On $\pi g \mathcal{I}$ -Closed Sets in Ideal Topological Spaces

R. Santhi Department of Mathematics, NGM College, Pollachi-642001, Tamil Nadu, India. M. Rameshkumar Department of Mathematics, P. A College of Engineering and Technology, Pollachi-642002, Tamil Nadu, India.

ABSTRACT

In this paper, we define and investigate the notions of $\pi g \mathcal{I}$ -closed sets and $\pi g \mathcal{I}$ -open sets in ideal topological spaces. Then, we define \vee_{π} -sets and \wedge_{π} -sets and discuss the relation between them. Also, we give characterizations of $\pi g \mathcal{I}$ -closed sets and $\pi g s$ -closed sets. A separation axiom stronger than $\pi T_{\mathcal{I}}$ -space is defined and various characterizations are given.

Keywords:

 $\pi g\mathcal{I}$ -closed, $\pi g\mathcal{I}$ -open, \vee_{π} -set, \wedge_{π} -set, $\pi T_{\mathcal{I}}$ -space

1. INTRODUCTION AND PRELIMINARIES

Let (X, τ) be a topological space with no separation properties assumed. For a subset A of a topological space (X, τ) , cl(A) and int(A) denote the closure and interior of A in (X, τ) respectively. An ideal \mathcal{I} on a topological space (X, τ) is a nonempty collection of subsets of X which satisfies: (1) $A \in \mathcal{I}$ and $B \subseteq A$ implies $B \in \mathcal{I}$ (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ implies $A \cup B \in \mathcal{I}$.

If (X, τ) is a topological space and \mathcal{I} is an ideal on X, then (X, τ, \mathcal{I}) is called an ideal topological space or an ideal space.

Let P(X) be the power set of X. Then the operator $()^* : P(X) \rightarrow P(X)$ called a local function [6] of A with respect to τ and \mathcal{I} , is defined as follows: for $A \subseteq X$, $A^*(\mathcal{I}, \tau) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$. We simply write A^* instead of $A^*(\mathcal{I}, \tau)$ in case there is no confusion. For every ideal topological space (X, τ, \mathcal{I}) there exists topology τ^* finer than τ , generated by $\beta(\mathcal{I}, \tau) = \{U \setminus J : U \in \tau \text{ and } J \in \mathcal{I}\}$ but in general $\beta(\mathcal{I}, \tau)$ is not always a topology. Additionally $cl^*(A) = A \cup A^*$ defines Kuratowski closure operator for a topology τ^* finer than τ . Throughout this paper X denotes the ideal topological space (X, τ, \mathcal{I}) and also $int^*(A)$ denotes the interior of A with respect to τ^* .

DEFINITION 1. Let (X, τ) be a topological space. A subset A of X is said to be semi-open [7] if there exists an open set U in X such that $U \subseteq A \subseteq cl(U)$. The complement of a semi-open set is said to be semi-closed. The collection of all semi-open (resp. semi-closed) sets in X is denoted by SO(X) (resp. SC(X)). The semi-closed sets containing A and is denoted by scl(A).

DEFINITION 2. For $A \subseteq X$, $A_*(\mathcal{I}, \tau) = \{ x \in X/U \cap A \notin \mathcal{I}$ for every $U \in SO(X) \}$ is called the semi-local function [4] of Awith respect to \mathcal{I} and τ , where $SO(X, x) = \{ U \in SO(X) : x \in$ U}. We simply write A_* instead of $A_*(\mathcal{I}, \tau)$ in this case there is no ambiguity.

It is given in [1] that $\tau^{*s}(\mathcal{I})$ is a topology on X, generated by the sub basis $\{U - E : U \in SO(X) \text{ and } E \in I\}$ or equivalently $\tau^{*s}(\mathcal{I}) = \{U \subseteq X : cl^{*s}(X - U) = X - U\}$. The closure operator cl^{*s} for a topology $\tau^{*s}(\mathcal{I})$ is defined as follows: for A $\subseteq X, cl^{*s}(A) = A \cup A_*$ and int^{*s} denotes the interior of the set A in $(X, \tau^{*s}, \mathcal{I})$. It is known that $\tau \subseteq \tau^*(\mathcal{I}) \subseteq \tau^{*s}(\mathcal{I})$. A subset A of (X, τ, \mathcal{I}) is called semi-*-perfect [5] if $A = A_*$. $A \subseteq (X, \tau, \mathcal{I})$ is called *-semi dense in-itself [5](resp. semi-*-closed [5]) if $A \subset A_*$ (resp. $A_* \subseteq A$). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be gI-closed [5] if $A_* \subseteq U$ whenever U is open and $A \subseteq U$. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be gI-open [5] if X - A is gI-closed. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\mathcal{I}_{\pi g}$ -closed [10] if $A^* \subseteq U$ whenever U is π -open and $A \subseteq U$.

A subset A of a space (X, τ) is said to be regular open [11] if A = int(cl(A)) and A is said to be regular closed [11] if A = cl(int(A)). Finite union of regular open sets in (X, τ) is π -open [13] in (X, τ) . The complement of a π -open [13] set in (X, τ) is π -closed in (X, τ) A subset A of a space (X, τ) is said to be g-closed [8] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is open. A subset A of a space (X, τ) is said to be πgs -closed [2] if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is π -open.

LEMMA 3. [4] Let (X, τ, \mathcal{I}) be an ideal topological space and A, B be subsets of X. Then for the semi-local function the following properties hold:

- (a) If $A \subseteq B$ then $A_* \subseteq B_*$.
- (b) If $U \in \tau$ then $U \cap A_* \subseteq (U \cap A)_*$
- (c) $A_* = scl(A_*) \subseteq scl(A)$ and A_* is semi-closed in X.
- (d) $(A_*)_* \subseteq A_*$.
- (e) $(A \cup B)_* = A_* \cup B_*$.
- (f) If $\mathcal{I} = \{\phi\}$, then $A_* = scl(A)$.

2. $\pi q \mathcal{I}$ - CLOSED SETS

DEFINITION 4. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $\pi g \mathcal{I}$ -closed if $A_* \subseteq U$ whenever $A \subseteq U$ and U is π -open.

The complement of $\pi g \mathcal{I}$ -closed is said to be $\pi g \mathcal{I}$ -open. The family of all $\pi g \mathcal{I}$ -closed(resp. $\pi g \mathcal{I}$ -open) subsets of a space (X, τ, \mathcal{I}) is denoted by $\pi GIC(X)$ (resp. $\pi GIO(X)$). THEOREM 5. In an ideal topological space (X, τ, \mathcal{I}) , the following properties hold:

- (a) Every $\mathcal{I}_{\pi g}$ -closed set is $\pi g \mathcal{I}$ -closed.
- (b) Every $g\mathcal{I}$ -closed set is $\pi g\mathcal{I}$ -closed.
- (c) Every πg -closed set is $\pi g \mathcal{I}$ -closed.

REMARK 6. Converse of the Theorem 5 need not be true as seen from the following example.

EXAMPLE 7. (a) Let $X = \{a, b, c, d\}, \tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}, \{d\}, \{c, d\}\}$. Then the set $A = \{a, c, d\}$ is $\pi g \mathcal{I}$ -closed but it is not $\mathcal{I}_{\pi g}$ -closed.

(b)Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{b, c\}, X\}$ and $\mathcal{I} = \{\phi, \{a\}\}$. Then $A = \{b\}$ is $\pi g \mathcal{I}$ -closed but it is not $g \mathcal{I}$ -closed. (c)Let $X = \{a, b, c, d, e\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}, \{a, b, c, d\}, \{b, c, d, e\}, X\}$ and $\mathcal{I} = \{\phi, \{b\}, \{d\}, \{b, d\}\}$. Then $A = \{a, b\}$ is $\pi g \mathcal{I}$ -closed but it is not πg -closed.

THEOREM 8. In an ideal space (X, τ, \mathcal{I}) , the union of two $\pi g \mathcal{I}$ -closed set is an $\pi g \mathcal{I}$ -closed set.

Proof. Suppose that $A \cup B \subseteq U$ and U is π -open in (X, τ, \mathcal{I}) , then $A \subseteq U$ and $B \subseteq U$. Since A and B are $\pi g \mathcal{I}$ -closed. $A_* \subseteq U$ and $B_* \subseteq U$. By Lemma 3, $(A \cup B)_* \subseteq A_* \cup B_* \subseteq U$. Thus $A \cup B$ is $\pi g \mathcal{I}$ -closed.

THEOREM 9. Let (X, τ, \mathcal{I}) be an ideal space. If A is $\pi g\mathcal{I}$ -closed and B is π -closed in X, then $A \cap B$ is $\pi g\mathcal{I}$ -closed.

Proof. Let U be an π -open set in X containing $A \cap B$. Then $A \subseteq U \cup (X - B)$. So A is $\pi g \mathcal{I}$ -closed, $A_* \subseteq U \cup (X - B)$ and $B \cap A_* \subseteq U$. By Lemma 3, $(A \cap B)_* = A_* \cap B_* \subseteq A_* \cap B \subseteq U$, because every π -closed set is closed. This proves $A \cap B$ is $\pi g \mathcal{I}$ -closed.

THEOREM 10. Let (X, τ, \mathcal{I}) be an ideal space and A be a $\pi g \mathcal{I}$ -closed set if and only if $cl^{*s}(A) - A$ contains no-nonempty π -closed set.

Proof. Let A be an $\pi g\mathcal{I}$ -closed set of (X, τ, \mathcal{I}) . Suppose π -closed set F contained in $cl^{*s}(A) - A = cl^{*s}(A) \cap (X - A)$. Since $F \subseteq X - A$, we have $A \subseteq F$ and X - F is π -open. Therefore $cl^{*s}(A) \subseteq X - F$ and so $F \subseteq X - cl^{*s}(A)$. Already we have $F \subseteq cl^{*s}(A)$. Thus $F \subseteq cl^{*s}(A) \cap (X - cl^{*s}(A)) = \phi$. Hence $cl^{*s}(A) - A$ contains no-nonempty π -closed set.

Conversely, Let $A \subseteq U$ and U be a π -open subset of X such that $A_* \not\subseteq U$. This gives $A_* \cap (X - U) \neq \phi$ or $A_* - U \neq \phi$. Moreover, $A_* - U = A_* \cap (X - U)$ is π -closed in X. Since $A_* - U \subseteq A_* - A$ and $A_* - A = cl^{*s}(A) - A$ contains nonempty π -closed set. This is a contradiction. This proves A is a $\pi g\mathcal{I}$ -closed set.

THEOREM 11. If A is an $\pi g\mathcal{I}$ -closed subset of an ideal space (X, τ, \mathcal{I}) and $A \subseteq B \subseteq A_*$, then B is also $\pi g\mathcal{I}$ -closed.

Proof. Suppose $B \subseteq U$ and U is π -open. Since A is $\pi g\mathcal{I}$ -closed and $A \subseteq U$, $A_* \subseteq U$. By Lemma 3, $B_* \subseteq (A_*)_* \subseteq A_* \subseteq U$ and so B is $\pi g\mathcal{I}$ -closed.

THEOREM 12. In an ideal space (X, τ, \mathcal{I}) , a $\pi g\mathcal{I}$ -closed and *-semi dense in-itself is πgs -closed.

Proof. Suppose A is *-semi dense in-itself and $\pi g\mathcal{I}$ -closed in X. Let U be any π -open set containing A. Since A is $\pi g\mathcal{I}$ -closed, $A_* \subseteq U$ and hence by Lemma 3, $scl(A_*) \subseteq U$. Since A is *-semi dense in-itself, $A \subset A_*$ and hence $scl(A) \subseteq U$ whenever $A \subseteq U$. This proves that A is πgs -closed. COROLLARY 13. Let A and B be subsets of an ideal space (X, τ, \mathcal{I}) such that $A \subset B \subset A_*$. If A is $\pi g \mathcal{I}$ -closed, then A and B are πgs -closed.

Proof. Since $A \subset B \subset A_*$ and A is $\pi g \mathcal{I}$ -closed. By Theorem 11, B is $\pi g \mathcal{I}$ -closed. Since $A \subset B \subset A_*, B_* = A_*$. Therefore A and B are *-semi dense in-itself. By Theorem 12, A and B are πgs -closed.

THEOREM 14. Let (X, τ, \mathcal{I}) be an ideal space and A be an $\pi g \mathcal{I}$ -closed set. Then the following are equivalent.

- (a) A is semi-*-closed set.
- (b) $cl^{*s}(A) A$ is a π -closed set.
- (c) $A_* A$ is a π -closed set.

Proof. $(a) \Longrightarrow (b)$. If A is a semi-*-closed, then $cl^{*s}(A) - A = \phi$ and so $cl^{*s}(A) - A$ is π -closed.

 $(b) \Longrightarrow (a)$. Suppose $cl^{*s}(A) - A$ is π -closed. Since A is $\pi g\mathcal{I}$ -closed, by Theorem 10, $cl^{*s}(A) - A = \phi$ and so A is semi-*-closed. (b) $\iff (c)$. The proof follows from the fact that $cl^{*s}(A) - A = A_* - A$.

THEOREM 15. Let (X, τ, \mathcal{I}) be an ideal space. Then the following are equivalent.

(a) Every subset of (X, τ, \mathcal{I}) is $\pi g \mathcal{I}$ -closed

(b) Every π -open set is semi-*-closed.

Proof. $(a) \implies (b)$. Suppose every subset of X is $\pi g\mathcal{I}$ -closed. If U is π -open then by hypothesis, U is $\pi g\mathcal{I}$ -closed and so $U_* \subseteq U$. Hence U is semi-*-closed.

 $(b) \Longrightarrow (a)$.Suppose every π -open set is semi-*-closed. Let A be a subset. If U is π -open set such that $A \subseteq U$, then $A_* \subseteq U_* \subseteq U$ and so A is $\pi g\mathcal{I}$ -closed.

THEOREM 16. Let (X, τ, \mathcal{I}) be an ideal space and A be an $\pi g \mathcal{I}$ -closed set if and only if $A \cup (X - A_*)$ is $\pi g \mathcal{I}$ -closed set.

Proof. Suppose that A is an $\pi g\mathcal{I}$ -closed set. If U is any π -open set such that $A \cup (X - A_*) \subseteq U$, then $X - U \subseteq X - (A \cup (X - A_*)) = (X - A) \cap A_* = A_* - A$. Since X - U is π -closed and A is $\pi g\mathcal{I}$ -closed. By Theorem 10, $X - U = \phi$ and so X=U. Hence X is the only π -open set containing $A \cup (X - A_*)$ and so $A \cup (X - A_*)$ is $\pi g\mathcal{I}$ -closed.

Conversely, suppose $A \cup (X - A_*)$ is $\pi g\mathcal{I}$ -closed. Let F be any π -closed set such that $F \subseteq A_* - A$. Since $A_* - A = X - A \cup (X - A_*)$, we have $A \cup (X - A_*) \subseteq X - F$ and X - F is π -open. Therefore $(A \cup (X - A_*))_* = A_* \cup (X - A_*)_* \subseteq X - F$ and hence $F \subseteq X - A_*$. But $F \subseteq A_* - A$ implies $F = \phi$. By Theorem 10 $A_* - A = cl^{*s}(A) - A$ contains no non-empty π -closed set, hence A is $\pi g\mathcal{I}$ -closed.

THEOREM 17. Let (X, τ, \mathcal{I}) be an ideal space. Then $A \cup (X - A_*)$ is $\pi g \mathcal{I}$ -closed set if and only if $A_* - A$ is $\pi g \mathcal{I}$ -open.

Proof. Since $X - (A_* - A) = A \cup (X - A_*)$, the proof follows immediately.

THEOREM 18. Let (X, τ, \mathcal{I}) be an ideal space. A subset $A \subseteq X$ is $\pi g \mathcal{I}$ -open if and only if $F \subseteq int^{*s}(A)$ whenever F is π -closed and $F \subseteq A$.

Proof. Let A be an $\pi g\mathcal{I}$ -open set of (X, τ, \mathcal{I}) and F be a π -closed set contained in A. Then $X - A \subseteq X - F$ and hence $(X - A)_* \subseteq X - F$. Hence, we have $(X - int^{*s}(A)) = cl^{*s}(X - A) = (X - A) \cup (X - A)_* \subseteq X - F$. This proves that $F \subseteq int^{*s}(A)$.

Conversely, let $F \subseteq int^{*s}(A)$ whenever $F \subseteq A$ and F is a π -closed subset of X. Let $X - A \subseteq V$ and V is a π -open set. Then $X - V \subseteq A$ and X - V is π -closed. By the assumption, $X - V \subseteq int^{*s}(A)$ and $V \supseteq X - int^{*s}(A) = cl^{*s}(X - A) \supseteq (X - A)_*$. This proves that (X - A) is $\pi g\mathcal{I}$ -closed and A is an $\pi g\mathcal{I}$ -open subset of X.

THEOREM 19. In an ideal space (X, τ, \mathcal{I}) , if A is an $\pi g\mathcal{I}$ -open set, then G = X whenever G is π -open and $int^{*s}(A) \cup (X - A) \subseteq G$.

Proof. Let A be an $\pi g\mathcal{I}$ -open set. Suppose G is π -open set and $int^{*s}(A) \cup X - A \subseteq G$. $X - G \subseteq (X - int^{*s}(A)) \cap A = (X - int^{*s}(A)) - (X - A) = cl^{*s}(X - A) - (X - A)$. Since X - A is $\pi g\mathcal{I}$ -closed, by Theorem 10, $X - G = \phi$ and so G = X.

THEOREM 20. If A is an $\pi g\mathcal{I}$ -closed set in an ideal space (X, τ, \mathcal{I}) , then $cl^{*s}(A) - A$ is $\pi g\mathcal{I}$ -open.

Proof. A is $\pi g \mathcal{I}$ -closed, by Theorem 10, ϕ is the only π -closed set contained in $cl^{*s}(A) - A$ and so by Theorem 18, $cl^{*s}(A) - A$ is $\pi g \mathcal{I}$ -open.

EXAMPLE 21. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{b\}, \{c, d\}, \{b, c, d\}, X\}$ and $\mathcal{I} = \{\phi\}$. Let $A = \{b, c, d\}$. Then $cl^{*s}(A) - A = X - \{b, c, d\} = \{a\}$. Since ϕ is the only π -open set contained in $cl^{*s}(A) - A$, by Theorem 18 $cl^{*s}(A) - A$ is $\pi g\mathcal{I}$ -open but A is not $\pi g\mathcal{I}$ -closed.

THEOREM 22. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If A is $\pi g\mathcal{I}$ -open and $int^{*s}(A) \subseteq B \subseteq A$, then B is $\pi g\mathcal{I}$ -open and $cl^{*s}(A) - A$ is $\pi g\mathcal{I}$ -open.

Proof. Since $int^{*s}(A) \subseteq B \subseteq A$, we have $int^{*s}(A) = int^{*s}(B)$. Suppose F is π -closed and $F \subseteq B$, then $F \subseteq A$. Since A is $\pi g\mathcal{I}$ -open, by Theorem 18. $F \subseteq int^{*s}(A) = int^{*s}(B)$. So again by Theorem 18, B is $\pi g\mathcal{I}$ -open.

DEFINITION 23. A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be

- (a) a \mathcal{N}_{I_s} -set if $A = U \cap V$, where U is a π -open and V is a semi-*-perfect set.
- (b) a $\mathcal{P}_{\mathcal{I}_s}$ -set if $A = U \cap V$, where U is a π -open and V is a semi-*-closed set.

THEOREM 24. A subset A of an ideal space (X, τ, \mathcal{I}) is a $\mathcal{N}_{\mathcal{I}_s}$ -set and a $\pi g \mathcal{I}$ -closed set, then A is a semi-*-closed set.

Proof. Let A be a $\mathcal{N}_{\mathcal{I}_s}$ -set and a $\pi g\mathcal{I}$ -closed set. Since A is a $\mathcal{N}_{\mathcal{I}_s}$ -set, $A = U \cap V$, where U is a π -open and V is a semi-*-perfect set. Now $A = U \cap V \subseteq U$ and A is a $\pi g\mathcal{I}$ -closed set implies that $A_* \subseteq U$. Also $A = U \cap V$ and V is semi-*-perfect set implies that $A_* \subseteq V$. Thus $A_* \subseteq U \cap V = A$ Hence A is a semi-*-closed set.

EXAMPLE 25. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{d\}, \{a, c\}, \{a, c, d\}, X\}$ and $\mathcal{I} = \{\phi, \{c\}, \{d\}, \{c, d\}\}$. Set $A = \{b, c\}$ is semi-*-closed set which is not $\mathcal{N}_{\mathcal{I}_s}$ -set.

THEOREM 26. A subset A of an ideal space (X, τ, \mathcal{I}) , the following are equivalent.

(a) A is semi-*-closed set.

(b) A is a $\mathcal{P}_{\mathcal{I}_s}$ -set and a $\pi g \mathcal{I}$ -closed set.

Proof. (*a*) \implies (*b*). Let A be a semi-*-closed set and $A = X \cap V$, where X is π -open and V is a semi-*-closed set. Hence A is a $\mathcal{P}_{\mathcal{I}_s}$ -set. Let U be a open set such that $A \subseteq U$. Then $A_* \subseteq A \subseteq U$ and hence A is a $\pi g \mathcal{I}$ -closed set.

 $(b) \Longrightarrow (a)$. Let A be a $\mathcal{P}_{\mathcal{I}_{\mathcal{S}}}$ -set and a $\pi g \mathcal{I}$ -closed set. $A = U \cap V$, where U is a π -open and V is a semi-*-closed set. Now $A \subseteq U$ implies that $A_* \subseteq U$, since A is $\pi g \mathcal{I}$ -closed set. Also $A \subseteq V$, V is semi-*-closed set implies that $A_* \subseteq V_* \subseteq V$. Thus $A_* \subseteq U \cap V =$ A. Hence A is a semi-*-closed set.

REMARK 27. The notions of $\mathcal{P}_{\mathcal{I}_s}$ -set and a $\pi g\mathcal{I}$ -closed set are independent as shown from the following examples.

EXAMPLE 28. In Example 25, $A = \{b, c, d\}$ is a $\mathcal{P}_{\mathcal{I}_s}$ -set but it is not $\pi g\mathcal{I}$ -closed and $A = \{a, c\}$ is a a $\pi g\mathcal{I}$ -closed but it is not $\mathcal{P}_{\mathcal{I}_s}$ -set.

3. \vee_{π} **ND** \wedge_{π} **SETS**

Let (X, τ) be a space. If $B \subseteq X$, we define $B^{\vee}_{\pi} = \bigcup \{F : F \subseteq B$ and F is π -closed and $B^{\vee}_{\pi} = \bigcap \{U : B \subseteq U$ and U is π -open $\}$. THEOREM 29. Let (X, τ) be a space. If A and B are subsets of

- *THEOREM 25. Let* (X, f) *be a space. If X and B are subsets X, then the following hold.* (*a*) $\phi_{\pi}^{\vee} = \phi$ and $\phi_{\pi}^{\wedge} = \phi$.
- (b) $X_{\pi}^{\vee} = X \text{ and } X_{\pi}^{\wedge} = X.$ (c) $A_{\pi}^{\vee} \subseteq A \text{ and } A \subseteq A_{\pi}^{\wedge}.$ (d) $(A_{\pi}^{\vee})_{\pi}^{\vee} = A_{\pi}^{\vee}.$ (e) $(A_{\pi}^{\wedge})_{\pi}^{\wedge} = A_{\pi}^{\wedge}.$ (f) $A \subseteq B \Longrightarrow A_{\pi}^{\vee} \subseteq B_{\pi}^{\vee}$ (g) $A \subseteq B \Longrightarrow A_{\pi}^{\wedge} \subseteq B_{\pi}^{\wedge}$ (h) $A_{\pi}^{\vee} \cup B_{\pi}^{\vee} \subseteq (A \cup B)_{\pi}^{\vee}$ (i) $A_{\pi}^{\wedge} \cup B_{\pi}^{\wedge} \subseteq (A \cup B)_{\pi}^{\wedge}$
- (j) $(A \cap B)^{\vee}_{\pi} \subseteq A^{\vee}_{\pi} \cap B^{\vee}_{\pi}$
- (k) $(A \cap B)^{\wedge}_{\pi} \subseteq A^{\wedge}_{\pi} \cap B^{\wedge}_{\pi}$
- (1) $A_{\pi}^{\vee} \subseteq A^{\vee} \text{ and } A_{\pi}^{\wedge} \supseteq A^{\wedge}$

A subset B of a space (X, τ, \mathcal{I}) is said to be \lor -set[9] (resp. \land -set) if $B = B^{\lor}$ (resp. $B = B^{\land}$) where $B^{\lor} = \bigcup \{F/F \subseteq B, X - F \in \tau\}$ and $B^{\land} = \bigcap \{U/B \subseteq U, U \in \tau\}$. A subset B of a space (X, τ) is said to be \lor_{π} -set if $B = B_{\pi}^{\lor}$. A subset B of X is said to be \land_{π} -set if $B = B_{\pi}^{\lor}$. Every π -closed set is a \lor_{π} -set and every π -open set is \land_{π} -set.

THEOREM 30. Let (X, τ) be a space and A be a subset of X. Then the following hold.

- (a) If A is $a \vee_{\pi}$ -set, then it is $a \vee$ -set.
- (b) If A is a \wedge_{π} -set, then it is a \wedge -set.

Proof. (a) Always $A^{\vee} \subseteq A$. Since A is a \vee_{π} -set, $A = A_{\pi}^{\vee} \subseteq A^{\vee}$, by Theorem 4. Therefore, $A = A^{\vee}$ and so A is a \vee -set. (b) clearly, $A \subseteq A^{\wedge}$. Since A is a \wedge_{π} -set, $A = A_{\pi}^{\wedge} \subseteq A^{\wedge}$ and so A is a \wedge -set.

The following Example 31 shows that a \lor -set need not be a \lor_{π} -set.

EXAMPLE 31. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, d\}, \{a, b, d\}, X\}$. Set $A = \{c, d\}$. Since A is closed, it is a \lor -set. But $A_{\pi}^{\lor} = \phi$, since there is no π -closed set contained in A and so A is not a \lor_{π} -set.

THEOREM 32. Let (X, τ) be a space. Then $(X-B)^{\wedge}_{\pi} = (X-B^{\vee}_{\pi})$ for every subset B of X.

Proof. The proof follows from the definition.

COROLLARY 33. Let (X, τ) be a space. Then $(X - B)_{\pi}^{\vee} = (X - B_{\pi}^{\wedge})$ for every subset B of X.

COROLLARY 34. Let (X, τ) be a space. Then a subset B of X is \vee_{π} -set if and only if X - B is a \wedge_{π} -set.

REMARK 35. Let (X, τ, \mathcal{I}) be an ideal space. It is clear that a subset A of X is $\pi g \mathcal{I}$ -closed if and only if $cl^{*s}(A) \subseteq A_{\pi}^{\wedge}$.

COROLLARY 36. Let A be a \wedge_{π} -set in (X, τ, \mathcal{I}) . Then A is $\pi g \mathcal{I}$ -closed if and only if A is semi-*-closed.

If $\mathcal{I} = \phi$, in Remark 35 and Corollary 36, we get the following corollary 37 which gives characterization of πgs -closed sets.

COROLLARY 37. Let (X, τ) be a space and $A \subseteq X$. Then the following hold.

- (a) A is πgs -closed if and only if $scl(A) \subseteq A_{\pi}^{\vee}$.
- (b) If A is a \wedge_{π} -set, then A is πgs -closed if and only if A is semiclosed.

THEOREM 38. Let (X, τ, \mathcal{I}) be an ideal space and $A \subseteq X$. If A^{\wedge}_{π} is $\pi g \mathcal{I}$ -closed, then A is also $\pi g \mathcal{I}$ -closed.

Proof. Suppose that A_{π}^{\wedge} is $\pi g\mathcal{I}$ -closed. If $A \subseteq U$ such that U is π -open, then $A_{\pi}^{\wedge} \subseteq U$. Since A_{π}^{\wedge} is $\pi g\mathcal{I}$ -closed, $cl^{*s}(A_{\pi}^{\wedge}) \subseteq U$. Since $A \subseteq A_{\pi}^{\wedge}$, it follows that $cl^{*s}(A) \subseteq U$ and so A is $\pi g\mathcal{I}$ -closed.

EXAMPLE 39. Consider the same topology in Example 7(c) and $\mathcal{I} = \{\phi, \{d\}\}. A = \{a, b, d\}$ is semi-*-closed and hence $\pi g\mathcal{I}$ closed. $A^{+}_{\alpha} = \{a, b, c, d\}$ is π -open but it is not semi-*-closed. Therefore A^{+}_{α} is not an $\pi g\mathcal{I}$ -closed set.

In an ideal space (X, τ, \mathcal{I}) , a subset B of X is said to be an $\mathcal{I}.\wedge_{\pi}$ set if $B^{\wedge}_{\pi} \subseteq F$ whenever $B \subseteq F$ and F is semi-*-closed. A subset B of X is called $\mathcal{I}.\vee_{\pi}$ -set if X - B is an $\mathcal{I}.\wedge_{\pi}$ -set. Every \vee_{π} -set is an $\mathcal{I}.\vee_{\pi}$ and every \wedge_{π} -set is an $\mathcal{I}.\wedge_{\pi}$ -set. The following Example 40 shows that on $\mathcal{I}.\wedge_{\pi}$ -set is not a \wedge_{π} -set.

EXAMPLE 40. Let $X = \{a, b, c, d\}, \tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, d\}, \{a, b, d\}, X\}$ and $\mathcal{I} = \{\phi, \{b\}, \{c\}, \{b, c\}\}$. Let $A = \{a, b, c\}$. Then the only semi-*-closed set containing A is X and so A is an $\mathcal{I}.\wedge_{\pi}$ -set. Since $A_{\pi}^{\wedge} = X$, A is not $a \wedge_{\pi}$ -set.

THEOREM 41. A subset A of an ideal space (X, τ, \mathcal{I}) is an $\mathcal{I}. \vee_{\pi}$ -set if and only if $U \subseteq A_{\pi}^{\vee}$ whenever $U \subseteq A$ and U is a semi-*-open.

Proof. The proof is obvious.

THEOREM 42. Let (X, τ, \mathcal{I}) be an ideal space. Then for each $x \in X, \{x\}$ is either semi-*-open or an $\mathcal{I}. \lor_{\pi}$ -set.

Proof. Suppose $\{x\}$ is not semi-*-open for some $x \in X$. Then $X - \{x\}$ is not semi-*-closed set and so the only semi-*-closed set containing $X - \{x\}$ is X. Therefore, $X - \{x\}$ is an $\mathcal{I}.\land_{\pi}$ -set and hence $\{x\}$ is an $\mathcal{I}.\lor_{\pi}$ -set

THEOREM 43. Let B be an $\mathcal{I}.\vee_{\pi}$ -set in (X, τ, \mathcal{I}) . Then for every semi-*-closed set F such that $B^{\vee}_{\pi} \cup (X - B) \subseteq F$, F=X holds.

Proof. Let B be an $\mathcal{I}.\vee_{\pi}$ -set. Suppose F is a semi-*-closed set such that $B_{\pi}^{\vee}(X - B) \subseteq F$. Then $X - F \subseteq X - (B_{\pi}^{\vee} \cup (X - B)) = (X - B_{\pi}^{\vee}) \cap B$. Since B is an $\mathcal{I}.\vee_{\pi}$ -set and the semi-*-open set $X - F \subseteq B$, by Theorem 41, $X - F \subseteq B_{\pi}^{\vee}$. Also, $X - F \subseteq X - B_{\pi}^{\vee}$. Therefore, $X - F \subseteq B_{\pi}^{\vee} \cap (X - B_{\pi}^{\vee}) = \phi$ and hence F = X.

COROLLARY 44. Let B be an $\mathcal{I}.\vee_{\pi}$ -set in an ideal space (X, τ, \mathcal{I}) . Then $B_{\pi}^{\vee} \cup (X - B)$ is semi-*-closed if and only if B is a \vee_{π} -set.

Proof. Let B be an $\mathcal{I}.\vee_{\pi}$ -set in (X, τ, \mathcal{I}) . If $B_{\pi}^{\vee} \cup (X - B)$ is semi-*-closed, then by Theorem 43, $B_{\pi}^{\vee} \cup (X - B) = X$ and so $B \subseteq B_{\pi}^{\vee}$. Therefore, $B = B_{\pi}^{\vee}$ which implies that B is a \vee_{π} -set. Conversely, suppose that B is an \vee_{π} -set. Then $B = B_{\pi}^{\vee}$ and so $B_{\pi}^{\vee}(X - B) = B \cup (X - B) = X$ is semi-*-closed.

THEOREM 45. Let B be a subset of an ideal space (X, τ, \mathcal{I}) such that B^{\vee}_{π} is semi-*-closed. If X is the only semi-*-closed set containing $B^{\vee}_{\pi} \cup (X - B)$, then B is an $\mathcal{I}.\vee_{\pi}$ -set.

Proof. Let U be a semi-*-open set contained in B. Since B^{\vee}_{π} is semi-*-closed, $B^{\vee}_{\pi} \cup (X - U)$ is semi-*-closed. Also, $B^{\vee}_{\pi} \cup (X - B) \subseteq B^{\vee}_{\pi} \cup (X - U)$. By hypothesis, $B^{\vee}_{\pi} \cup (X - U) = X$. Therefore, $U \subseteq B^{\vee}_{\pi}$ which implies by Theorem 41, that B is an $\mathcal{I}.\vee_{\pi}$ -set.

DEFINITION 46. An ideal space (X, τ, \mathcal{I}) is said to be an $\pi T_{\mathcal{I}}$ -space if every $\pi g \mathcal{I}$ -closed set is a semi-*-closed set.

THEOREM 47. In an ideal space (X, τ, \mathcal{I}) , the following statements are equivalent.

- (a) (X, τ, \mathcal{I}) is an $\pi T_{\mathcal{I}}$ -space.
- (b) Every $\mathcal{I}. \lor_{\pi}$ -set is a \lor_{π} -set.
- (c) Every $\mathcal{I}.\wedge_{\pi}$ -set is a \wedge_{π} -set.

Proof. (a) \Longrightarrow (b) If B is an $\mathcal{I}.\vee_{\pi}$ -set which is not a \vee_{π} -set, then $B_{\pi}^{\vee} \not\subseteq B$. So, there exists an element $x \in B$ such that $x \notin B_{\pi}^{\vee}$. Then $\{x\}$ is not π -closed. Therefore, $X - \{x\}$ is not π -open and so it follows that $X - \{x\}$ is $\pi g \mathcal{I}$ -closed. By hypothesis, $X - \{x\}$ is semi-*-closed. Since $x \in B$ and $x \notin B_{\pi}^{\vee}, B_{\pi}^{\vee} \cup (X - B) \subseteq X - \{x\}$. Since $X - \{x\}$ is semi-*-closed, by Theorem 43, $X - \{x\} = X$, a contradiction.

 $(b) \Longrightarrow (a)$ Suppose that there exists an $\pi g\mathcal{I}$ -closed set B which is not semi-*-closed. Then, there exists $x \in cl^{*s}(B)$ such that $x \notin B$. By Theorem 42, $\{x\}$ is either semi-*-open or an $\mathcal{I}.\vee_{\pi}$ -set. If $\{x\}$ is semi-*-open, then $\{x\} \cap B = \phi$ is a contradiction to the fact that $x \in cl^{*s}(B)$. If $\{x\}$ is an $\mathcal{I}.\vee_{\pi}$ -set, then $\{x\}$ is a \vee_{π} -set and hence it follows that $\{x\}$ is π -closed. Since $B \subseteq X - \{x\}, X - \{x\}$ is π -open and B is $\pi g\mathcal{I}$ -closed, $cl^{*s}(B) \subseteq X - \{x\}$, a contradiction to the fact that $x \in cl^{*s}(B)$. Therefore, (X, τ, \mathcal{I}) is an $\pi T_{\mathcal{I}}$ -space. $(b) \iff (c)$ The proof follows from the definition of an $\mathcal{I}.\vee_{\pi}$ -set and from Corollary 34.

THEOREM 48. An ideal space (X, τ, \mathcal{I}) is an $\pi T_{\mathcal{I}}$ -space if and only if every singleton set in X is either semi-*-open or π -closed.

Proof. If $x \in X$ such that $\{x\}$ is not π -closed, then $X - \{x\}$ is not π -open and so it follows that $X - \{x\}$ is $\pi g\mathcal{I}$ -closed. By hypothesis, $X - \{x\}$ is semi-*-closed and so $\{x\}$ is semi-*-open. Conversely, let A be an $\pi g\mathcal{I}$ -closed set and $x \in cl^{*s}(A)$. Consider the following two cases:

Case (i): Suppose $\{x\}$ is π -closed. Since A is $\pi g\mathcal{I}$ -closed, by Theorem 10, $cl^{*s}(A) - A$ does not contain a non-empty π -closed set which implies that $x \notin cl^{*s}(A) - A$ and so $x \in A$.

Case (ii): Suppose $\{x\}$ is semi-*-open. Then $\{x\} \cap A \neq \phi$ and so $x \in A$.

Thus in both cases $x \in A$. Therefore, $A = cl^{*s}(A)$ which implies that A is semi-*-closed. So (X, τ, \mathcal{I}) is an $\pi T_{\mathcal{I}}$ -space.

4. **REFERENCES**

- M.E. Abd El-Monsef, E.F. Lashien and A.A. Nasef, *Some topological operators via ideals*, Kyungpook Math. J., 32, No. 2 (1992), 273-284.
- [2] G. Aslim, A. Caksu Guler, T. Noiri, On πgs -closed sets in topological spaces, Acta Math. Hungar., 112(4) (2006), 275-283.

- [3] D. Jankovic and T. R. Hamlett, *New topologies from old via ideals*, Amer. Math. Monthly, 97(4) (1990), 295-310.
- [4] M. Khan and T. Noiri, Semi-local functions in ideal topological spaces, J. Adv. Res. Pure Math., 2(1) (2010), 36-42.
- [5] M. Khan and T. Noiri, On gI-closed sets in ideal topological spaces, J. Adv. Stud. in Top., 1(2010),29-33.
- [6] K. Kuratowski, *Topology*, Vol. I, Academic press, New York, 1966.
- [7] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [8] N. Levine, Generalized closed sets in topology, Rend. Circ. Math. Palermo, 19(2)(1970), 89-96.
- [9] M. Mrsevic, On pairwise R₀ and pairwise R₁ bitopological spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 30(1986), 141-148.
- [10] M. Rajamani, V. Inthumathi and S. Krishnaprakash $\mathcal{I}_{\pi g}$ closed sets and $\mathcal{I}_{\pi g}$ -continuity, J. Adv. Res. Pure. Math.,2(4) (2010), 63-72.
- [11] M. H. Stone, Application of the theory of boolean rings to general topology, Trans. Amer. Math. Soc., 41(1937), 374-481.
- [12] R. Vaidyanathaswamy, Set Topology, Chelsea Publishing Company, 1960.
- [13] V. Zaitsev, On certain classes of topological spaces and their bicompactifications, Dokl. Akad. Nauk SSSR., 178 (1968), 778-779.
