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ABSTRACT 

The alignment and control of heliostats have been one of most 

issues in solar tower power. In this paper, we review our work 

to estimate the alignment of solar tower heliostat field based 

on the combination of two control systems (open loop and 

closed loop system) using a neural network approach. Several 

factors influence the path of each heliostat such as the 

azimuth, the elevation time, the date, the position of the sun, 

the plant location, the height of the tower and the heliostat 

size and slope. Firstly, we have modeled the heliostat position 

using astronomical formulas. Secondly, the neural network 

model is trained using data from January of three heliostats 

for both paths. Then, it was tested with another heliostat 

position for the month of March. The accuracy of the model 

was evaluated using the mean absolute error (MAE) and 

absolute percentage error (MAPE). The simulation results 

show the accuracy of the proposed for estimating the heliostat 

position without detecting the position of the sun. 

Keywords 
Solar tower power, heliostat field, open loop and closed loop 

system, neural networks. 

 

1. INTRODUCTION 
The heliostat field is the major cost component of the thermal 

solar tower power plant and the optical quality of the 

heliostats has a significant impact on the field efficiency and 

affect the performance of the power plant. It is therefore a 

permanent goal to decrease their manufacturing cost. The 

heliostat fields are used to reflect and concentrate the sunlight 

toward the receiver target in the upper part of the tower. The 

concentrated radiation is absorbed then it transformed into a 

thermal energy for producing electricity. The heliostat is a key 

optical device which tracks the sun and concentrates the solar 

radiation onto the immoveable target. Generally, the heliostat 

contributes  about 50% [1] to the total cost of system and its 

annual energy loss is about 47% [2]. The optical efficiency of 

field  strongly affects the generation efficiency of the plant. 

Therefore, the design of the heliostat field layout is important. 

There are considerable existing procedures for designing 

heliostat field such as HELIOS [3], ASPOC [4], HFLCAL [5], 

RCELL [6], DELSOL [7] etc. These procedures were all 

written in the eighties of the last century and existed 

disadvantages, For examples, the calculated results are not 

accurate, they are difficult to use and lack graphic output. 

Recently [8]. 

The performance of solar tower power depends strongly on 

the solar field efficiency which is related to the heliostat 

design, the field layout, the tracking system and control 

system. In this section, the published studies focused on the 

heliostat field are reviewed and their results are briefly 

reported. Also, methods and techniques used or proposed for 

enhancing the heliostat and the heliostats field performance 

are sketched out. 

In this work, a new method of modeling alignment field of 

heliostats is developed by employing the MATLAB software. 

The rest of this paper is organized as follow, section 1 gives a 

background about the parameter influences on the solar 

transmission process. In addition, we present the different 

type of the heliostat sun tracking. Section 2 introduces the 

proposed method of alignment of the heliostat solar tower. 

Section 3 shows the estimation method using the neuron 

network, Section 4, shows the simulation results of the 

modelling and estimation of the heliostats and the final 

section is devoted to the conclusion. 

2. PARAMETER INFLUENCES ON 

SOLAR TRANSMISSION PROCESS AND 

CONTROL SYSTEM 
According to the solar radiation model, the solar altitude and 

azimuth angles change its value in time, which will have 

direct influence on the optical efficiency of the heliostat field 

and heat flux distribution of the absorber [9]. The volumetric 

receiver is mounted on a receiver tower to collect the solar 

rays concentrated by the heliostat field. So the variation of 

receiver mounting height will result in a great change of 

heliostat field’s light path and further effects the optical 

efficiency of the heliostat field and flux distribution of the 

absorber.  
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Due to wind, self-weight and mechanical error of heliostats, 

the concentrated solar rays will deviate from their preselected 

path during the operation of heliostats, which further 

influences the final heat flux distribution in the absorber. As 

the tracking error increases, the light spot range on the 

heliostat field’s focal plane is enlarged and the interception 

loss increases. Thus, there will be less solar rays entering into 

the volumetric receiver and absorbed by the absorber. 

As showed in Figure 1, the annual mean field efficiency and 

maximum heat flux of the absorber exhibit a decrease trend as 

well. When the tracking error increases from 0 to 6 mrad, the 

annual mean field efficiency decreases from 67.03% to 

61.30% and though the absorbed energy still concentrates at 

the top area of the absorber, [9]. 

 

 

Fig 1: Annual mean field efficiency of different tracking 

error. 

In the solar field, each heliostat tracks the sun to minimize the 

cosine effect, and therefore maximize the solar energy 

collection through positioning its surface normal to the 

bisection of the angle subtended by Sun and the solar receiver. 

Heliostat sun tracking can be classified either as an open loop 

system or as closed loop system [10]. The open loop system is 

based on astronomic formulae relating the sun’s position to 

the system geometry. This system is reliable-low cost and it is 

recommended for larger solar field because the heliostat is 

under computer control. On the other hand, the closed loop 

system uses a sensor to track the sun. This system is more 

accurate and very useful for small heliostat fields. However, 

this system suffers from lower performance during cloudy 

period. Two sun-tracking methods are usually applied in CRS, 

i.e., the Azimuth–Elevation (A–E) and Spinning–Elevation 

(S–E) [11]. Compared with A–E the S–E tracking method 

allows more solar energy collection at the receiver and 

reduces spillage losses by 10–30% [11]. 

Chen et al. [12] have analyzed the optical performance of two 

different sun tracking methods at the level of a single heliostat 

and at that of a heliostat field. They have been considered the 

case of a fixed geometry non-imaging focusing heliostat using 

Spinning–Elevation (S–E) axis and the case of a spherical 

geometry heliostat using Azimuth–Elevation (A–E) axis are 

considered. They have found that the S–E tracking system can 

reduce the receiver spillage losses by 10–30%. Moreover, the 

S–E tracking provides much more uniform concentrated 

sunlight at the receiver without huge variations with the time 

of day compared to the A–E system. 

3. MODELING 
The main objective of our modeling is to determine the 

position of the sun relative to a fixed point on the earth, from 

an algorithm that allows us to find the azimuth angle and 

elevation of the sun a leave. And identify the path of the 

normal of a heliostat solar power tower changes during a day. 

By the open-loop system that is based on astronomical 

formulas for the position of the sun to the geometry of the 

system. 

3.1 The heliostat movements 
We determine the two angles “α” and “γ” of each heliostat for 

the solar tower power plant according to the position (distance 

tour heliostat), the date, time and latitude of the site. 

Assuming that the height of the tower, the size of the aperture 

of the receiver, the size and number of heliostats are fixed, 

then the layout of the fields is determined by six parameters 

such as the slope, the distance right-left  between adjacent 

heliostats, the distance back and forth between adjacent rows, 

the distance between the tower and heliostat and two 

projection (North-South, East-West). These parameters are 

fixed and allowed for varied within the programming; the 

method allows a layout and calculates the two movements 

(azimuth, elevation) of each heliostat in a solar tower. The 

flowchart of the procedure is shown in Figure 2.  

 

 

Fig 2.  The flow chart of the procedure. 

A case study is conducted on 9 heliostats positioned 

following: 

• the target angular height (solar receiver) 15 °, 30 ° and 45 

relative to the center of the mirror. 

• The azimuths of the target relative to the center of the mirror 

is from -45 °, 0 ° and 45 °. 

These configurations correspond to investments of heliostats 

as they appear in Figure 3, where the height of the tower is 

100 meters. 
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Fig 3. Placement of heliostats (m) depending on the height 

of the tower. 

3.2 Estimation neural network 
This example illustrates the estimation of the alignment field 

of heliostats with a forecasting system in Matlab, a nonlinear 

regression model (neural network) to predict the movements 

of the heliostat field of a solar tower power plant; the model is 

trained on data calculated by the first procedure (Figure 4) of 

January. 

3.1.1 Building the model and forecasting: 
The three steps to building the forecaster include creating a 

matrix of predictors from the historical data, selecting and 

calibrating the chosen model and then running the model. 

 

Fig 4. Estimation model for alignment of heliostat. 

3.1.2 Learning algorithm 
The neural network is trained using Levenberg-Marquardt 

back propagation algorithm. It is a network training function 

that updates weight and bias values according to Levenberg-

Marquardt optimization. It is often the fastest backpropagation 

algorithm for training moderate-sized feedforward neural 

networks (up to several hundred weights), although it does 

require more memory than other algorithms [13]. 

Like the quasi-Newton methods, the Levenberg-Marquardt 

algorithm was designed to approach second-order training 

speed without having to compute the Hessian matrix. When 

the performance function has the form of a sum of squares (as 

is typical in training feedforward networks), then the Hessian 

matrix can be approximated as 

        

and the gradient can be computed as 

       
where J is the Jacobian matrix that contains first derivatives of 

the network errors with respect to the weights and biases, and 

e is a vector of network errors. The Jacobian matrix can be 

computed through a standard backpropagation technique that 

is much less complex than computing the Hessian matrix. 

The Levenberg-Marquardt algorithm uses this approximation 

to the Hessian matrix in the following Newton-like update 

[14]: 

                           

When the scalar µ is zero, this is just Newton's method, using 

the approximate Hessian matrix. When µ is large, this 

becomes gradient descent with a small step size. Newton's 

method is faster and more accurate near an error minimum, so 

the aim is to shift toward Newton's method as quickly as 

possible. Thus, µ is decreased after each successful step 

(reduction in performance function) and is increased only 

when a tentative step would increase the performance 

function. In this way, the performance function is always 

reduced at each iteration of the algorithm. 

Selection of neural network: 

Framing of neural network development. 

a. Number of input variable = 5 

b. Number of output = 1 

c. Number of input layer neurons = 5 

d. Number of Hidden layer neurons = 20 

e. Number of Hidden layer = 1 

 

Fig 5: Neural Network movement estimating model 

Selection of training parameter 

a. Number of epochs =31 and 55(number of iterations 

required to reach to the final goal). 

b. Error tolerance = 2.221 e-07 and 4.4023 e-08 (for the 

accuracy ). 
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4. EXPERIMENTAL RESULTS 

4.1 Number of Hidden Neurons and Delays 
For a small mean square error MSE, we have increased in this 

paper the number of neurons in the hidden layer and the 

number of delays in the tapped delay lines. We found the use 

of 20 neurons in hidden layer with 55 delay ( in the case of 

elevation ) and 31 delay ( in the case of azimuth ) give the 

best results. 

4.2 Mean Squared Error 
The mean squared error is the mean squared normalized error 

performance function. The error is the difference between the 

output and the target. Validation vectors are used to stop 

training early if the network performance on the validation 

vectors fails to improve or substantially remains the same 

[13]; the best validation performance is 2.221e-07 at epoch 

31.  As showed in Figure 6. It shows that the errors of 

training, validation and testing decreased. 

 

 

Fig. 6. The best validation performance is 2.221e-07 at 

epoch 31.  

 

 

Fig. 7. The best validation performance is 4.4023e-08 at 

epoch 55. 

5. RESULTS AND DISCUSSION 
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Fig 8. Elevation tracking angle, a,b,c and azimuth tracking 

angle, d,e,f   for the 6 heliostats for the whole year. 

The graphs of Figures a, b, c, d, e and f represent the path of 

the H point in the sky, in the northern hemisphere, the Sun 

races are symmetrical to the south. The tower is always 

located to the south and heliostats to its north. 

For a heliostat located in front of his target, the trajectories are 

symmetric with respect to the south as shown in Figures. a, b 

and c for elevation and figure d for  azimuth, the heliostat 

rises early in the day, reached its highest point at 12 hours and 

decreasing until the end of the day, This is the general 

appearance of the races of the Sun. The races are the highest 

to the summer solstice and lower towards the winter. 

Amplitudes race elevation is even more important than the 

target height is large, that is to say, especially since the 

heliostat is close to the tower. 

The deviation in ± 45 ° of heliostats with respect to the turn-

south axis causes a change of the heliostat races (Figure e and 

Figure f). The angle 0 ° points are not located around 12 hours 

length races is greater in summer than in winter, heliostats 

work longer in summer than in winter too, the same variation 

of amplitude in azimuth and elevation is higher in summer 

than in winter, the heliostat consumes more. 

The relative position of a heliostat relative to the tower plays 

an important role in the consumption of a heliostat for racing 

axes vary greatly. The tower itself can be a barrier to the 

reflection of the light flux. Its height should not be too large to 

avoid a heliostat alignment between Sun and turn. The courses 

are valid for a mirror whose center of gravity lies on the axis 

of rotation of the azimuth or elevation. 
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Fig .9 Comparison between the modeled results and 

estimated by neural network of heliostat elevation. 
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Fig 10. Comparison between the modeled results and 

estimated by neural network of heliostat azimuth. 
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5.1 The estimation results by neural 

network 
The neural network model is trained on data from January 3 

matrices consisting of elevation (angle of 15,30 ° and 45 °) 

and 3 different heliostat azimuth (45 °, 0 ° and -45 °) and 

tested in March with other heliostat position (d =150, angle 

=26.56). 

 The accuracy of the model on the off sample is calculated 

using the mean absolute error (MAE) and absolute percentage 

error (MAPE). 

The two paths azimuth and elevation are superposed in Figure 

9. (a) and figure 10. (a). The results are shown in detail 

(Figures. b), where it is seen that the curves according to the 

deviations are less than 0.0702 degrees in elevation and 

azimuth to 0.0081. Figure 9 and 10 (c). 

The mean absolute error (MAE) and the absolute percentage 

error (MAPE) are presented in the following table. 

 Table 1. Result of NN model. 

error MAE (°) MAPE (%) 

Elevation 0.0702 0.2095 

azimuth 0.0081 0.0023 

 

From the results obtained from the estimation of the error. 

The heliostat movement does not exceed 0.1 °. 

6. CONCLUSION  
We have proposed an estimation model based on recurrent 

neural networks trained with the backpropagation learning 

algorithm Levenberg-Marquardt to predict the movements of 

heliostat fields of a solar tower power plant. This method has 

explored a new neural network solution based on the 

supervision and control of the alignment of the heliostat field 

of a solar power tower. 

In this paper, data movement heliostats were simulated based 

on a procedure using astronomical formulas for the sun's 

position and characteristics of the plant. The estimation results 

showed that this model provides an accurate prediction of the 

movements of heliostats and under the control of the 

computer. This is an excellent method of estimation for the 

monitoring and control of the heliostat field of a solar power 

tower. 
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