database. The first column of the table shows the Sequence id 

of the users, second column presents the web access 

sequences and finally, the third column contains the frequent 

subsequences by removing the infrequent items from the 

sequences. The proposed algorithm given in section 3.1.2 first 

creates the aggregate tree structure and then mines the tree 

recursively based on RST (Root-set of Suffix Trees). The 

steps of algorithm are described below: 

Step 1: Scan the given database shown in Table 1 to find the 

frequent items and frequent subsequences. Frequent items are 

those, whose support count is greater than or equal to 

minimum support count, 3. Table 2 shows the frequent items 

and their corresponding counts. Frequent subsequences are 

shown in column 3 of Table 1. 

Step 2: Scan the frequent subsequences one by one to 

construct the aggregate tree. At first a Root-node is created 

with null value of count. Note, each node of the tree contains 

the item name, support count and the child list. Then scan the 

first frequent subsequences of Table 1 and insert that 

subsequence into the tree. Then scan the next subsequences 

one by one and insert them into the tree. After insertion of all 

frequent subsequences, Figure 3 shows the final aggregate 

tree for the given database shown in Table 1. 

 

Table 1. Web Log Sequences 
 

SID Web 

Access 

Sequence 

Frequent 

Subsequence 

100 a b d a c a b a c 

200 a e b c a c e a b c a c 

300 b a b a b a b a 

400 a f b a c f c a b a c c 

500 a b e g f h a b 

Table 2. Frequent 

Items and Their 

Counts 
 

Frequent 

Item 

Support 

Count 

a 5 

b 5 

c 3 

 

 

Fig 3: Final Aggregate Tree for the Given Web log 

sequences 

Step 3: Start the mining process from the tree of Figure 3. 

First, find the Root-sets of suffix trees rooted at ‘a’, 'b' and 'c' 

and then traverse the tree from the root-nodes of the 'a' root-

set, then 'b' and finally 'c'. The initial root-set for 'a' is, [a: 4, a: 

1], for 'b' is [b: 4, b: 1] and for 'c' is [c: 2, c: 1] i.e. the first 

occurrence of nodes for 'a', 'b' and 'c' respectively. After 

getting the initial root-sets we have to start traversing from the 

nodes of the root-set for each item. The traversing is started 

from the root-set with 'a'. During tree traversing we have to 

store all the first occurrences of frequent items after the root-

nodes found during traversing which will be used as new root-

sets for the next steps. So, to store the new root-sets found 

after each traversing we have to maintain a table of root-sets 

which will contain the nodes information. 

Traversing Process: We know that, the root-set nodes for 'a' 

are, a: 4 and a: 1 which are shown in Figure 4(a) by using 

color on nodes. We have to start our traversing from the 

colored nodes labeled with 'a'. We search for the nodes, using 

the child nodes information of each node. So from Figure 4 

(b) we can see that, node a: 4 has only one child b: 4 and after 
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finding the child nodes we also have to search in the table that 

the found child node already exist or not. If the child node 

does not exist in the table then we store it into the table 

otherwise ignore it and go down through the tree for other 

child nodes. Since, b: 4 is not exists in table so we have to 

store it and search the child nodes of b: 4. In this case b: 4 has 

two child a: 2 and c: 1. We will first traverse a: 2 and scan in 

the table if not exists, then store a: 2 in another row Figure 4 

(c) indicates that. Then we will traverse c: 2 child of a: 2 and 

since c: 2 not present in table so insert it into the table in 

another row and finally traverse c: 1 which is child of c: 2. Do 

not need to store c: 1 since we already store a 'c' node for the 

same branch. Figures 4(d)-(e) show these steps. Since c: 1 has 

no child node we have to go backward for remaining child 

nodes and we can see that, c: 2 and a: 2 has no another child 

but b: 4 has one child which is c: 1. Then we will traverse the 

c: 1 node and since c: 1 doesn’t exist in table so store it into 

the table in the same row for 'c' nodes which is shown in 

Figure 4(f). The child node for c: 1 is a: 1 and it is not exist in 

the table so insert it in the row for 'a' nodes. Since c: 1 child of 

a: 1 is not the first occurrence of 'c ' for this branch so we will 

not store c: 1 and c: 1 has no child node so we have to 

backtrack. Figures 4(g)-(h) show these consequences. There is 

no another child node for root-node a: 4 so now we have to 

traverse the tree node from another root-node a: 1. The only 

one child node for a: 1 is b: 1 and since we did not store any 

'b' node for this branch so we have to store b: 1 in the table 

and finally we store a: 1 which is a child node of b: 1. Figures 

4 (i)-(j) show the tables and traversed trees after traversing b: 

1 and a: 1. After these we can stop the tree traversing with 

root-set of suffix trees rooted at 'a'.  

From the table which is got after traversing, we can generate 

the frequent sequential patterns < ab >: 5, < aa >: 4 and < ac 

>: 3 since the support counts for 'a', 'b' and 'c' are greater than 

the minimum support count and we also get new root-sets for 

'b', 'a' and 'c' prefixed with < a >. 

Then start the same process by using the root-set of suffix 

trees rooted at 'b'. After traversing form 'b' we get two 

frequent sequential patterns < aba >: 4 and < abc >: 3 prefixed 

with < ab >. The table for new root-sets got after traversing 

from 'b' root-set, shown in Table 3. 

Then we start traversing using the root-set of 'a' prefix with < 

ab > and get another frequent sequential pattern < abac >: 3. 

So the next root-set is [c:2, c:1] prefix with < aba > and after 

traversing with [c:2, c:1] we don't get any frequent sequential 

pattern. So after this step we have to backtrack for remaining 

root-sets and start traversing using those root-sets. In this 

case, we get root-set for 'c' prefix with < ab > and we don't get 

any frequent sequential pattern from this step. So in the next 

step, we have to traverse the tree using the 'a' root-set prefix 

with < a > and get a frequent sequential pattern < aac >: 3. We 

then start the traversing from 'c' root-set prefix with < aa > 

and from this step we cannot get any frequent sequential 

pattern.  Again in the next step we will start traversing using 

'c' root-set prefix with <a> and we cannot get any frequent 

sequential pattern from this step. So we have to backtrack for 

root-set which will be used for next step and since there is no 

remaining root-set, we will start traversing using the 'b' root-

set [b: 4, b: 1]. 

After traversing in the same way discussed above, we get two 

frequent sequential patterns < ba >: 4, < bc >: 3 prefix with < 

b > and < bac >: 3 prefix with < ba >. Finally, we have to 

traverse the tree from the nodes of 'c' root-set and in this step 

we don't get any frequent sequential pattern. 

So, the mining process ends after this step and we get full set 

of frequent sequential patterns for the given database. From 

the example database, we get total thirteen frequent sequential 

patterns with 50% minimum support threshold and the 

patterns are: < a >: 5, < ab >: 5, < aa >: 4, < ac >: 3, < aba >: 

4, < abc >: 3, < abac >: 3, <aac >: 3, < b >: 5, < ba >: 4, < bc 

>: 3, < bac >: 3, and < c >: 3. 

Note that the above approach doesn’t generate any suffix tree 

physically instead; it only needs to remember the root-nodes 

for the current suffix trees which will be used for the next 

step. Since the algorithm generates multiple root-sets at a 

single traverse so it needs low execution time than FOF [5], 

which generates single root-set at a single traverse. 

Table 3. Root-sets After Traversing from 'b' Root-set 

Prefix with ‘a’ 

a:2, a:1,a:1 

c:2,c:1 

  

4. PERFORMANCE ANALYSIS 
We have compared the performance of our proposed RST-

based approach with other two existing approaches WAP-

mining [2] and FOF-mining [5] for two datasets. All the 

experiments were conducted on a 2.40-GHz Intel Pentium(R) 

4 processor with 1GB main memory, running on Microsoft 

Windows XP. All the three algorithms were implemented in 

NetBeans IDE 6.9 ML with JDK 6. The algorithms for WAP 

[2] and FOF [5] are also implemented to the best of our 

knowledge according to the algorithms described in [2] and 

[5]. 

4.1 Experimental Datasets 
For the performance analysis, we have used two existing 

datasets Mushroom [8] and Chess [8] which are actually used 

for frequent pattern mining but in our research we have 

customized those datasets for web access mining. The 

properties of these datasets are shown in Table 4. Table 4 

characterizes the datasets in terms of the number of distinct 

items, the number of sequences, the maximum sequence size 

and the average sequence size.  

Table 4. Properties of Experimental Datasets 

Datasets Items No. of 

Sequences 

Max 

Size 

Avg 

Size 

Mushroom 119 8124 23 23.0 

Chess 75 3196 37 37.0 
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Fig 4 (a-j): Tree Traversing Process Starting with 'a' Root-set

(a)  Traversing Start from 

Root-set [a: 4, a: 1] 

 

(b) Tree After Traversing b: 4 (c) Tree After Traversing a: 2 

(d) Tree After Traversing c: 2 
 

 

(e) Tree After Traversing c: 

1 

 

(f) Tree After Traversing c: 1 

 

 

(g) Tree After Traversing a: 1 

 

(h) Tree After Traversing c: 1 

 

(i) Tree After Traversing b: 

1 

 

 

(j) Tree After Traversing a: 1 
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4.2 Experimental Result 
To find out the execution times from the real-life datasets we 

have used two datasets: Chess and Mushroom .The Chess 

dataset is derived from its games steps and is obtained from 

the UC Irvine machine learning repository. Mushroom records 

drawn from The Audubon Society Field Guide to North 

American Mushrooms. This dataset includes descriptions of 

8124 hypothetical samples corresponding to 23 species of 

gilled mushrooms in the Agaricus and Lepiota Family. These 

two datasets produce many long frequent sequences even for 

very high minimum support threshold. So for our execution 

we have taken high minimum support thresholds to minimize 

the runtime. 

4.2.1 Chess 
Execution times after running three algorithms for different 

minimum support thresholds by using Chess dataset are 

plotted in a graph shown in Figure 5. 

 

Fig 5: Comparisons between Execution Time and 

Minimum Support for Chess 

4.2.2 Mushroom 
Runtime comparisons among WAP [2], FOF [5] and RST for 

different minimum support thresholds with Mushroom dataset 

are presenting using a graph shown in Figure 6. 

It can be seen from Figure 5 and 6 that, the proposed 

algorithm outperforms the other two existing algorithms used 

to find out frequent sequential patterns from the web log 

databases. It can also be observed that, WAP-mining [2] takes 

longer times than others two because of creating lots of 

intermediate trees during mining. FOF-mining [5] takes more 

time than RST-based mining, because every time it traverses 

the tree from the roots of forests for each single pattern while 

RST-traverses the tree from the roots of suffix trees for all 

length-1 frequent items using a single traverse. 

4.3 Correctness and Completeness 
The main purpose of all kinds of mining algorithms is to find 

the complete set of frequent patterns for the specified 

minimum support threshold. When an algorithm can find 

those patterns without missing anyone then we can say that 

the algorithm is complete. On the other hand, the correctness 

of an algorithm is to find the correct patterns which are 

interesting for the given minimum support value. When an 

algorithm has both of these criteria then the algorithm is 

correct and complete. Like other existing Web log sequential 

pattern mining algorithms, the proposed algorithm is also 

correct and complete. 

The completeness of the proposed algorithm can be proved by 

comparing the total numbers of patterns generated for various 

minimum support thresholds. From Figure 7 and 8 we can see 

that the proposed algorithm creates the same number of 

patterns as WAP [2] and FOF [5] generate for datasets Chess 

and Mushroom. Since for all datasets the proposed algorithm 

generates complete set of frequent sequential patterns as 

existing algorithms generate. So it proves the completeness of 

the algorithm presented in this paper. 

Table 5 has presented the sequential patterns obtained from 

three algorithms for the web log sequences which are shown 

in Table 1. From this table, we can see that, these three 

algorithms generate the same frequent sequential patterns with 

same counts for the same minimum support threshold.  In 

other word, we can say that, the proposed algorithm gives the 

same result as both WAP [2] and FOF [5] do that proves the 

correctness of the algorithm presented in this paper. 

So, based on the above discussion, it can be said that the 

proposed algorithm is correct and complete. 

Table 5. Sequential Patterns Obtained from Three 

Algorithms for Database Shown in Table 1 

Algorithms Total 

Patterns 

Sequential Patterns 

(Pattern : count) 

WAP 13 (a): 5, (ab): 5, (aba): 4, 

(abac): 3, (abc): 3, (aa): 4, 

(aac): 3, (ac): 3, (b): 5, (ba): 

4, (bac): 3, (bc): 3 and (c): 

3. 

FOF 13 (a): 5, (ab): 5, (aba): 4, 

(abac): 3, (abc): 3, (aa): 4, 

(aac): 3, (ac): 3, (b): 5, (ba): 

4, (bac): 3, (bc): 3 and (c): 

3. 

Our RST-Based 

Method 

13 (a): 5, (ab): 5, (aa): 4, (ac): 

3, (aba): 4, (abc): 3,  (abac): 

3, (aac): 3, (b): 5, (ba): 4, 

(bc): 3, (bac): 3, and (c): 3. 

 

5. CONCLUSION 
This paper presents a new algorithm (RST) for efficiently 

mining sequential patterns from Web log database. The 

proposed algorithm uses the aggregate tree structure [7] for 

storing sequences with frequent items and then starts mining 

from that tree. For mining, the algorithm uses the last item of 

common prefix patterns with length k (where k>=1) as Root-

set of Suffix Trees rooted with that item. And then traverses 

the tree from the nodes of root-set and finds the frequent 

items' counts which are descendants of those root-nodes of the 

root-set. If the counts of the items found after traversing from 

the root-set are greater than or equal to the minimum support 

count then the items will be added after the prefix pattern to 

generate length k+1 sequential patterns. Then in the next step, 

each length k+1 pattern will be used as prefix patterns and the 

nodes label with the last item of the prefix will be used as 

root-set. This process continues recursively until there exists 

any frequent sequence found in previous step. Since the 

algorithm uses the Root-set of suffix trees as pointers; instead 
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of traversing the whole tree every time, it traverses the tree 

from the nodes of root-set and also it does not need to 

generate any suffix tree during mining. 

 

Fig 6: Comparisons between Execution Time and 

Minimum Support for Mushroom 

 

Fig 7:  Comparisons between Total Patterns and 

Minimum Support Values for Chess 

 
Fig 8:  Comparisons between Total Patterns and 

Minimum Support Values for Mushroom 
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