
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

23

Mining Web Access Patterns using Root-set of Suffix

Trees

Manira Akhter

Sr. Software Engineer
Samsung R & D Institute

Bangladesh

Ashin Ara Bithi
Lecturer

Dept of Computer Science and
Engineering

Asian University of Bangladesh

Abu Ahmed Ferdaus
Assistant Professor

Dept of Computer Science and
Engineering

University of Dhaka,
Bangladesh

ABSTRACT

With the rapidly growing uses of World Wide Web for

various important and sensitive purposes it becomes a sensible

necessity to find out the interesting web access patterns from

the web access sequences tracked by users frequently. Web

access sequential patterns can be used to achieve business

intelligence for e-commerce sites and also can be used to

analyze system performance. This paper proposes a more

efficient web mining algorithm which mines all the sequential

patterns from the web access sequences and totally eliminates

the concept of linking between nodes. The algorithm uses the

aggregate tree structure for mining and then mines from the

tree using RST (Root-set of Suffix Trees) for same prefix

items. The algorithm finds the frequent sequential patterns by

recursively traversing the tree from root-nodes to child-nodes

for the length-1 frequent items. The proposed approach

doesn’t need to generate any projected tree; it needs only the

root-set for each prefix that got in previous step. Experimental

results show huge performance gain over the FOF and WAP-

tree mining techniques by considerably reducing the mining

time.

Keywords

Frequent sequential pattern, Web access sequence, Web log

mining, WAP-tree, First-Occurrence Forest (FOF), and Root-

set of Suffix Tree (RST).

1. INTRODUCTION
Web access mining, also known as web log mining, aims to

discover interesting and frequent user access patterns from the

web log data gained from the interactions of users while

surfing the web. For mining purposes, the web browsing data

can be stored in web server logs, proxy server logs or browser

logs. The mined knowledge can then be used in many

practical applications, such as improving the design of web

sites, analyzing user behaviors for personalized services, and

developing adaptive web sites according to different usage

scenarios. Web log mining is a part of sequential pattern

mining which is based on association rule mining concepts. In

sequential pattern mining sequences of data are mined from

the sequence database. In case of web log database each

sequence consists URLs accessed by the same user and the

database contains multiple sequences of different customers.

Due to the importance and various applications of web log

mining, now-a-days it becomes an important research field. In

recent years many web access pattern mining algorithms are

proposed to extract significant information from web log

database. The most important and popular web mining

algorithms are GSP [1] which is an apriori based algorithm

and WAP-tree [2], PLWAP-tree [3], FLWAP-tree [4], and

FOF [5] mining algorithm etc which are pattern-growth

approach. We know that, apriori based algorithms create lots

of candidate sets during mining which degrades the

performance of those algorithms. To overcome this problem,

in recent years various pattern growth approaches were

proposed which can generate the frequent patterns without

creating any candidate set. We know WAP [2] is a pattern

growth approach used to find frequent sequential patterns

from web access database without generating any candidate

set but the main drawback of it is creation of intermediate

WAP-trees during mining which needs more execution time

and also needs large memory spaces to store those trees.

There are also some approaches those avoid generating

intermediate trees during mining. PLWAP [3] and FOF [5] are

such algorithms which do not generate any intermediate tree

during mining instead they use the concept of suffix tree. But

PLWAP and FOF also have some drawback that reduces their

performance. We know that, PLWAP uses position codes for

uniquely identifying the tree nodes and also it has an extra

burden of maintain queues for storing the nodes with same

labels. Though FOF algorithm avoids storing any node link

and position code information but its traversing process is

very time consuming i.e. to generate a single sequential

pattern it needs a traverse through the tree. So, to generate n

frequent sequential patterns it needs at least n number of tree

traversing. For example, if maximum sequence size is m for

any database and let n is the number of length-1 frequent

items so to generate maximum number of patterns(where

pattern size >= 2) it needs number of traversing =

n2+n3+n4+…+nm.

In this paper, we have proposed an efficient web log mining

algorithm based on root-nodes of suffix trees. The proposed

mining approach finds all the frequent sequential patterns

from the web log database using Root-set of Suffix Trees

(RST). As a tree structure it uses simple original aggregate

tree which has no links between nodes and also it does not

regenerate any intermediate tree during mining that WAP-tree

mining [2] does. The main effectiveness of the proposed

algorithm is that, it needs few numbers of tree traverses than

others. It can generate all the patterns with same prefix by a

single traverse through the tree while FOF mining [5]

traverses the tree for each single pattern. Traversing for only a

single pattern is an overhead of FOF mining [5] and our

proposed approach overcomes this by maintaining a table

which stores all the items and their corresponding counts that

found during traversing for a specific prefix. After traversing,

it generates the frequent patterns from the table and start

traversing with new prefixes recursively. So to generate

maximum number of patterns (where pattern size >= 2) the

proposed approach needs number of traversing =

n+n2+n3+…+nm-1. The experimental results show that the

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

24

proposed approach is faster than the WAP [2] and also FOF

[5] because of its less number of tree traversing than others.

In the rest of the paper, section 2 contains related work; the

proposed RST-based approach for web access database with

an example has been presented in section 3. Section 4

concentrates on the results of the findings and comparisons of

our approach with two existing approaches using two datasets

and finally, section 5 draws conclusion that points out the

potentiality of our work

2. RELATED WORKS
We have compared our proposed approach with two existing

algorithms. These algorithms are presented sequentially in this

section.

2.1 Web Access Pattern tree (WAP-tree)
Web Access Pattern tree mining [2] is a sequential pattern

mining approach for Web access database proposed by

Peijian, Han, Mortajav, and Hzsua in April, 2000. This paper

proposed a tree structure WAP-tree almost similar to FP-tree

[6] to store the Web access subsequences with only frequent

items in a compressed form .While FP-tree [6] links only the

first occurrences of items in the tree branches, the WAP-tree

[2] links together all the items in the tree with same symbol.

WAP-tree algorithm [2] then mines the frequent sequences

from the WAP-tree by recursively reconstructing the

intermediate tree using suffix sequences. The main

contributions of WAP-mining [2] are as follows: First, a

concise, highly compressed WAP-tree structure is designed

and implemented which handles the sequences elegantly.

Second, an efficient mining algorithm (Like FP-growth),

WAP-mine, is developed for mining the complete (but non

redundant) Web access patterns from large set of pieces of

Web log. Third, a performance study has been conducted

which demonstrates that the WAP-mine algorithm is an order

of magnitude faster than its apriori-based counterpart for

mining Web access sequences. Although it is better than

apriori-based algorithms but it has some drawbacks. Firstly, it

has to maintain lots of links information among the tree nodes

and secondly, it generates lots of intermediate trees during

mining. So it needs large memory space to store the links

information and intermediate trees. Because of intermediate

tree generation, the performance of this algorithm is lower

than other newly proposed techniques.

2.2 First-Occurrence Forests (FOF) mining
First-Occurrence Forests [5] is a pattern growth mining

technique used to mine Web log sequential patterns proposed

by Erich A. Peterson and Peiyi Tang in March 2008. They use

the simple Aggregate tree structure for mining and totally

removed the concept of linked tree. Figure 1 shows the tree

structure for FOF mining using the database sequences <a b a

c>, <a b c a c>, <b a b a>, <a b a c c>, and <a b>. They use

forests of first-occurrence subtrees as the basic data structure

for the database representation, and employ a simple list of

tree node pointers to first-occurrences in the aggregate tree.

There is no need to rebuild aggregate trees for projection

databases. The first-occurrences of a symbol are found using a

depth-first search of the aggregate tree on-the-fly. Given a

symbol 'a', each subtree rooted at a first-occurrence of ‘a’ is

called first-occurrence subtree of ‘a’. The forest of first-

occurrence subtrees of ‘a’ symbol is simply a list of pointers

to the first-occurrences of 'a' in the aggregate tree. Figure 2

shows the forest of first-occurrence subtrees of 'a' using the

same database sequences. The root-nodes of the first-

occurrence subtrees form part (i). The subtrees rooted at the

children of the nodes in part (i) form part (ii) which represents

the projection database Da. The algorithm recursively creates

the pointers for the first-occurrence forest trees and explores

the frequent patterns as pattern-growth approach using the

depth-first search. Since, every time FOF mining [5] traverses

the tree for generating a single pattern i.e. it creates one

frequent sequential pattern by one traversing. For each prefix
pattern it needs to traverse as same as the number of length-1

frequent patterns i.e. if the number of length-1 frequent

patterns is three for the given database, it will traverse the tree

three times for same prefix pattern. This is the drawback of

this technique and may degrade its performance.

Fig 1: Initial Tree for FOF

Mining

Fig 2: FOF for Da

3. PROPOSED RST-BASED MINING

APPROACH
In this paper, we have proposed a new efficient web pattern

mining algorithm based on RST. The algorithm searches

frequent patterns using the Root-set of Suffix Trees (RST) for

each prefix pattern. In every state it stores the root-nodes of

suffix trees for each frequent item created on-the-fly and uses

those root-nodes pointers in the next step. In this way it

explores the patterns as pattern growth approach. It traverses

the original aggregate tree [7] for every prefix sequences

using the depth-first search manner. Although it uses the

suffix trees' root-nodes but it does not generate the suffix trees

physically instead; it uses the root-nodes as pointers and starts

traversing from those pointers.

3.1 The Proposed Web Mining Algorithm

3.1.1 Notation
Here,

α = Individual frequent item

Ʃ = Length-1 Frequent itemset

μ = Minimum support

3.1.2 The Proposed Algorithm
The proposed RST based Web log mining algorithm is given

below:

Input: A Web access sequence database with user-id and web

access sequence and a minimum support threshold.

Output: The complete set of frequent sequential patterns for

Web log database.

Algorithm: (RST based Mining)

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

25

Tree Creation:

1. Scan the whole database to find the frequent items and

frequent subsequences;

2. Create the Root-node of the aggregate tree with zero count

value;

3. For each frequent subsequence S'

4. Scan S' and insert it into the tree;

RST Mining:

1. For each item α in Ʃ

2. Create Root-set of suffix trees rooted at α;

3. Pattern = α;

4. Call RST Mine (Root-set, Pattern);

Function RST Mine (Root-set, Pattern)

1. For each Root-node of Root-set

2. Call Create Table (Root-node, Table);

3. For each item of Table

4. If (item. support-count >= μ)

5. Print (Pattern U item. name);

6. Call RST Mine (Root-list, Pattern');

Function Create Table (Root-node, Table)

1. For each child-node of Root-node

2. If (The child-node not exists in Table)

3. Insert the child-node into its

 corresponding Root-list on the Table;

4. Call Create Table (child-node, Table);

3.2 An Example: Mining from Aggregate

Tree Based on RST
For proper understanding of the proposed approach, the

algorithm is briefly described step by step with the help of an

example in this section. As for input, the algorithm just takes

a web access database and minimum support threshold. The

example database is shown in Table 1 which has five user

sequences and eight items a, b, c, d, e, f, g and h. Let, the

minimum support is 50% i.e. to be frequent; a pattern should

appear at least three sequences. From the given web access

database we can get three frequent items a: 5, b: 5, and c: 3.

Since the support counts for d, e, f, g and h are less than the

minimum support count so they are infrequent for the given

database. The first column of the table shows the Sequence id

of the users, second column presents the web access

sequences and finally, the third column contains the frequent

subsequences by removing the infrequent items from the

sequences. The proposed algorithm given in section 3.1.2 first

creates the aggregate tree structure and then mines the tree

recursively based on RST (Root-set of Suffix Trees). The

steps of algorithm are described below:

Step 1: Scan the given database shown in Table 1 to find the

frequent items and frequent subsequences. Frequent items are

those, whose support count is greater than or equal to

minimum support count, 3. Table 2 shows the frequent items

and their corresponding counts. Frequent subsequences are

shown in column 3 of Table 1.

Step 2: Scan the frequent subsequences one by one to

construct the aggregate tree. At first a Root-node is created

with null value of count. Note, each node of the tree contains

the item name, support count and the child list. Then scan the

first frequent subsequences of Table 1 and insert that

subsequence into the tree. Then scan the next subsequences

one by one and insert them into the tree. After insertion of all

frequent subsequences, Figure 3 shows the final aggregate

tree for the given database shown in Table 1.

Table 1. Web Log Sequences

SID Web

Access

Sequence

Frequent

Subsequence

100 a b d a c a b a c

200 a e b c a c e a b c a c

300 b a b a b a b a

400 a f b a c f c a b a c c

500 a b e g f h a b

Table 2. Frequent

Items and Their

Counts

Frequent

Item

Support

Count

a 5

b 5

c 3

Fig 3: Final Aggregate Tree for the Given Web log

sequences

Step 3: Start the mining process from the tree of Figure 3.

First, find the Root-sets of suffix trees rooted at ‘a’, 'b' and 'c'

and then traverse the tree from the root-nodes of the 'a' root-

set, then 'b' and finally 'c'. The initial root-set for 'a' is, [a: 4, a:

1], for 'b' is [b: 4, b: 1] and for 'c' is [c: 2, c: 1] i.e. the first

occurrence of nodes for 'a', 'b' and 'c' respectively. After

getting the initial root-sets we have to start traversing from the

nodes of the root-set for each item. The traversing is started

from the root-set with 'a'. During tree traversing we have to

store all the first occurrences of frequent items after the root-

nodes found during traversing which will be used as new root-

sets for the next steps. So, to store the new root-sets found

after each traversing we have to maintain a table of root-sets

which will contain the nodes information.

Traversing Process: We know that, the root-set nodes for 'a'

are, a: 4 and a: 1 which are shown in Figure 4(a) by using

color on nodes. We have to start our traversing from the

colored nodes labeled with 'a'. We search for the nodes, using

the child nodes information of each node. So from Figure 4

(b) we can see that, node a: 4 has only one child b: 4 and after

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

26

finding the child nodes we also have to search in the table that

the found child node already exist or not. If the child node

does not exist in the table then we store it into the table

otherwise ignore it and go down through the tree for other

child nodes. Since, b: 4 is not exists in table so we have to

store it and search the child nodes of b: 4. In this case b: 4 has

two child a: 2 and c: 1. We will first traverse a: 2 and scan in

the table if not exists, then store a: 2 in another row Figure 4

(c) indicates that. Then we will traverse c: 2 child of a: 2 and

since c: 2 not present in table so insert it into the table in

another row and finally traverse c: 1 which is child of c: 2. Do

not need to store c: 1 since we already store a 'c' node for the

same branch. Figures 4(d)-(e) show these steps. Since c: 1 has

no child node we have to go backward for remaining child

nodes and we can see that, c: 2 and a: 2 has no another child

but b: 4 has one child which is c: 1. Then we will traverse the

c: 1 node and since c: 1 doesn’t exist in table so store it into

the table in the same row for 'c' nodes which is shown in

Figure 4(f). The child node for c: 1 is a: 1 and it is not exist in

the table so insert it in the row for 'a' nodes. Since c: 1 child of

a: 1 is not the first occurrence of 'c ' for this branch so we will

not store c: 1 and c: 1 has no child node so we have to

backtrack. Figures 4(g)-(h) show these consequences. There is

no another child node for root-node a: 4 so now we have to

traverse the tree node from another root-node a: 1. The only

one child node for a: 1 is b: 1 and since we did not store any

'b' node for this branch so we have to store b: 1 in the table

and finally we store a: 1 which is a child node of b: 1. Figures

4 (i)-(j) show the tables and traversed trees after traversing b:

1 and a: 1. After these we can stop the tree traversing with

root-set of suffix trees rooted at 'a'.

From the table which is got after traversing, we can generate

the frequent sequential patterns < ab >: 5, < aa >: 4 and < ac

>: 3 since the support counts for 'a', 'b' and 'c' are greater than

the minimum support count and we also get new root-sets for

'b', 'a' and 'c' prefixed with < a >.

Then start the same process by using the root-set of suffix

trees rooted at 'b'. After traversing form 'b' we get two

frequent sequential patterns < aba >: 4 and < abc >: 3 prefixed

with < ab >. The table for new root-sets got after traversing

from 'b' root-set, shown in Table 3.

Then we start traversing using the root-set of 'a' prefix with <

ab > and get another frequent sequential pattern < abac >: 3.

So the next root-set is [c:2, c:1] prefix with < aba > and after

traversing with [c:2, c:1] we don't get any frequent sequential

pattern. So after this step we have to backtrack for remaining

root-sets and start traversing using those root-sets. In this

case, we get root-set for 'c' prefix with < ab > and we don't get

any frequent sequential pattern from this step. So in the next

step, we have to traverse the tree using the 'a' root-set prefix

with < a > and get a frequent sequential pattern < aac >: 3. We

then start the traversing from 'c' root-set prefix with < aa >

and from this step we cannot get any frequent sequential

pattern. Again in the next step we will start traversing using

'c' root-set prefix with <a> and we cannot get any frequent

sequential pattern from this step. So we have to backtrack for

root-set which will be used for next step and since there is no

remaining root-set, we will start traversing using the 'b' root-

set [b: 4, b: 1].

After traversing in the same way discussed above, we get two

frequent sequential patterns < ba >: 4, < bc >: 3 prefix with <

b > and < bac >: 3 prefix with < ba >. Finally, we have to

traverse the tree from the nodes of 'c' root-set and in this step

we don't get any frequent sequential pattern.

So, the mining process ends after this step and we get full set

of frequent sequential patterns for the given database. From

the example database, we get total thirteen frequent sequential

patterns with 50% minimum support threshold and the

patterns are: < a >: 5, < ab >: 5, < aa >: 4, < ac >: 3, < aba >:

4, < abc >: 3, < abac >: 3, <aac >: 3, < b >: 5, < ba >: 4, < bc

>: 3, < bac >: 3, and < c >: 3.

Note that the above approach doesn’t generate any suffix tree

physically instead; it only needs to remember the root-nodes

for the current suffix trees which will be used for the next

step. Since the algorithm generates multiple root-sets at a

single traverse so it needs low execution time than FOF [5],

which generates single root-set at a single traverse.

Table 3. Root-sets After Traversing from 'b' Root-set

Prefix with ‘a’

a:2, a:1,a:1

c:2,c:1

4. PERFORMANCE ANALYSIS
We have compared the performance of our proposed RST-

based approach with other two existing approaches WAP-

mining [2] and FOF-mining [5] for two datasets. All the

experiments were conducted on a 2.40-GHz Intel Pentium(R)

4 processor with 1GB main memory, running on Microsoft

Windows XP. All the three algorithms were implemented in

NetBeans IDE 6.9 ML with JDK 6. The algorithms for WAP

[2] and FOF [5] are also implemented to the best of our

knowledge according to the algorithms described in [2] and

[5].

4.1 Experimental Datasets
For the performance analysis, we have used two existing

datasets Mushroom [8] and Chess [8] which are actually used

for frequent pattern mining but in our research we have

customized those datasets for web access mining. The

properties of these datasets are shown in Table 4. Table 4

characterizes the datasets in terms of the number of distinct

items, the number of sequences, the maximum sequence size

and the average sequence size.

Table 4. Properties of Experimental Datasets

Datasets Items No. of

Sequences

Max

Size

Avg

Size

Mushroom 119 8124 23 23.0

Chess 75 3196 37 37.0

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

27

Fig 4 (a-j): Tree Traversing Process Starting with 'a' Root-set

(a) Traversing Start from

Root-set [a: 4, a: 1]

(b) Tree After Traversing b: 4 (c) Tree After Traversing a: 2

(d) Tree After Traversing c: 2

(e) Tree After Traversing c:

1

(f) Tree After Traversing c: 1

(g) Tree After Traversing a: 1

(h) Tree After Traversing c: 1

(i) Tree After Traversing b:

1

(j) Tree After Traversing a: 1

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

28

4.2 Experimental Result
To find out the execution times from the real-life datasets we

have used two datasets: Chess and Mushroom .The Chess

dataset is derived from its games steps and is obtained from

the UC Irvine machine learning repository. Mushroom records

drawn from The Audubon Society Field Guide to North

American Mushrooms. This dataset includes descriptions of

8124 hypothetical samples corresponding to 23 species of

gilled mushrooms in the Agaricus and Lepiota Family. These

two datasets produce many long frequent sequences even for

very high minimum support threshold. So for our execution

we have taken high minimum support thresholds to minimize

the runtime.

4.2.1 Chess
Execution times after running three algorithms for different

minimum support thresholds by using Chess dataset are

plotted in a graph shown in Figure 5.

Fig 5: Comparisons between Execution Time and

Minimum Support for Chess

4.2.2 Mushroom
Runtime comparisons among WAP [2], FOF [5] and RST for

different minimum support thresholds with Mushroom dataset

are presenting using a graph shown in Figure 6.

It can be seen from Figure 5 and 6 that, the proposed

algorithm outperforms the other two existing algorithms used

to find out frequent sequential patterns from the web log

databases. It can also be observed that, WAP-mining [2] takes

longer times than others two because of creating lots of

intermediate trees during mining. FOF-mining [5] takes more

time than RST-based mining, because every time it traverses

the tree from the roots of forests for each single pattern while

RST-traverses the tree from the roots of suffix trees for all

length-1 frequent items using a single traverse.

4.3 Correctness and Completeness
The main purpose of all kinds of mining algorithms is to find

the complete set of frequent patterns for the specified

minimum support threshold. When an algorithm can find

those patterns without missing anyone then we can say that

the algorithm is complete. On the other hand, the correctness

of an algorithm is to find the correct patterns which are

interesting for the given minimum support value. When an

algorithm has both of these criteria then the algorithm is

correct and complete. Like other existing Web log sequential

pattern mining algorithms, the proposed algorithm is also

correct and complete.

The completeness of the proposed algorithm can be proved by

comparing the total numbers of patterns generated for various

minimum support thresholds. From Figure 7 and 8 we can see

that the proposed algorithm creates the same number of

patterns as WAP [2] and FOF [5] generate for datasets Chess

and Mushroom. Since for all datasets the proposed algorithm

generates complete set of frequent sequential patterns as

existing algorithms generate. So it proves the completeness of

the algorithm presented in this paper.

Table 5 has presented the sequential patterns obtained from

three algorithms for the web log sequences which are shown

in Table 1. From this table, we can see that, these three

algorithms generate the same frequent sequential patterns with

same counts for the same minimum support threshold. In

other word, we can say that, the proposed algorithm gives the

same result as both WAP [2] and FOF [5] do that proves the

correctness of the algorithm presented in this paper.

So, based on the above discussion, it can be said that the

proposed algorithm is correct and complete.

Table 5. Sequential Patterns Obtained from Three

Algorithms for Database Shown in Table 1

Algorithms Total

Patterns

Sequential Patterns

(Pattern : count)

WAP 13 (a): 5, (ab): 5, (aba): 4,

(abac): 3, (abc): 3, (aa): 4,

(aac): 3, (ac): 3, (b): 5, (ba):

4, (bac): 3, (bc): 3 and (c):

3.

FOF 13 (a): 5, (ab): 5, (aba): 4,

(abac): 3, (abc): 3, (aa): 4,

(aac): 3, (ac): 3, (b): 5, (ba):

4, (bac): 3, (bc): 3 and (c):

3.

Our RST-Based

Method

13 (a): 5, (ab): 5, (aa): 4, (ac):

3, (aba): 4, (abc): 3, (abac):

3, (aac): 3, (b): 5, (ba): 4,

(bc): 3, (bac): 3, and (c): 3.

5. CONCLUSION
This paper presents a new algorithm (RST) for efficiently

mining sequential patterns from Web log database. The

proposed algorithm uses the aggregate tree structure [7] for

storing sequences with frequent items and then starts mining

from that tree. For mining, the algorithm uses the last item of

common prefix patterns with length k (where k>=1) as Root-

set of Suffix Trees rooted with that item. And then traverses

the tree from the nodes of root-set and finds the frequent

items' counts which are descendants of those root-nodes of the

root-set. If the counts of the items found after traversing from

the root-set are greater than or equal to the minimum support

count then the items will be added after the prefix pattern to

generate length k+1 sequential patterns. Then in the next step,

each length k+1 pattern will be used as prefix patterns and the

nodes label with the last item of the prefix will be used as

root-set. This process continues recursively until there exists

any frequent sequence found in previous step. Since the

algorithm uses the Root-set of suffix trees as pointers; instead

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

29

of traversing the whole tree every time, it traverses the tree

from the nodes of root-set and also it does not need to

generate any suffix tree during mining.

Fig 6: Comparisons between Execution Time and

Minimum Support for Mushroom

Fig 7: Comparisons between Total Patterns and

Minimum Support Values for Chess

Fig 8: Comparisons between Total Patterns and

Minimum Support Values for Mushroom

6. REFERENCES
[1] R. Srikant and R. Agrawal, “Mining sequential patterns:

Generalizations and performance improvements," in

EDBT, ser. Lecture Notes in Computer Science, P. M. G.

Apers, M. Bouzeghoub, and G. Gardarin, Eds., vol.

1057. Springer, 1996, pp. 3-17. [Online]. Available:

http://dx.doi.org/10.1007/BFb0014140.

[2] J. Pei, J. Han, B. Mortazavi-Asl, and H. Zhu, “Mining

access patterns efficiently from web logs," in PAKDD,

ser. Lecture Notes in Computer Science, T. Terano, H.

Liu, and A. L. P. Chen, Eds., vol. 1805. Springer, 2000,

pp. 396-407. [Online]. Available:

http://dx.doi.org/10.1007/3-540-45571-X 47

[3] C. I. Ezeife and Y. Lu, “Mining web log sequential

patterns with position coded pre-order linked WAP-tree,"

Data Min. Knowl. Discov, vol. 10, no. 1, pp. 5-38, 2005.

[Online]. Available: http://dx.doi.org/10.1007/s10618-

005-0248-3

[4] P. Tang, M. P. Turkia, and K. A. Gallivan, “Mining web

access patterns with first-occurrence linked WAP-trees,"

in SEDE, H. Al-Mubaid and M. Garbey, Eds. ISCA,

2007, pp. 247-252.

[5] E. A. Peterson and P. Tang, “Mining frequent sequential

patterns with first-occurrence forests," in ACM Southeast

Regional Conference. ACM, 2008, pp. 34-39. [Online].

Available: http://doi.acm.org/10.1145/1593105.1593115

[6] J. Han, J. Pei, and Y. Yin, “Mining frequent patterns

without candidate generation," in SIGMOD Conference,

W. Chen, J. F. Naughton, and P. A. Bernstein, Eds.

ACM, 2000, pp. 1-12. [Online]. Available:

http://doi.acm.org/10.1145/342009.335372

[7] M. Spiliopoulou and L. Faulstich, “WUM - A tool for

WWW ulitization analysis," in WebDB, ser. Lecture

Notes in Computer Science, P. Atzeni, A. O. Mendelzon,

and G. Mecca, Eds., vol. 1590. Springer, 1998, pp.184-

103.[Online].Available:http://dx.doi.org/10.1007/107046

56 12

[8] Z. Zheng, R. Kohavi, and L. Mason, “Real world

performance of association rule algorithms," in KDD,

2001, pp. 401-406. [Online]. Available:

http://portal.acm.org/citation.cfm?id=502512.502572

IJCATM : www.ijcaonline.org

