International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

A Context-based Approach to Semantic Correctness

Priso Essawe-Ndedi
Higher Teacher’s Training College
University of Yaounde 1 - Cameroon

ABSTRACT

Ly, Rinderle and Dadam [13]] have worked on process semantic cor-
rectness and introduced the concept of semantic contraints (mutual
exclusion and dependency) in order to introduce semantic concerns
in process modeling. In this paper, we attempt to refine their work
by proposing a solution to two kinds of problems generated by se-
mantic constraints as they initially defined it: how to maintain the
constraints set when a new task is introduced in a model? How to
allow mutual exclusive tasks to coexist in the same process via the
desactivation of the cause of the mutual exclusion by a third party.
Our solution takes advantage of a context-based business process
modeling approach presented in [11].

Keywords:

Business Process, Semantic correctness, Conflict, Dependency

1. INTRODUCTION

Research on business processes modeling has extensively studied
the structural aspects of business processes. Most business pro-
cess modeling languages are graph-based (Workflow nets, EPC,
BPMN), and emphasis has been put on structural concerns such
as verifying if all jobs terminate properly, if tasks are properly syn-
chronized or if there are subprocedures that are never used[1]]. Petri
nets, and more precisely the sub-type called Workflow nets have
been instrumental in getting these results, at least for the formal as-
pects. There is an extensive literature about the structural and the
dynamic properties of business process models, particularly based
on Petri nets. This sum of knowledge on Petri nets is in turn used to
formally assess the properties of some other languages which are
more connected to the industry (EPC[3]], BPMN[9]).

However, less has been done to evaluate the semantic correctness
of business processes. An attempt has been made by Ly et al [13]],
based on semantic constraints (mutual exclusion and dependency).
Their work has made possible the expression of global constraints,
overcoming the barrier imposed on Petri-net based token languages
[[7] by the locality principle which states that the firing of a tran-
sition only affects the status of its neighbor transitions. From this
principle, it appears that if two non adjacent tasks of a process are in
mutual exclusion, Petri-net techniques are ill-suited to model such
a situation. As a solution to this problem, Ly et al. propose the ex-
plicit definition of the set of constraints involved in the process, a
kind of constraint layer, which can serve for verification, process-
ing and documentation purposes.

Another unsolved issue related to the semantics of business process
tasks, is that of the definition of the role of a task in a business pro-

Marcel Fouda-Ndjodo

Higher Teacher’s Training College
University of Yaounde 1 - Cameroon

cess. In [6], Davenport and Short defined a business process as a set
of logically related tasks performed to achieve a defined business
outcome that we call the goal of the business process. While this
definition can be found consensual, the different business process
modeling languages that have been designed later did not offer any
means to specify the actual role of a task in a process. Does it di-
rectly contribute to the assigned goal? If yes, then what is exactly
its action? If no, does it contribute indirectly by making possible
the execution of another task? Without the answer to these ques-
tions, it is difficult to reliably replace a task by another, because the
consequences of such a change are unpredictable.

In this paper, we use a context-based business process modeling
approach (see [[L1] for details) to improve the concept of business
process semantic correctness. We refine the notion of mutual exclu-
sion expressed in [13] by proposing three kinds of such situations:
conflict, incompatibility, and antagonism. Each of these properties
reveals a special kind of mutual exclusion. The contribution of this
paper is three-fold: we propose a simple mechanism to express se-
mantic constraints where constraints are not hard-coded, and hence
are more suitable for change handling. The second important con-
tribution is the ability to use in the same process, two mutual exclu-
sive tasks, provided that there exists a third task in-between which
lifts the incompatibility, and so allows the second task to execute.
Finally, we refine the dependency relations between tasks by offer-
ing a means to express what is precisely the contribution of a task ¢
for the execution of a subsequent task ¢, or for the satisfaction of a
goal g instead of merely stating that ¢;, depends on ¢.

This paper is organized as follows: in section two, the notion of se-
mantic correctness is recalled. In section 3, the context-based mod-
eling approach we used is presented, and it is shown how it handles
semantic contraints. In section 4, we present how this model im-
proves the management of semantic constraints. The related works
in section 5 are followed by the conclusion.

2. SEMANTIC CORRECTNESS

For more than a decade now, numerous business process modeling
languages have been created, supported by several software plat-
forms. Those platforms are very effective for structural correctness
analysis. It is also crucial to be able to integrate semantic knowl-
egde, particularly to avoid semantic conflicts within the process
change framework. But the fact is that very few support semantic
correctness [13,22]]. Current approaches mainly focus on structural
aspects or have a notion of semantic correctness turned towards
graph reachability and graph coverage, to ensure that the final node
of a process model is reachable according to the process definition,
and that all the transitions of the process graph are used [1].

2.1 Semantic constraints

In this paper, we focus on the definition of semantic correctness
proposed by Ly et al. in [13]. They propose a context-based ap-
proach to semantic correctness. In order to express semantic cor-
rectness, each task is associated with constraints. A constraint can
be of type mutual exclusion or dependency.

Formally, A being a set of activities, a semantic constraint c is de-
fined as a tuple (type, source, target, position,userDe fined)
whereas:

—type € Exclusion, Dependency

— source, target € A, source # target

— position € pre, post, notSpeci fied

—userDe fined is a user-defined parameter

The parameter type denotes whether the semantic constraint is a
mutual exclusion constraint or a dependency constraint. The second
parameter source denotes the source activity the constraint refers
to. The parameter target denotes the target activity related to the
source activity. Parameter position specifies the order the source
and target activity are to be related to each other within the pro-
cess (e.g., the surgery depends on the preparation of blood bottles
and the bottles have to be prepared before (pre) the surgery). The
last parameter user De fined can be used for several purposes, for
instance for additionally describing the constraint.

In a medical context, we can express the fact that two drugs,
Aspirin and Marcumar are incompatible with the following
constraint:

(Ezclusion, TakeAspirin, TakeMarcumar,

notSpecified,” Samplel”)

This constraint expresses the fact that a patient who has been ad-
ministered Aspirin should not be given Marcumar. This con-
straint is not linked to the order in which those drugs are taken,
reason why the position is set to notSpeci fied.

The second type of constraint is a dependency constraint. For exam-
ple, before a surgery is performed, it may be necessary to prepare

blood bottles. We get the following constraint:
(Dependency, Per formSurgery, PrepareBloodBottles,
post,” Sample2”)

With this constraint, a process trace with the task
Per formSurgery without being preceded by the
task Prepare Blood Bottles is semantically incorrect.

A business process is said to be semantically correct if all the con-
straints defined in the model are respected. Any time a change is
enforced, the constraints should be verified to guarantee that the
new process is still semantically correct. With the definition of con-
straints, it is possible to automatically check the semantic correct-
ness of a process. In a semi-automated mode, it is also possible to
warn the user of the possibility of a semantic problem.

2.2 Raised issues

The semantic constraints as described above contribute to the im-
provement of processes at the semantic level. Semantic constraints
are no longer implicit in the mind of the designer, but explicit, doc-
umented and verifiable. Nevertheless, there are still some issues not
solved by these semantic constraints as they are defined.

2.2.1 Hard-coded constraints. According to Ly et al., a con-
straint is established between two well-identified tasks. The rea-
son why two tasks are mutually exclusive or dependent is not
known with the given constraint presentation. As a consequence,
deduction operation are very hazardous. A task ¢ is in mutual ex-
clusion with a task ¢o, and ¢5 is in mutual exclusion with ¢5. Is
is possible to deduce something about ¢; and ¢3? We are afraid
the answer is no. We do not know anything about the reason un-

International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

derlying these exclusions. A human expertise is always neces-
sary to create constraints. Even if two tasks T'ake M arcumar and
TakePhenprocoumon are identical (M arcumar being the com-
mercial name of Phenprocoumon), a computer system cannot as-
sist in replicating the constraints involving one task on the other.
When adding a new task to the process, the elicitation of the con-
straints caused by the new task is very complex. It causes the whole
process to be re-inspected. Each time a new task is to be added, all
the pre-existing tasks should be inspected in order to verify if the
new task is in mutual exclusion with another task. This has to be
done manually according to the knowledge we have on the tasks of
the process. It makes any change process very sensitive and very
exhausting.

2.2.2 Impossibility to interleave mutual exclusion and dependency.

According to Ly et al., when a mutual exclusion constraint is de-
fined, the two tasks involved in the constraint should not appear
together in an excution trace. Although it may seem normal,
it can also appear in some situations as too restrictive. Let us
consider their own example of drug incompatibility. A drug called
Marcumar is not compatible with another drug called Aspirin.
The mutual exclusion constraint fits well for this situation. Let us
assume that another drug called AntiMar annihilates the effect of
Marcumar which makes it incompatible with Aspirin. In such a
case, it is safe to take Marcumar, then AntiMar, and finally Aspirin.
Hence, the path Marcumar-AntiMar-Aspirin becomes semantically
correct. However, according to the model proposed by Ly et al.,
this last option remains semantically incorrect, because any trace
which contains Marcumar should not contain Aspirin.

3. A CONTEXT-BASED BUSINESS PROCESS
MODEL

A business process modeling approach has been proposed in [[11].
The essential feature of this approach is context-awarenes. We will
use this model to propose a refinement of the notion of seman-
tic correctness. The term context-awareness was initially coined by
Schilit and Theimer [17] to describe the ability of applications to
discover and react to changes in the environment they are situated
in. Context is either paraphrased in the literature by means of syn-
onyms, such as environment or situation [8].

The model we use is built around the notion of environment. The
environment is defined in this model as a set of context variables.
As it is not possible to capture the entire context of an organization
[21], we restrict ourselves to the part of the real world that is of
interest for the business processes to design. Every characteristic
of the real word which is relevant for the processes to design is
captured through context variables in the form of boolean objects
that we call observers.

The environment provides us with a platform where all of the task
components in a process model must share information with each
other and work together in order to achieve the objective of the
process [18].

DEFINITION 1. Environments
An environment & is a tuple < 0, S,val > where:
- 0 is a non empty set whose elements are called observers;
- S is a non empty set whose elements are called states (NS = 0);
-wval : 0 — (S — Bool) is a function which gives the values of
observers in the different states.

When the context is clear, we write s(0) for val(o)(s) with the in-
tuitive meaning that s(o) is the value of the observer o in the state
s. Given an environment &, an observation tells us if a condition

over a set of observers is satisfied or not. An observation therefore
has a positive part and a negative part. The positive part of an ob-
servation is the set of the observers whose value is expected to be
true, while the negative part is the set of observers whose value is
expected to be false.

The environment depicts the whole context. At a given moment in
time, we are focused on a subset of the environment. We make an
observation which only concerns a few observers. On these few
observers, we expect some to be true and some others to be false.
The observation is satisfied if our expectations are met. Formally,
we get the following definition:

DEFINITION 2. Observations
Let £ =< 6,5, val > be an environment. An observation on £ is a
couple < A, B > where: AC 8, BCOand AN B = 0.

A is the set of observers required to be true, and B is the set of
observers required to be false. The observation obs =< A, B >
is satisfied in a state s iff (Vo € A, s(0)) and (Vo € B, —s(0)).

Let obs =< A, B > be an observation, A (resp. B), also denoted
P(obs) (resp. M (obs)), is called the positive part (resp. negative
part) of obs.

The environment constitutes the context, but this context is not
static. It is in constant mutations, and we need processors to en-
force these mutations. This role is played in our model by tasks.
Tasks are the entities which have the capacity of modifying the con-
text. A task modifies the value of one or many observers. The action
of a task is explicit, and is limited to the observers it modifies. But
for a task to act, its precondition has to satisfied first. In short, we
define a task as an atomic unit of work which can be triggered un-
der specific requirements (pre-condition) to produce a predictible
result (post-condition).

DEFINITION 3. Tasks
Let £ =< 0,S,val > be an environment. A task on £ is a triple
< t,ec,action > where t is the name or identifier of the task,
ec is an observation specifying its pre-condition, and action is an
observation specifying its post-condition.

In the remainder of this paper, the execution condition (resp. post-
condition) of the task < ¢, ec,action > is denoted ec(t) (resp.
action(t)). In the same vein, P(action(t)) (resp. M (action(t)))
is denoted P(t) (resp. M (t)).

The execution of ¢ in the state s moves the environment £ into the
state s’ such that:

Yo € P(t),s'(0)
Vo € M(t),—s'(0)
Vo € 0\ (P(t)) UM(t)),s' (o) = s(o)

In a business process, tasks are not isolated. According to Daven-
port and Short , a business process is as a set of logically-related
tasks performed to achieve a defined business outcome.

DEFINITION 4. Business process
Given an environment &, a Business Process is a tuple BP =<
67 Ta tiniia f7 g> where:
- 0 is a set of observers over &,
- T is a set of tasks on &,
- tinit 1S the initial task,
- g is a distinguished observation called the goal of the process,
- f : T = 27 is a function which, for every task, gives the names
of the tasks that can be executed right after it.

International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

Our definition of a business process is conform to the idea of Dav-
enport and Short, but it also context-oriented. The outcome of the
business process (the goal) is an observation over the environment.
In other words, we can observe on the environment if the business
outcome is satisfied. The tasks are ordered by the follow function f,
starting by the special task ¢;,,;+. For each task, the follow function
indicates which tasks can follow.

4. OUR IMPLEMENTATION OF SEMANTIC
CONSTRAINTS

The model developped in [11] and presented above fits well with
the semantic correctness defined by Ly et al[13]]. In the following
lines, we show how we use it to capture the different constraints
proposed by Ly et al., and we propose some refinements to each
type of constraint (mutual exclusion and dependency).

4.1 Mutual exclusion

A mutual exclusion constraint concerning two tasks ¢; and to
means that no execution trace should contain both ¢; and ¢5. This
can happen for several reasons. Both tasks may act on the same sub-
ject, but differently. For example, ¢; switches the light on, while ¢,
switches it off. We call this kind of mutual exclusion conflict. It can
also happen that ¢; needs the light to be on for its execution, while
t2 needs the same light to be off. We will say that ¢; and ¢, are in-
compatible. A third case is the situation where ¢; switches the light
on, while ¢, requires that light to be off. In this case, we say that ¢,
and t, are antagonist.

From the model described above, we derive a formalization of these
three types of mutual exclusion.

Conflict. Two tasks t; and ¢, are in conflict if there is an observer
o such that belongs to the positive part of the action of ¢, and to
the negative part of the action of ¢o. Formally, o € P(t1) N M (t2).
In such a situation, ¢; and t, are in mutual exclusion on o. t;
switches o to true while t, switches the same observer o to false.
If for example o tells if a loan is accepted, t; will say yes while ¢,
says no.

Incompatibility. Two tasks t; and ¢, are incompatible if there is an
observer o such that o € P(ec(t1)) N M (ec(t2)).

In such a situation, ¢; and ¢, are in mutual exclusion on o. t; re-
quires o to be true while the same o is required to be false by ts.
If for example o tells if a loan is accepted, ¢; requires the loan to
be accepted, while ¢, requires the loan not to be accepted.

Antagonism. Two tasks t; and ¢, are antagonist if there is an ob-
server o such that o € P(t1) N M (ec(t2)).

In such a situation, ¢ and ¢, are in mutual exclusion on o. t; sets
o to true while the same o is required to be false by t,. If for
example o tells if a loan is accepted, ¢; says that the loan to be
accepted, while ¢, requires the loan not to be accepted.

4.2 Dependency

A dependency constraint concerning two tasks means that one task
requires the other. For this constraint, we make a difference be-
tween two situations. A task ¢; may require another ¢ in order to
have its execution condition satisfied. The action of t, contribute to
the activation of ¢;. This is a none side dependency, because in this
case, to does not depend on ¢;. We call it an execution condition
dependency because ¢, needs to to be executed in other to have its
execution condition satisfied.

Table 1. Tasks

Task name Precondition Postcondition
True [False True False

t1 01 03

to 02

Table 2. Goal

OBSERVATION: ¢
True [False
01 02
03

A task t; may also require another task ¢, in other to achieve a goal
g together, each task achieving just a part of the goal. In this second
case, it is a mutual dependency. It would even be more accurate to
say that the goal depends on ¢; and t5. We call this dependency a
goal satisfaction dependency.

Execution condition dependency. If two tasks ¢; and t, are such
that there is an observer o such that o € P(ec(t1)) N P(t2), then o
belongs to the execution condition of ¢;, and it also belongs to the
action of to. In other words, the action of ¢, makes it possible to
execute tq.

In such conditions, there is an execution condition dependency be-
tween ¢, and 5. to activates o for t;, and allows ¢; to be executed,
because if o is not set to true, then ¢; will not be able to execute.
In this situation, it is obvious that in an execution trace (or in a
path), ¢; should appear after 5. So according to Ly et al. termi-
nology, t; will be the source, ¢, the target, with the position post,
because in this case, ¢; appears after ¢5.

Goal satisfaction dependency. If a goal is such that no task can
satisfy it alone, each task satisfying just a part of the goal, then we
say that the tasks contributing to the satisfaction of the goal have
mutual dependency constraints for the satisfaction of the goal.

Let us consider two tasks t; and 5 such that ¢; sets an observer o
to true and another observer o3 to false, while t, sets an observer
05 to false. The pre-condition of both tasks is void (see table|I).
We need to achieve a goal g which requires the observer o; to be
true and the observers o2 and o3 to be false (see table[2)).

We see that neither ¢; nor ¢, can satisfy the goal g. £; depends on
to just like ¢o depends on ¢, for the satisfaction of the goal g.
According to Ly et al. terminology, ¢; depends on ¢, with the po-
sition NotSpecified, because in this case, ¢; may appear either
before or after t,.

5. IMPROVEMENTS ON THE NOTION OF
SEMANTIC CORRECTNESS

We have shown in the lines above that our model captures the no-
tion of semantic constraint as defined in [13]]. A process model is
said to be semantically correct if all the semantic constraints are
respected. In this section, we will show that mutual exclusion and
dependency, as defined in [13], fail to capture some particular, but
likely situations. Moreover, the constraints are ill-suited for change
because they are hard-coded. Any change introduced in the model
will require a complete re-inspection of the model to make sure it
is still semantically correct.

5.1 Avoiding Hard-coded constraints

According to Ly et al., a constraint is established between two well-
identified tasks, and existing constraints can merely be used to de-

International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

duce new ones. With our model, the constraints are expressed us-
ing observers which are context variables. For each task, we de-
fine what it expects from the environment and what it produces on
the environment. When a task is added or removed, its impact can
be automatically calculated. Thus, the change process can be effi-
ciently computer-assisted.

To illustrate this situation, let us consider a medical environment
where a restricted set of drugs is used. The different constraints
between those drugs are documented using Ly et al. constraints.
When adding a new drug to this set, the interactions between the
new drug and each of the existing ones must be carefully and man-
ually investigated. Our knowledge of each existing drug should be
used to decide if it is compatible with the new one. The result of
this process is the definition of a new set of dependencies.

With our model, this investigation can be automated. A part of
our knowledge on each drug is already documented in the form
of preconditions and actions. Let us assume, for the sake of sim-
plicity, that the new drug’s effect is to increase the blood pres-
sure. The action of the new drug will be setting an observer
lowBloodPressure to false. We can automatically look for in-
compatibilities by searching for any existing drug, which in its pre-
condition requires low Blood Pressure to be true.

Formally, {lowBloodPressure} € M (takeNewDrug), and the
task take N ew Drug is incompatible with any task ¢ such that the
{lowBloodPressure} € P(ec(t)).

Given that the precondition and the action of all the tasks are com-
pletly defined, the updated set of constraints can be automatically
obtained after a change by checking the execution condition and
the action of all existing tasks against that of the new task.

5.2 Interleaving mutual exclusion and dependency
constraints

According to Ly et al., when a mutual exclusion constraint is de-
fined, the two tasks involved in the constraint should not appear
together in an excution trace. This definition of mutual exclusion
causes some correct processes to be marked as incorrect. Let us
consider again the Marcumar and Aspirin incompatibility exam-
ple. Let us assume that another drug called AntiMar annihilates the
effect of Marcumar which makes it incompatible with Aspirin. In
such a case, it is safe to take Marcumar, then AntiMar, and finally
Aspirin. Hence, the path Marcumar-AntiMar-Aspirin becomes se-
mantically correct. However, according to the model proposed by
Ly et al., this last option remains semantically incorrect, because
any trace which contains Marcumar should not contain Aspirin.
With our model, this limitation is lifted. Marcumar and Aspirin
are antagonist (a particular form of mutual exclusion as explained
above). Once Marcumar is taken, an observer o is set true, and
that same observer is required to be false before being allowed
to take Aspirin (o is part of the execution condition of taking As-
pirin). In this configuration, it is not possible to take Aspirin af-
ter Marcumar. But taking the drug AntiMar sets the observer o to
false, making it possible again to take Aspirin. Our model clearly
exhibits that the sequence M arcumar — Aspirin is wrong, while
Marcumar — AntiMar — Aspirin is correct.

5.3 Summary of the improvements

We summarize the improvements on the notion of semantic cor-
rectness introduced by our implementation of semantic constraints
in the table[3}

Table 3. Summary of the improvements

Ly’s semantic con- . .
v . Our implementation
straints
The causes of the ex- | The constraints origi-
Precision istence of constraints | nate from the pre/post
are not known conditions of tasks
After a change
(adding/removing
a task), the tasks
) After a change, the set
should be manually .
. . of constraints can be
. re-inspected to decide
Change handling | . . generated from the pre
i mew constraints and post conditions of
should be defined or if P
. L tasks
existing some existing
constraints should be
removed
when a mutual exclu- | two tasks in mutual
sion constraint is de- | exclusion can appear
fined, the two tasks | in the same execution
Flexibility involved in the con- | trace if another task
straint should not ap- | executed in-between
pear together in an ex- | disables the cause of
cution trace the mutual exclusion

6. RELATED WORKS

This paper is fundamentally based on two previous ones: [11]where
the formal model we use here has been defined, and [[13]] where we
picked the notion of semantic correctness.

In [11], a formal business process model is defined. This model in-
corporates the notion of environment which was first used for the
definition of business processes in [3]]. It refines it by proposing a
more computable task model. While in [5] a task was any opera-
tor that changed the state of the environment, in [11], it is required
in the definition of a task to indicate on which observers the task
actually has an effect. As a consequence, the action of a task is
predictible, regardless of the state of the environment. The model-
ing driver for both [5] and [11]] is the emphasis put on context. The
term context-awareness was initially coined by Schilit and Theimer
[[17]] to describe the ability of applications to discover and react to
changes in the environment they are situated in. Context is either
paraphrased by means of synonyms, such as environment or sit-
uation [8]. The term environment has been used in [S]] and kept in
[[L1]]. The emphasis on context can be very helpful to handle change
situations. In [[15]], Regev et al. defined business process flexibility
as “the capability to implement changes in the business process
type and instances by changing only those parts that need to be
changed and keeping other parts stable”[15]. This understanding
implies that business processes are aware of the environment they
are designed for, i.e. it has to be known what parts of the process
have to be changed and which parts are to be kept stable, and it
has to be noticed when a change is necessary. This in turn suggests
taking the environment, where a change occurs, into account when
designing business processes [12].

The second milestone of this paper is the work of Ly et al.[13]
who proposed a system of semantic constraints for a business pro-
cess model. As we mentionned in the above sections, they propose
two types of constraints: mutual exclusion and dependency con-
straints. A process is said to be semantically correct if all the listed
constraints are respected. This constitutes an improvement on pre-
vious business process modeling approaches where constraints are
implicit, and if enforced, difficult to maintain. The term semantic
correctness is also used in [4]] to denote the notion of soundness as

International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

defined in [[1]], by opposition to syntactic correctness. Syntactic er-
rors are all errors that can be detected without any knowledge of the
application domain, i.e. all constructs violating universal, domain
independent requirements. A process is said to be sound if it has
no deadlocks and terminates properly. Proper termination means
that the state is reached with a single token in the sink place and
after termination there are no dangling references [2]]. This defini-
tion of semantic correctness associated to soundness has different
goal than ours, and the term semantic correctness used in this paper
is not linked to their definition, but to Ly’s one. In [14], semantic
correctness is also studied. Semantic concerns are added on top of
workflow nets to obtain semantic workflow nets. A process is said
to be semantically conformant to a process specification if the pre-
condition of the process is always fullled in the precondition of the
specification, if the effect of the process fulfills the effect of the
specification, and if each activity in the process is actually invok-
able when it can be invoked. Schaffner et al.[16] also confirm the
link between semantic correctness and the satisfaction of precondi-
tions. They add that each task of the process should be relevant (its
outputs is consumed by a successor operation) and should not be
redundant. These needs are explicitly captured in our model with
observers that are set by a task in a value required later in the pre-
condition of another task.

7. CONCLUSION

This work has been an attempt to refine the notion of semantic cor-
rectness defined by Ly, Rinderle and Dadam[[13]], using the business
process modeling approach defined in [[11], where tasks are defined
by their effect on the environment (defined as a set of boolean con-
text variables called observers). A process is said to be semanti-
cally correct if all the mutual exclusion constraints and dependency
constraints are satisfied. We introduced three kinds of mutual ex-
clusions: conflict, incompatibility, and antagonism. Two tasks are
conflicting if they produce different effect on the same observer.
They are incompatible if for their execution, they require opposite
values from the same observer. They are antagonist if the action of
one task sets an observer to a value opposed to what is required by
the other.

As a result of our approach, we have been able to express con-
straints on the environment, rather than expresing them directly be-
tween tasks. By so-doing, we have shown that the constraint set
can be automatically updated after a change (adding, modifying or
deleting a task). Another result is the possibility to use in the same
process, two mutual exclusive tasks, provided that there exists a
third task in-between which lifts the incompatibility, and so allows
the second task to execute.

The results obtained in this paper can be used to improve the change
handling process and move towards systems which can automati-
cally adapt to changes.

8. REFERENCES

[1] W.M.P. van der Aalst, The application of Petri nets to work-
flow management, The Journal of Circuits, Systems and Com-
puters (1998), pp. 21-66

[2] van der Aalst, W. M., & Jablonski, S. (2000). Dealing with
workflow change: identification of issues and solutions. Com-
puter systems science and engineering, 15(5), 267-276

[3] W.M.P. van der Aalst and J. Desel and E. Kindler, On the
semantics of EPCs: A vicious circle (2002)

[4] W.M.P. van der Aalst and M. Dumas and F. Gottschalk and
A.H. ter Hofstede and M. La Rosa and J. Mendling, Preserv-

(3]

(6]

(7]

(8]

(9]

(10]

(11]

(12]

[13]

[14]

[15]

(16]

(17]

[18]

[19]

(20]

(21]

[22]

ing correctness during business process model configuration,
Formal Aspects of Computing (2010), pp. 459-482

R. Atsa-Etoundi, A domain engineering approach for multi-
perspectives Workflow modelling, University of Yaounde I -
Cameroon (2004)

T. Davenport and J.E. Short. The new industrial engineering:
information technology and business process redesign. Sloan
Management Review, 31(4), pp.11-27, 1990

J. Desel and G. Juhs, “What Is a Petri Net?” Informal An-
swers for the Informed Reader, In Unifying Petri Nets pp. 1-
25, Springer Berlin Heidelberg, 2001

A.K. Dey, Understanding and using context. Personal and
ubiquitous computing, 5(1), 4-7, 2001

R. Dijkman and M. Dumas and C. Ouyang, Semantics and
analysis of business process models in BPMN, Information
and Software Technology (2008), pp. 1281-1294

S. Evangelista, High level petri nets analysis with Helena,
In Applications and Theory of Petri Nets 2005, pp. 455-464,
Springer Berlin Heidelberg, 2005

M. Fouda-Ndjodo, P. Essawe-Ndedi, R. Atsa-Etoundi, An
Interperspective-Oriented Business Process Modeling Ap-
proach, LNBIP 50, Springer Heidelberg, 2010, pp. 145-156
I. Krschel (2010). On the Notion of Context for Business Pro-
cess Use. In ISSS/BPSC (pp. 288-297).

L.T. Ly and S. Rinderle and P. Dadam, Semantic correctness

in adaptive process management systems, Lecture Notes in
Computer Science (2006), pp. 193-208

H. Meyer, Calculating the semantic conformance of pro-
cesses., In : Business Process Management Workshops.
Springer Berlin Heidelberg, 2008. pp. 473-483.

Regev, G.; Soffer, P.; Schmidt, R.: Taxonomy of flexibility in
business processes. In: Proc. Seventh Workshop on Business
Process Modeling, Development,and Support (BPMDS). Re-
quirements for flexibility and the ways to achieve it. Luxem-
burg, 2006

J. Schaffner, H. Meyer and M. Weske . A formal model for
mixed initiative service composition. In IEEE International
Conference on Services Computing, 2007. SCC 2007. (pp.
443-450). IEEE.

Schilit, B., Theimer, M.: Disseminating active map informa-
tion to mobile hosts. IEEE Network8(5):22-32, 1994

J.J. Shi and D. Lee and E. Kuruku, Task-based modeling
method for construction business process modeling and au-
tomation, Automation in Construction (2008), pp. 633-640
Soffer, P.:Onthe notion of flexibility in business processes.
Proceedings of the CAiSE’05 Workshop, 2005; pp. 35-42
H.M.W. Verbeek and T. Basten and W.M.P. van der Aalst,
Diagnosing workflowprocesses using woflan, The Computer
Journal (2001), pp. 246-279

F.B. Vernadat, Enterprise Modeling And Integration (EMI):
Current Status And Research Perspectives, Annual Reviews
in Control (2002), pp. 15-25

M. Vervuurt, Modeling Business Process Variability: A
search for innovative solutions to business process variabil-
ity modeling problems, University of Twente (2007)

International Journal of Computer Applications (0975 8887)
Volume 94 - No. 5, May 2014

	Introduction
	Semantic correctness
	Semantic constraints
	Raised issues
	Hard-coded constraints
	Impossibility to interleave mutual exclusion and dependency

	A Context-Based Business process model
	Our implementation of semantic constraints
	Mutual exclusion
	Dependency

	Improvements on the notion of semantic correctness
	Avoiding Hard-coded constraints
	Interleaving mutual exclusion and dependency constraints
	Summary of the improvements

	Related works
	Conclusion
	References

