
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.8, May 2014

39

Performance Analysis of Various Fragmentation

Techniques in Runtime Partially Reconfigurable FPGA

Senoj Joseph

Assistant Professor,
Dept of Electronics and Communication

engineering
Sri Krishna College of Technology, Coimbatore-

641042, India

K.Baskaran, PhD

Associate Professor,
Department of Computer Science Engineering,

Government College of Technology, Coimbatore,
India

ABSTRACT

Reconfigurable devices, such as Field Programmable Gate

Arrays (FPGAs), are very popular in today’s embedded

systems design due to their low-cost, high-performance and

flexibility. Partially Runtime-Reconfigurable (PRTR) FPGAs

allow hardware tasks to be placed and removed dynamically

at runtime. A novel 2D area fragmentation metric that takes

into account feasibility of placement of future task arrivals is

presented. Simulation experiments indicate that proposed

technique yield better results than existing fragmentation

estimation techniques when used in fragmentation aware

placement.

General Terms

Algorithms, VLSI

Keywords

Fragmentation, Partially Reconfigurable FPGA

1. INTRODUCTION
Current reconfigurable devices have the ability to reconfigure

parts of their hardware resources without interrupting normal

operation of the remaining fabric. The placement algorithms

need to find locations for placing arrival tasks and to

maximize the utilization of the resources. Careless placement

of incoming tasks causes portions of chip area to be wasted

because they are too small to hold another incoming task.

Consequently, area fragmentation is one of the biggest

obstacles of obtaining good utilization of chip resources. In

this paper, a new metric for measuring area fragmentation is

proposed. This measure can be used in monitoring the chip

area and select the best empty area to place the new task and

thus reducing the total chip area fragmentation.

Section 2 discuss about fragmentation of resources. Section 3

presents a survey of fragmentation estimation techniques

Section 4 describes the new fragmentation metric Section 5

introduces evaluation of fragmentation on a sample placement

output and results of comparison. Section 6 makes some

concluding remarks.

2. FRAGMENTATION OF RESOURCES
In this section fragmentation is defined. In software domain

this problem occurs in memory allotment technique for which

efficient techniques have been developed. Partially

reconfigurable FPGAs allow multitasking which leads to

fragmentation of FPGA resources. Empty area on the FPGA

can be covered by a set of overlapping empty rectangles. To

place a task of fixed dimension the placement algorithm

should identify an empty rectangle sufficiently large to

accommodate the task. If such space is not available then the

task will be rejected or scheduled later depending on the

placement algorithm. Due to dynamic addition and deletion of

tasks the empty area on the FPGA will be split into large

number of small sized regions which cannot accommodate

even an average sized task. This phenomenon is called

fragmentation.

Figure 1. Two fragmentation states having same number

of empty slots

Consider the following example shown in Fig 1. Both figures

have the same number of empty slots but distribution varies.

Classical techniques assume that fragmentation exist only

when a task get rejected. Accordingly if an incoming task of

height and width 3 and 2 units will be rejected in both cases.

Therefore both case will be assigned with same fragmentation

index but visually it shows that figure on the right is having a

very high fragmentation such that it can only accommodate

task of size 1 x 1. The proposed technique tries to rectify this

anomaly by considering the feasibility of placing tasks of

different size and assume that fragmentation exist even when

task is placed.

2.1 Types of Fragmentation
There are four type of fragmentation

Internal fragmentation: This is the empty area created inside

the boundary of rectangular task by trying to fit the actual

logic of the task into a rectangular area.

External fragmentation: This is the fragmentation of empty

area outside the boundary of the rectangular tasks. This has

been already explained in previous section.

Virtual fragmentation is a situation in which the placement

algorithm fails to locate contiguous empty space even though

such a space exists. This can be solved by improving the

efficiency of placement algorithm.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.8, May 2014

40

Partition fragmentation: this will occur only if FPGA surface

is divided into finite number of predefined sub-area called

blocks and only a single task can be placed in any of these

blocks. Empty area occurs if the task placed in smaller than

the block size. It is very difficult to find an optimal size of

block. In literature several works have been attempted with

fixed and variable sized blocks, splitting and merging of

blocks etc.

The proposed work deals only with external fragmentation

and the term fragmentation is used to refer to it.

3. SURVEY OF FRAGMENTATION

TECHNIQUES
 Fragmentation is the major reason for poor placement

quality of the online placement algorithms. In this section

several techniques proposed in literature are considered to

estimate fragmentation and thereby improving their placement

algorithms. Some metrics mix occupation degree with

fragmentation. An FPGA with a high occupation but with all

free area concentrated as a single rectangle cannot be

considered as fragmented as some algorithm classifies.

Wigley et. al [4] defined the shortest side of an maximal

empty rectangle as characteristic dimension. Fragmentation is

calculated by taking the mean of distribution of characteristic

dimensions. This is having less discrimination because it

gives same value for several fragmentation situations.

Walder et. al. [5] found all non overlapped rectangles required

to cover the empty area. Fragmentation

where i is suffix where ai is the area of the ith non-overlapping

rectangle. This may lead to different fragmentation value for

the same situation based on the section of non-overlapping

rectangle.

Julius Gehr, Jorg Schneider [7] suggested I D fragmentation:

This is useful if the FPGA is modeled as ID array in which all

the tasks have same height and variable width.

 where n is the number of free blocks

 use max free block size in Numerator

 use average size of free block.

Mathematically identical to first one since

 p=1, 2...n

A. Ejnioui and R. F. Demara [2] proposed a metric for

fragmentation. Let the FPGA chip have N x N cells. Assume

that a hole i consist of k cells. Therefore

 . Overall

fragmentation is

 . Using this method the

smallest possible fragmentation will be an empty chip which

consists of single hole having N2 cells.

 . Highest possible fragmentation resembles a checkerboard

pattern. If N is even there will be

 holes where each hole

occupies a single cell. Therefore

 . F approaches

one as N gets larger. In this case also two different

fragmentation states may give the same fragmentation factor.

Handa and Venuri [8] proposed a method in which they

calculate FCCx and FCCy for each cell in MER.

TFCC= FCCx + FCCy.

FCCx=

 if

0 otherwise

FCCy=

 if

0 otherwise

where Lx(Ly) are average width of the tasks being placed and

vx(vy) is the number of consecutive empty cells in the

horizontal and vertical direction of the current cell. Total

fragmentation is the average value of TFCC of all cells in the

MER. Place task in any of the corners of MER having largest

TF and corner chosen to maximize the TF of task sized

rectangle. Nothing is mentioned about the overall

fragmentation index.

Tabero [9] proposed the Vertex list method. They measure

fragmentation of each hole of empty cells after task placement

which may have more than four corners, instead for each

MER.

 where Vi is the number of

vertices of hole, Ai is the hole’s area size and Af is the total

size of the free area. (4/Vi) represent suitability of hole Hi to

accommodate rectangular tasks. Any hole with 4 vertices will

have best suitability. (Ai/Af) represent the relative hole

normalized area. This method penalizes holes with irregular

shapes and small sizes.

Septien et. al. [6] proposed a perimeter quadrature approach.

Assume that ideal hole should have a perfect square shape.

Estimate how far its shape is near perfect square. Divide area

A by the area of a perfect square having same perimeter p.

 Relative quadrature

 Fragmentation

F=1-Q.Smaller one will have less fragmentation. In case of

multiple holes and and calculate as above.

J.Cui et al [3] proposed a metric based on MER that take into

account the probability distribution of width and height of

future arrivals instead of average values in [8]. Also they

calculate the time averaged area fragmentation and use look

ahead technique to choose a location with min TAAF among

all candidates at the current time and next few points when

some tasks complete.

ElFarag et al [1] proposed a new fragmentation model for 1

and 2 dimensional FPGA. For 8x8 array the max

fragmentation will be 64 and min will be 2.

One dimensional

 where mi is size of each

vacant slots

Two dimension F=Fr + Fc

Applying 1D method for rows and columns

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.8, May 2014

41

4. PROPOSED METHOD
To check the efficiency of the fragmentation a fragmentation

matrix is created. Consider all the MER. The row and column

are labeled from 1 to n where n is the size of the FPGA. A cell

(i, j) =1 indicates that a task of width i and height j can be

placed on the FPGA. Example if (2, 4) =1 then a task of width

2 and height 4 can be placed on the FPGA. The pseudocode

for filling the fragmentation matrix is shown below

Initialize x to null matrix

Find all the MER in the FPGA

For each MER of size (wi,hi)

Put x(i,j)=1 if i<=wi and j <= hi

Find the number of ones in fragmentation matrix denoted by

C.

Divide this by total number of empty cell. This ratio is

denoted by Q.

Fragmentation F=1-Q

This matrix method gives the fragmentation of all

possibilities.ie for same value of empty cells the

fragmentation state with max possibilities (higher C) will be

judged as having less fragmentation. The proposed method

gives absolute fragmentation metrics. It takes into

consideration only the distribution of the reconfigurable cells.

Another trend is the relative fragmentation metric which

consider the state of the reconfigurable cells based on the

sizes of the incoming tasks. The above algorithm can be run in

relative metric mode by changing size of X equal to (nh, nw)

where nh and nw are average height and width of incoming

tasks. Relative metrics are not sensitive to the size of the

incoming task at certain time, so it is possible to obtain two

different fragmentation measures at different times for the

same fragmentation state of the chip while the size of the

incoming tasks may be highly variable. As a result, an

absolute metric is more accurate.

 Consider a 16 x 16 FPGA having 128 empty cells.

Based on the location and clustering of empty cell the

fragmentation changes as shown in Table 1. In first two case

all the empty space are contiguous leading to very low

fragmentation while checkerboard case results in max

fragmentation.

Table 1. Some test scenario to check fragmentation

S.No Empty rectangles in each test

case(width, height)

Fragmentation

1 [16 8] 0

2 [8 8; 8 8] 0.5

3 [8 8; 8 8;16 1] 0.4375

4 [8 8; 8 8;16 3] 0.3125

5 [8 8; 8 8;16 5] 0.1875

6 [8 8; 8 8;16 7] 0.0625

7 [8 8; 8 4;8 2;4 2 ;4 2] 0.5

8 Checkerboard pattern 0.9922

9 Stripped pattern [16 1] 0.875

10 [5 4;8 6;3 3;7 4;3 1;10 2] 0.5938

11 [14 4; 5 6; 8 3;9 2] 0.4844

12 [16 4; 4 16; 4 4] 0.125

5. EXPERIMENTAL RESULTS
Experiments are performed to verify whether the

fragmentation metric is consistent with other types. The

simulation is carried out for 100 tasks. Fragmentation is

calculated for the instances shown in Figure 3. Table 2 gives

the fragmentation calculated for various test cases. The graph

plotted for various test cases is shown in Figure 2. The FPGA

size is set to 16x16. The fragmentation is calculated by other

methods by converting the representation into a format which

is suitable for their calculation. The fragmentation figure is

normalized to make comparison easy. The results show that

the results are consistent with other methods and give better

performance when included in fragmentation aware

placement. ElFarag shows very low fragmentation for all the

cases while some others show very high fragmentation for test

cases 9-12. Proposed method shows moderate fragmentation

for such cases because tasks get rejected in not due to

fragmentation but due to lack of empty space. For worst case

like checkerboard pattern proposed fragmentation approaches

unity.

6. CONCLUSION
An efficient model for estimation of fragmentation in online

placement scenario is presented. This model can be used to

benchmark other fragmentation techniques. The proposed

method performs better than other techniques. The proposed

technique considers only the feasibility of placing future

tasks. Other features can be included to improve the

performance of the metric.

7. ACKNOWLEDGEMENT
Authors thank the SKCT management and acknowledge the

immense help received from the scholars whose articles are

cited and included in references of this manuscript. The

authors are also grateful to authors / editors / publishers of all

those articles, journals and books from where the literature for

this article has been reviewed and discussed.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.8, May 2014

42

Figure 2. Fragmentation calculated for various Test cases shown in figure 3

Table 2 Simulation results for fragmentation

Test cases Proposed

method

Wigley Walder Ejnioui Tabero Perimeter Elfarag handa

1 0.1109 0.4375 0.44 0.188 0.33 0 0.01 0

2 0.152 0.625 0.291 0.219 0.60 0.308 0.016 3.6

3 0.1175 0.542 0.2775 0.234 0.50 0.234 0.012 0

4 0.1222 0.625 0.726 0.266 0.60 0.35 0.017 1.32

5 0.644 0.72 0.199 0.406 0.60 0.474 0.026 5.61

6 0.7485 0.8125 0.484 0.594 0.71 0.764 0.055 19.18

7 0.7083 0.825 0.473 0.625 0.71 0.76 0.052 14.45

8 0.6570 0.8125 0.447 0.97 0.91 0.756 0.049 13.99

9 0.6950 0.8125 0.4169 0.976 0.917 0.753 0.047 12.36

10 0.6950 0.8125 0.4169 0.976 0.917 0.753 0.047 12.36

11 0.8194 0.875 0.29 0.995 0.93 0.756 0.047 15.44

12 0.8047 0.844 0.42 0.995 0.935 0.693 0.036 9.63

13 0.7917 0.844 0.3877 0.997 0.96 0.67 0.034 8.95

14 0.74 0.844 0.35 0.999 0.995 0.722 0.037 9.26

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fr
ag

m
e

n
ta

ti
o

n

Test cases

Proposed

Wigley

Walder

Ejniuoi

Tabero

Perimeter

Elfarag

Handa

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No.8, May 2014

43

Figure 3. Various test cases considered

8. REFERENCES
[1] A. ElFarag, H. M. El-Boghdadi,and S. I. Shaheen,

“Fragmentation aware placement in reconfigurable

devices,” in Proceedings of the 6th International

Workshop on System on Chip for Real Time

Applications, Dec. 2006, pp. 37-44

[2] A. Ejnioui and R. F. DeMara, “Area Reclamation Metrics

for SRAM-based Reconfigurable Device,” in

Proceedings of the International Conference on

Engineering of Reconfigurable Systems and Algorithms

(ERSA’05), Las Vegas, Nevada, U.S.A, June 27 – 30,

2005.

[3] Cui, J., Gu, Z., Liu, W., & Deng, Q. (2007). An efficient

algorithm for online soft real-time task placement on

reconfigurable hardware devices10th international

symposium on object and component oriented real time

distributed computing, 2007.

[4] G. Wigley and D. Kearney. The Management of

Applications for Reconfigurable Computing Using an

Operating System. In Proceedings of the seventh Asia-

Pacific conference on Computer systems architecture,

volume 6, pages 73–81, 2002

[5] Herbert Walder and Marco Platzner. Non-preemptive

Multitasking on FPGA: Task Placement and Footprint

Transform. In Proceedings of the 2nd International

Conference on Engineering of Reconfigurable Systems

and Architectures (ERSA), pages 24–30. CSREA Press,

June 2002.

[6] J. Septién, D. Mozos, H. Mecha, J. Tabero and M. A.

García de Dios ,Perimeter Quadrature-based Metric for

Estimating FPGA Fragmentation in 2D HW

Multitasking, IPDPS 2008

[7] Julius Gehr, Jorg Schneider, ”Measuring Fragmentation

of Two-Dimensional Resources Applied to Advance

Reservation Grid Scheduling” 2009 9th IEEE/ACM

International Symposium on Cluster Computing and the

Grid, p 276-283

[8] Handa. M , R. Vemuri, “Area Fragmentation in

Reconfigurable Operating Systems”, Proceedings of

International Conference on Engineering of

Reconfigurable Systems and Algorithms, pages 77-83,

CSREA Press, 2004.

[9] Tabero, J., J.Septian, H.Mecha and D.Mozos, 2004.Low

fragmentation heuristics for task placement in 2D RTR

hardware management. The 14th International

Conference on field programmable logic and application,

FPL 2004, pages 241-250, Belgium Sept 2004.

IJCATM : www.ijcaonline.org

