
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

17

Fuzzy Logic Approach to Forecast the

Extendibility/Extensibility in Object Oriented Design

using an Integrated Model

 Rajinder Vir

A.P
CTIEMT, Shahpur

Jalandhar, Punjab, India

Parwinder Dhillon
A.P

APEEJAY,Jalandhar
Punjab, India

Jaswinder Dhillon
A.P

DAVIET, Jalandhar
Punjab, India

ABSTRACT

A number of researchers have conducted various empirical

studies on the software metrics for Object Oriented design.

The research proved that some of these metrices are very

useful for forcasting the quality attributes of the software like

extendibility/extensibility, effectiveness, reliability and

maintainability. In this paper a hybrid approach is proposed

for investigating the extendibility/extensibility of classes in

Object Oriented design.Tthe hybrid approach will comprised

of subset of CK netric suite and mood netric suite. These days

a great demand occur for finding software measurement so

that quality of software can be forcasted. Therefore software

engineering require various quality models that can be used

for forcasting the characteristics for quality such as

extendibility/extensibility, effectiveness, reliability and

maintainability. The main objective of this work is to

experimentally forecast the association between OOD metrics

and extendibility/extensibility.

General Terms

Software Engineering, object Oriented design, extendibility,

extensibility, Classes in object oriented Design.

Keywords

MOOD Metric suite, CK metric suite, Fuzzy inference

system, Mamdani inference model.

1. INTRODUCTION
Object Oriented Programming is a programming paradigm

that represents concepts as objects and accompliced

procedures known as methods. Objects are used so that

applications and computer programs can be easily be

interacted. OOP is essential for software developments,

because it determines the structure of the software solution in

an appropriate manner. Once the design is prepared, it is

difficult to apply modifications and also it becomes very

expensive. Therefore design should be focused from the

beginning. Software metrics are the measurements that can

be defined to forecast the quality of the software during the

early phases of software development process. Metrics can be

used to figure out the design quality. Many Metrics have been

proposed for OOP.

It is analyzed from the previous research that CK metrics suite

[13] and the MOOD metric suite [3] are found to be best to

calculate the OOP quality. It is analyzed that software

developers need combination of metrics to predict the quality

of software. Hence there should be some integrated approach

to combine these software metrics into a single output unit.

Metrics offer a mechanism for attaining more accurate

estimation of project milestones, and developing a software

system that contains minimum faults [1]. There are a number

of OOP software metrics available these days. These metrics

are very helpful in fetching the information about the quality

of OOP software. In this paper the way has been described

how the evaluation of the extendibility/ extensibility using

the software metrics has been done - CK metrics viz DIT and

MOOD metrics viz MHF, AHF, AIF and MIF. The input

metrics are divided into three linguistic terms low, medium

and high.

The paper will proceed as follows: Section II will present the

literature survey. Software quality along with its

characteristics will be presented in section III. Introduction to

software metrics will be presented in section IV. In next

section V, paper will present the proposed integrated model

based on fuzzy logic. In section VI paper will describe the

evaluated experimental results. Finally in section VII, paper

will discuss the related conclusion and the future scope.

2. LITERATURE REVIEW
A large number of metrics have been proposed in the past for

so many years to confine the OO design, code and constructs.

These metrics provide ways to assess the quality of software

and their use in early phases of software development which

can help software companies in evaluating large software

development quickly and at a reasonable cost [4].

There have been large number empirical studies evaluating

the impact of OO metrics on faulty classes. Saxena et al. [6]

provided a review of all those empirical studies from 1995 to

2010 to predict software fault proneness with a specific focus

on techniques used. Benlarbi et al. [11] surveyed that the basic

premise behind the development of object oriented metrics is

that they can serve as early predictors of classes that contain

faults or that are closely maintain. They have shown that size

can have an important confounding effect on the validity of

object-oriented metrics. Khalsa [16] proposed an algorithm

using fuzzy logic to measure fault proneness and defect

density of the software development process and hence can be

used to minimize rework.

Kamiya et. al. [5] proposed a new method to estimate the

fault-proneness of an object class in the early phase, using

several complexity metrics for object-oriented software. Four

checkpoints were introduced into the analysis/ design/

implementation phase, and estimates were done on the fault-

prone classes using applicable metrics at each checkpoint.

Menzies et al. [14] compared Decision Trees, Naïve Bayes,

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

18

and 1-rule classifier on the NASA Software defect data. A

clear trend was not observed & different predictors scored

better on different data sets. Malhotra et. al. [8] builded a

Support vector machine (SVM) model to find the relationship

between object-oriented metrics given by Chidamber and

Kemerer and fault proneness, at different severity levels.

Malhotra [9] founded the relation between object oriented

metrics and fault proneness using logistic regression method.

The results were analyzed using open source software.

Further, the performance of the predicted models was

evaluated using Receiver Operating Characteristic (ROC)

analysis.

3. SOFTWARE QUALITY
It is better to predict the software quality in the early phases of

the software development. If software quality is evaluated

after developing the software and after that it came to known

that quality of software is not good as expected earlier, then

again a lot of effort and work has to be done on the same

software, so it is better to predict the software quality as early

as possible. But there are limited standards that can be used to

measure the quality. McCall proposed factors that affect the

software quality.

Direct factors have direct effect to predict the software

quality. Indirect factors have not direct effect to predict the

software quality. Extendibility/extensibility comes under

indirect factors. The quality of software is appraised by a

various number of variables. Software functional quality is

based on the functional requirements such as robustness or

maintainability.Quality management system is the

organizational structure, responsibility, procedures, activities,

compatibilities, resources that together aim to ensure that

software products will satisfy stated or implied needs.

4. SOFTWARE METRIC SUITES
Software metrics are the measurements used to predict the

quality of software. Software metrics are used to obtain

objective reproducible measurements that can be useful for

quality assurance, performance, debugging, management and

estimating costs. Metrics considered as most useful metrics to

be those which measure the degree to which the software

development effort reflects the priorities of its end users and

developers. A large number of software metrics have been

proposed by various researchers. Metrics can be characterized

as follows:

1. System Size Metrics.

 Lines of code

 Function Count

 Function Points

 Number of Files

2. Object Oriented Metrics

 Number of Classes

 Number of Child classes

 Number of Return Points

 Depth of Inheritance Tree

3. Complexity Metrics

 Boolean Expression Complexity

 Class Data Abstraction Coupling

 Cyclomatic Complexity

 Function Interface Complexity

 Npath Complexity

Out of these metrics the most popular metrics have been

selected for the work, Chidamber and Kemerer metrics

followed by MOOD metrics given by Abreu et al. the metrics

are discussed in table1 and table 2.

Table 1. CK Metric Suite [13]

Metric Description

Weighted Methods per

Class(WMC)

It defines the number of methods in a certain

class.

Depth of Inheritance Tree(DIT)
It is a measure of how many ancestor classes

can potentially affect a given class.

Number of Children(NOC)
Number of direct subclasses that a certain

class contains.

Lack of Cohesion among

Methods(LCOM)

Number of disjunctive method pairs of a

certain class.

Coupling Between

Objects(CBO)

Number of coupling between a certain class

and all other classes.

Response For Class(RFC)

Number of methods that can be performed

by a certain class in response to a received

message.

Table 2. MOOD Metric Suite [17]

Metric Description

Attribute Inheritance

factor(AIF)

It is defined as the ratio of the sum of

inherited attributes in all classes of the

system.

Method Inheritance

Factor(MIF)

The MIF metric states the sum of inherited

methods in all classes of the system under

consideration.

Attribute Hiding Factor(AHF)
Measure how well attributes and properties

are encapsulated.

Method Hiding Factor(MHF)
Measure how well methods and variables

are Encapsulated.

Polymorphism factor(POF)
The actual number of possible different

polymorphic situation

Coupling Factor(COF)

Ratio of the maximum possible number of

couplings in the system to the actual

number of coupling is not imputable to

inheritance

Metric Software Quality Factors

AIF

Functionality, Effectiveness, Extendibility, Defect

 Proneness

MIF

Functionality, Effectiveness, Extendibility, Defect

Proneness

AHF Understandability, Complexity, Extendibility

MHF Understandability, Complexity, Extendibility

POF Complexity

COF Complexity, Reusability

Table 4. Relationship between MOOD Metrics and

Software Quality Factors [2]

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

19

Research has shown that the CK Metric Suite does not

account for the complexity that occurs from the Object

Oriented Design factors such as extendibility and extensibility

but the metrics proposed by Abreu are able to measure the

object Oriented Design aspects properly [10]. The metrics

AHF and MHF measure the information hiding aspects of the

class, AIF and MIF metrics measure the inheritance aspects of

the class. Hence, an integrated hybrid model is used to

measure the extendibility/extensibility of the Object Oriented

systems. The work described in this paper focuses on the use

of Object Oriented (OO) metrics in predicting

extendible/extensible classes.

Table 3. Relationship between CK Metrics and Software

Fig 1. Fuzzy Controller for Extendibility

5. PROPOSED MODEL

The proposed MODEL for calculating the

extendible/extensible classes in OOD uses a subset of CK

metrics and MOOD metrics.

A fuzzy logic model FCD-extend (Fuzzy Controller for

extendibility/extensibility) is used to predict the

extendible/extensible classes. The implemented model

comprises of one metric from CK metric (DIT) and four

metrics from MOOD metric suite (AIF, MIF, AHF, MHF).

These five inputs are fed into the fuzzy systems. Depending

upon the input values of the metric, some rules out of the total

243 rules from the knowledge base gets fired. The Sugeno

inference engine is used to determine the degree of

membership of firing. The technique used for defuzzification

is ‘wtaver’. In this parer Fuzzy Inference system is used to

implement the model.

Software quality is an important aspect used for predicting the

extendibility or extensibility. It becomes difficult for the

designer to calculate the software quality if any uncertainties

occurs during software development process. Calculating the

quality of OOD is a fuzzy evaluation process. Therefore for

achieving the objective and empirical evaluation of the

software quality based on extendibility, rule based logic

system proposed by Zadeh has been used. Fuzzy Logic is a

problem solving control which leads to implementation in the

system ranging from simple, small and embedded micro

controllers to large networks, multi channel workstations. It

provides a definite conclusion to control the problems and

take a decision as much as faster.

Fuzzy Logic is a technique used for modeling complex

systems. It can be constructed either without any data or little

data which means fuzzy logic is superior over other data

driven approach such as neural networks, regression analysis

and case base reasoning [15].

 Fuzzy Logic is considered as a better method for sorting

and handling the data. It is based on the degrees of truth and

ideas of fuzzy logic that work on the problems of computer

understandability of natural language.

Fig 2. Rule viewer for Extendibility/Extensibility

6. EXPERIMENTAL RESULTS
The main four pillars of Maintainability are Reusability,

Reliability, Robustness and extendibility or extensibility.

Enhancing these four qualities of an Object Oriented Design,

maintenance cost of the system can be reduced. In this thesis

work a fuzzy logic based model is proposed to determine the

extendibility/extensibility of an Object Oriented Design. With

the help of this model, the software designers can reduce the

maintenance cost as extendibility/extensibility takes the

advantage of users’ natural tendency to ask for “base-

displacement” kinds of modifications to their systems [36].

Moreover, the high cost of building large software systems is

due to the fact that most of the software development is done

from scratch.

The class serves as the starting point for measuring the

extendibility/extensibility of the Object Oriented system.

Classes can be combined and modified to fit a new application

by means of inheritance and polymorphism.

MEMBERSHIP FUNCTIONS FOR INPUT METRICS
Input parameters are assigned to the linguistic variables based

on their values. To assign the input parameters to the

Metric Software Quality Factor

WMC Complexity, Usability, Reusability

DIT
Reusability, Understandability, Extendibility,

Testability

NOC Design

LCOM Design, Reusability

CBO Design, Reusability

RFC Design, Usability, Testability

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

20

linguistic variables range of the input is measured. The curves

for the membership functions used to predict the defect

proneness using MOOD metric suite defined below. The input

metrics DIT, MHF, AHF, AIF, and MIF are divided into three

stages Low, Medium and high.

Fig 3 Membership Function for input variable DIT

Fig 4 Membership Function for input variable AIF

Fig 5 Membership Function for input variable MIF

Fig 6 Membership Function for input variable AHF

Fig 7 Membership Function for input variable MHF

To perform the empirical investigation for validating the

fuzzy control model for extendibility/extensibility, In this

paper various open source software and Project Analyzer tool

has been used. After creating the rule base to depict the true

picture following results were obtained as shown in the form

of graphs in Fig 3, 4,5,16,7,8,9,10,11 & 12.

Fig 8. Graph for MHF and Extendibility

Fig 9. Graph for AHF and Extendibility

Fig 10. Graph for AIF and Extendibility

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

21

Fig 11. Graph for MIF and Extendibility

Fig 12. Graph for DIT and Extendibility

From the above results it is clear that classes can be extended

by taking under considerations the various inheritance factors

and hiding factors. In the fig 8 it is observed that with the

increase of method hiding factors in class, chances of

extending a class are also increased. Similarly in the fig 10

extendibility increases when the range of AIF is 0 and 1 and it

varies between the range. This is because of the variation of

number of classes.

7. CONCLUSION AND FUTURE WORK

The goal of this work is to analyze the performance of

integrated CK-MOOD based on the performance

characteristics of the software such as

extendibility/extensibility, maintainability, reliability, defect

Proneness, effectiveness, efficiency in a class. In this paper

performance of proposed model has been analyzed using

fuzzy logic approach. Metrics used for analyzing the

performance are CK and MOOD metric suite. The model can

be used for estimating the extendible/extensible classes in the

early phases of software development which in result reduce

the effort of the software developers. Therefore, this model

can improve the quality of software by predicting the

extendible/extensible classes early in the OOD.

In this papere work on extendibility/extensibility has been

done. The work can be extended to find other software quality

characteristics such as portability, reliability, maintainability,

efficiency. The work can also be extended by taking other

software metrics. In this paper one metric from CK metric

suite and four metrics from MOOD metric suite for predicting

the extendibility/extensibility of a class.

8. REFERENCES
[1] D. Bellin, Manish Tyagi and Maurice Tyler, "Object-

Oriented Metrics: An Overview", Computer Science

Department, North Carolina A, T State University,

Greensboro, Nc 27411-0002.

[2] E. Chandra and P. E. Linda “Assessment of Software

Quality through Object Oriented Metrics” CIIT

International Journal of Software Engineering, Vol. 2,

Issue: 2, Feb, 2010.

[3] F. B. Abreu and R. Carapua “Candidate Metric for OOS

within Taxonomy Framework” Journal of System &

Software, Vol. 26, No. 1, July 1994.

[4] K.K.Aggarwal, Y. Singh, A. Kaur, R. Malhotra,

“Software Reuse Metrics for Object-Oriented Systems”,

Proceedings 3rd ACIS Int'l Conference on Software

Engineering Research, Management and Applications

(SERA'05), IEEE Computer Society, pp. 48-55, 2005.

[5] Kamiya, Toshihiro, Kusumoto, Shinji, Inoue, Katsuro

“Prediction of fault-proneness at early phase in object-

oriented development” Proceedings 2nd IEEE

International Symposium on Object-Oriented Real-Time

Distributed Computing, (ISORC '99) , pp: 253 – 258,

1999.

[6] P. Saxena and M. Saini, “Empirical Studies to Predict

Fault Proneness: A Review”, Proceedings International

Journal of Computer Applications 22(8):41–45, May

2011.

[7] R. Bhatnagar, V. Bhattacharje and M. K. Ghose, “A

proposed novel framework for early effort estimation

using fuzzy logic techniques”, Proceedings Global

Journal of Computer Science and Technology, Vol 10,

No. 14, 2010.

[8] R. Malhotra, A. Kaur and Y. Singh, “Empirical

validation of object-oriented metrics for predicting fault

proneness at different severity levels using support vector

machines”, Proceedings of International Journal of

System Assurance Engineering and Management, Vol.

1, Issue 3, pp. 269-281, September, 2010.

[9] R. Malhotra, “A Defect Prediction Model for Open Source

Software”, Proceedings of the World Congress on

Engineering 2012, Vol. II, July 4 - 6, 2012, London

(UK). WCE 2012.

[10] R. Subramanyam and M. S. Krishnan, “Empirical

Analysis of CK Metrics for Object-Oriented Design

Complexity: Implications for Software Defects”,

IEEE Transactions on Software Engineering, Vol. 29,

Issue: 4, pp: 297 – 310, April, 2003.

[11] S. Benlarbi, K. El Emam and N. Geol, “Issues in

Validating Object-Oriented Metrics for Early Risk

Prediction”, by Cistel Technology 210 Colonnade Road

Suite 204 Nepean, Ontario Canada K2E 7L5, 1999.

[12] S. K Dubey and A. Rana, “A Comprehensive Assessment

of Object-Oriented Software Systems Using Metrics

Approach”, IJCSE, Vol. 02, pp. 2726–2730, 2010.

[13] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite

for Object Oriented Design”, IEEE Transactions on

Software Engineering, Vol. 20, No. 6, pp. 476–493,

1994.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kamiya,%20Toshihiro.QT.&searchWithin=p_Author_Ids:37306321500&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Kusumoto,%20Shinji.QT.&searchWithin=p_Author_Ids:37265990300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Inoue,%20Katsuro.QT.&searchWithin=p_Author_Ids:37281358200&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6308
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6308
http://link.springer.com/search?facet-author=%22Ruchika+Malhotra%22
http://link.springer.com/search?facet-author=%22Arvinder+Kaur%22
http://link.springer.com/search?facet-author=%22Yogesh+Singh%22

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 9, May 2014

22

[14] T. Menzies, K. Ammar, A. Nikora, and S. Stefano,

“How Simple is Software Defect Prediction?” Journal of

Empirical Software Engineering, October, 2003.

[15] L. A. Zadeh, “Fuzzy sets, Information and Controll”,

Vol. 8, pp. 338-353, 1965.

[16] Sunint K. Khalsa, “A Fuzzified Approach for the

Prediction of Fault Proneness and Defect Density”,

Proceedings of the World Congress on Engineering, Vol.

I, WCE 2009, July 1 - 3, 2009, London, U.K., 2009.

[17] F. B. Abreu and R. Carapua, “Candidate Metric for

OOS within Taxonomy Framework”, Journal of System

& Software, Vol. 26, No. 1,July 1994.

[18] L. H. Rosenberg and L. Hyatt, “Software Quality

Metrics for Object Oriented Environments”, Crosstalk

Journal, 1997.

[19] J. Bansiya and C.G. Davis, “A Hierarchical Model for

Object-Oriented Design Quality Assessment”, IEEE

Transactions on Software Engineering, Vol. 28, Issue: 1,

2002.

[20] A. Handa and G. Wayal, “Software Quality

enhancement using Fuzzy Logic with object oriented

metrics in design”, International Journal of Computer

Engineering and Technology (IJCET), Vol. 3, Issue: 1,

pp: 169-179, June 2012.

IJCATM : www.ijcaonline.org

