
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

35

 A Study on Various Data De-duplication Systems

Rashmi Vikraman

Department of Information Science and Technology
College of Engineering Guindy
Anna University, Chennai, India

Abirami S
Department of Information Science and Technology

College of Engineering Guindy
Anna University, Chennai, India

ABSTRACT

Data is the heart of any organization; hence it is necessary to

protect it. For doing so, it is the needed to implement a good

backup and recovery plan. But the redundant nature of the

backup data makes the storage a concern; hence it is necessary

to avoid the redundant data present in the backup. Data de-

duplication is one such solution that discovers and removes

the redundancies among the data blocks. This paper focuses

on giving a wide study on the technology, process and types

of the various data de-duplication system. This paper is

helpful to the readers in giving a detailed analysis and study

on the various data de-duplication systems that has been

proposed by many researchers.

Keywords

Data de-duplication, Flash Storage, Chunking, Backup

1. INTRODUCTION
According to the present scenario, the backup has become the

most essential mechanism for any organisation. Backing up

files can protect against accidental loss of user data, database

corruptions, hardware failures, and even natural disasters.

However, the large amount of redundancies which is found in

the backups makes the storage of the backups a concern, thus

utilizing a large of disk space. Data de-duplication comes as a

rescue for the problem of redundancies in the backup. It is a

capacity optimization technology that is being used to

dramatically improve the storage efficiency. Data de-

duplication eliminates the redundant data and stores only

unique copy of the data. Here instead of saving the duplicate

copy of the data, data de-duplication helps in storing a pointer

to the unique copy of the data, thus reducing the storage costs

involved in the backups to a large extent. It need not be

applied in only backups but also in primary storage, cloud

storage or data in flight for replication, such as LAN and

WAN transfers. It can help organizations to manage the data

growth, increase efficiency of storage and backup, reduce

overall cost of storage, reduce network bandwidth and reduce

the operational costs and administrative costs. The five basic

steps involved in all of the data de-duplication systems are

evaluating the data, identify redundancy, create or update

reference information, store and/or transmit unique data once

and read or reproduce the data.

Data de-duplication technology divides the data into smaller

chunks and uses an algorithm to assign a unique hash value to

each data chunk called fingerprint. The algorithm takes the

chunk data as input and produces a cryptographic hash value

as the output. The most frequently used hash algorithms are

SHA [22], MD5 and rabin fingerprint algorithm [4]. These

fingerprints are then stored in an index called chunk index.

The data de-duplication system compares every fingerprint

with all the fingerprints already stored in the chunk index. If

the fingerprint exists in the system, then the duplicate chunk is

replaced with a pointer to that chunk. Else the unique chunk is

stored in the disk and the new fingerprint is stored in the

chunk index for further process.

Data de-duplication can be performed either in file level,

chunk level or byte level. File level involves considering the

file as a whole for the duplicate detection by finding the

whole file hash and making the comparisons with the already

stored whole file hash values. Chunk level involves splitting

the file into small pieces called chunks and the hash value of

the chunk called fingerprint of the chunk is used for making

comparisons and storage. Byte level involves comparing the

file byte by byte. Based on the technology, data de-

duplication can be performed as Hash based de-duplication or

Content Aware de-duplication. Based on the process or when

it is done, it can be inline (synchronous) de-duplication, where

the de-duplication is done immediately after its arrival and

then stored into the disk or post-process (asynchronous) de-

duplication, where the data is stored into the disk and then it

undergoes the process of de-duplication. Based on the type or

where it happens, it can be source (client) side de-duplication

and target side de-duplication. The major questions involved

in performing de-duplication are when and where the process

of de-duplication has to be done. Following are the answers

for those two major constraints.

1.1 Based on when de-duplication is

performed
Please Following are the two ways of performing the data de-

duplication on the backup run.

1.1.1 Inline De-duplication
The Data de-duplication is performed before writing the data

into the disk. As soon as the data stream comes for storage

into the disk, it undergoes the de-duplication algorithm and

only unique chunks are stored. It collides with the normal

functioning of the computer.

1.1.2 Post process De-duplication
Data de-duplication is performed after the data to be de-

duplicated has been initially stored into the disk. The data

residing in the disk is later fetched inside the de-duplication

system and only unique chunks remain back and all the

duplicate chunks are deleted. It doesn’t collide with the

normal functioning of the computer.

1.2 Based on where de-duplication is

performed
Following are the two ways of data de-duplication system that

specifies where exactly the de-duplication is happening.

1.2.1 Source side or client side De-duplication
It identifies the duplicate data at the source and transmits only

unique segments to a central repository. Two separate

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

36

components are present for source and client.

1.2.2 Target side De-duplication
It identifies the duplicate data at the target and stores only

unique segments. It is a standalone system. It causes no

overhead on the client or server being backed up.

2. STUDY ON CHUNKING

ALGORITHMS
Data De-duplication can be performed in two different ways,

either Hash based where the fingerprint of the chunk is used

in de-duplication of data or Content based, where the de-

duplication is done by byte by byte comparison. Following

section gives a brief study on such algorithms.

2.1 Hash Based Chunking
Hash Based De-duplication involves using a hashing

algorithm to identify the chunks of the data. The hash

algorithm takes the chunk as the input and produces a

cryptographic hash value for the chunk. The most commonly

used hashing algorithms are SHA-1 [22] and MD-5. The hash

value is known as the fingerprint of the chunk. The chunks

can either be of fixed length or variable length. If the

fingerprint already exists in the chunk index, then this chunk

is termed as duplicate and it is not stored into the disk, else if

the chunk was not found in the chunk index, then this unique

chunk is stored into the disk. Following are the two ways of

chunking the data file.

2.1.1 Fixed length or Fixed blocks Chunking
Here the evaluation of data includes a fixed reference window

used to look at segments of data during de-duplication

process. It provides a fixed block boundary e.g. 4KB, or 8KB.

Fixed length chunking is used most often when general

purpose hardware is involved for carrying de-duplication.

Nevertheless the fixed length chunking algorithm achieves

significantly very less reduction than a variable length

approach. The reason is because the duplicates are usually

found between any two transmitting data set or any two

consequent backup data sets, the two data sets with a small

amount of difference are likely to have very few identical

chunks. Advantage is that it requires the minimum CPU

overhead, and it is fast and simple. Because of the block size

or block boundaries being fixed, it results in boundary shifting

problem, where if the data in the file is shifted, then it affects

all the data following it, and the duplicates are not detected as

a result of this.

Fig 1: Fixed Length Chunking [33].

Figure 1 illustrates the boundary shifting problem due to fixed

size chunking, where chunks A, B, C and D are similar to

chunks E, F, G and chunks H respectively. But due to the

addition of some text in the beginning before the chunk E

affects all the chunks following it and the duplicates are not

detected due to the fixed window size.

2.1.2 Variable length or Variable block Chunking
Here the evaluation of data uses a variable length window to

find duplicate data in stream or value of data processed. It

divides the data stream into variable length data segments

using a data dependent methodology that can find the same

data block boundaries in different locations and contexts.

Here the window size varies based on what algorithm is being

used with average window size as 4KB. The most frequently

used variable length chunking algorithm is TTTD [1], [2], [3],

[4]. Figure 2 illustrates the variable length chunking. Even

after adding some data before the chunk E, neither the chunk

E nor the chunks following it are affected. This way of

creating variable length blocks makes the data to float inside

the data file and helps in finding maximum number of

duplicates.

Fig 2: Variable Length Chunking [33]

T. T. Thwel et.al. [2] have used the TTTD algorithm for

chunking the data files. This paper has clearly specified about

the procedure involved in the variable length chunking. It uses

a minimum size and maximum size threshold for setting the

maximum and minimum values of every chunk. Two divisor

values namely main divisor and second divisor are also used

for finding the boundary of the chunk. Main divisor finds the

breakpoint and if it unsuccessful in doing so, then the backup

breakpoint found using the second divisor acts as the

breakpoint. But TTTD has a limitation due to the second

divisor which mostly produces breakpoints which are near to

the maximum threshold. This results in larger sized chunks

where a lot of time is wasted in performing unwanted

calculations and comparisons.

T. S. Moh et.al. [1] has proposed TTTD-S algorithm to

eliminate the disadvantage of TTTD algorithm. It uses a new

parameter called average threshold which is the average of

maximum and minimum threshold. When this algorithm

reaches this parameter, the original values of main divisor and

second divisor is halved. These values are switched back to

the original values once the breakpoint is found. This avoids

unnecessary comparisons and calculations.

2.2 Content or Application Aware Based

Chunking
F. Douglis et.al. [5] used the content aware de-duplication

which is performed in a different way. Here the data is

considered as an object. It takes the objects and compares it

with the other objects for finding the duplicates in an efficient

manner. Here the data is divided into large data segments and

by using the knowledge of the content of the data, similar

segments are determined and only the changed bytes between

the objects are saved. This is a byte level comparison.

3. INDEXING TECHNIQUES
Final chunks obtained after performing the chunking

algorithm undergoes a cryptographic hash algorithm to

produce a unique fingerprint (Hash value) for every chunk.

All the unique chunks are placed in the chunk index. As the

number of chunks increases, the number of fingerprints

increases to be saved in the chunk index. Increase in the size

of the chunk index makes the search in the chunk index more

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

37

complicated. Hence many researchers have found solution for

reducing the search time involved in the comparisons. Brief

reviews on such research’s have been discussed below.

T. T. Thwel et.al. [2] proposed an efficient indexing

mechanism for data de-duplication suing advantage of B+ tree

properties. The fingerprints act as the indexing keys in the B+

tree structure. Here the search time gets reduced from O(n) to

O(log n) which can avoid the risk of full chunk indexing. This

comparatively reduces the searching time and the number of

comparisons.

P. Christen [6] has given a survey of indexing techniques for

scalable record linkage and de-duplication where the various

indexing techniques for the structured data are given in detail.

But when the number of fingerprints in the chunk index

increases, the search time also increases. It becomes difficult

to hold the entire chunk index inside the main memory; hence

the chunk index is placed in the disk. To search for the chunk

fingerprint in the chunk index placed in the disk, it takes a lot

of IO operations and search time as well. This is called as

chunk lookup disk bottleneck problem. To avoid this, some

part of the chunk index can be placed in the cache based on

certain conditions such as based on locality, similarity etc.

Another structure called the bloom filter, which acts as a

summary index for the entire chunk fingerprints present in the

chunk index is placed in the cache to avoid unnecessary

searches. The study on the bloom filter is given in below.

3.1 Bloom Filter
Bloom filter [7] is a space efficient probabilistic data structure

that is used to test whether an element is a member of the set.

The bloom filter can be placed in the cache to test whether a

particular fingerprint is a part of the chunk index placed in the

disk or not. Using the bloom filter, false positives may be

resulted but never a false negative. This technique uses a

small hash area but still eliminates the unnecessary accesses.

A bloom filter is a bit array of m bits all set to 0 initially.

There are k hash functions whose hash values are set to one of

the m array positions. To add an element, feed it into k hash

functions and based on the hash values, set all the resulting

bits in m bit array to 1. To test for an element, feed it into k

hash functions and check whether the resulting hash values

are set to 1 in the m bit array. During the query, false positives

may be resulted which states that any fingerprint is present in

the chunk index which is actually not present. But a false

negative is never resulted and thus avoiding the unnecessary

search. Removing an element from the bloom filter is not

possible as false negatives are not allowed in the bloom filter.

The most commonly used hash function for producing k hash

values is bloom filter is murmur hash function. Figure 3 [12]

demonstrates the functioning of the bloom filter. In the figure

to test whether w is an element of the {x,y,z}, w is fed into 3

hash functions. As one of the bit array obtained from the hash

result is set to 0 it says that w is not a member of the set

{x,y,z}.

S. Quinlan et.al.[8] have used the bloom filter to detect the

previously stored data. It is intended for the archival data. Fan

et.al. [9] has proposed counting filters which is an

enhancement to the bloom filter which provides a way to

delete the element in the bloom filter. Here the array positions

are enhanced from being a single bit to n bit. Insert operation

involves incrementing the value of the buckets. Lookup

involves testing whether the bucket has a non-zero value set.

When an element is deleted from the bloom filter, the value

set in the bucket is decremented.

Fig 3: Bloom filter

Chazelle et.al.[10] has proposed bloomier filter which is the

generalisation of the bloom filter. It acts like an associative

array where every value corresponds to a particular element

that has been inserted. The false positives produced from this

filter are comparatively lesser than the bloom filter. J. Wei

et.al.[11] has proposed dynamic bloom filter for efficiently

representing the membership for variable large datasets. It

consists of dynamically created groups of bloom filters. Here

within the groups, the bloom filters are homogeneous and it

allows parallel access to achieve high query performance. It

allows element deletion by using lazy update policy. It

produces good scalability, query accuracy and space

efficiency. But still, one cannot be directly dependent on

bloom filter for duplicate detection. Hence to fetch some part

of the chunk index into the cache helps in reducing the overall

search time involved in duplicate estimation. This has been

explained in the next section.

3.2 Cache Based Storage
To avoid the chunk lookup disk bottleneck problem, some

part of the chunk index in the disk is kept in the main memory

for faster search. The mode of prefetching the chunk

fingerprints into the cache depends on certain factors. Some

are discussed here.

Zhu et.al.[14] has proposed a combination of three approaches

to overcome the chunk lookup disk bottleneck problem. A

bloom filter [5] is maintained as a probabilistic summary of

all the fingerprints already stored in the disk. Stream informed

segment layout, where the incoming chunks are stored inside

containers in the arrival order so that every container contains

the chunks from one stream. This captures the temporal

locality of the data. Locality preserved caching involves

capturing the data order when the data is written for the first

time and to accelerate the duplicate detection by fetching the

chunks into the cache based on it.

D. Bhagwat et.al.[13] has proposed the concept of extreme

binning. This method exploits the similarity among the

backup runs. The chunk index is split into two tiers, where

one of the tiers called the primary index is placed in the RAM

and the other in the disk. The primary index contains one

fingerprint entry per file. This fingerprint is called the

representative_ID of the file, which is the smallest fingerprint

out of all the fingerprints of the file. The rest of the

fingerprints are placed in disk in small structure known as bin

pointed from each representative_ID of the file. Broders

theorem is used for exploiting the similarity among the

backup runs.. Limitation is that as the amount of information

increases the primary index cannot be placed in the RAM. C.

Wang et.al.[16] has proposed a fast duplicate chunk

identifying method based on Hierarchical indexing structure

which is very much similar to the concept of extreme binning.

Advantage of FDCI methods is as follows; it reduces the disk

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

38

access time, improves the RAM utilization and keeps the de-

duplication performance under consideration

M. Lillibridge et.al.[15] has proposed sparse indexing which

is a technique that uses sampling and takes the exploits

locality information of backup run for faster duplicate

detection. Each chunk is de-duplicated against the chosen

chunks instead of full chunk index. Very small portion of the

chunks are chosen as the samples and their sample hash

values are mapped to the already stored chunks. Using very

small sampling rate, sparse index can be made placed in the

RAM. But it can still result in duplicates if the chosen sample

is not proper.

A. Wildani et.al.[17] has proposed HANDS- Heuristically

arranged non backup inline de-duplication system. It

dynamically prefetches the fingerprints into the cache based

on the working sets which are derived from the access

patterns of the chunks. The working set table is created using

the N-Neighbourhood partitioning. The working set of the

element is fetched into the cache when a cache miss occurs.

W. Xia et.al.[19] has proposed a system which exploits both

the similarity and locality among the data sets. It utilizes very

low RAM overhead and produces high throughput due to the

combination of both the approaches. The main idea is as

follows. One is to group various strongly correlated small files

into a segment which results in much smaller similarity index

compared to the chunk index which can fit into the RAM, thus

increasing the de-duplication efficiency. Second is

segmenting the large files into smaller segments which results

in identifying more duplicates in the dataset. By preserving

the locality information in RAM, it is able to remove a large

number of duplicates in the data streams.

D. Meister et.al.[20] has proposed block locality caching for

data de-duplication system which exploits the locality

between the data sets. It captures the locality information of

the previous backup run and uses this information to predict

the future chunks in the next backup run. This approach uses

up-to date locality information which is less prone to aging.

The chunks are arranged inside the blocks in a sequential

order as they arrive in the data stream. As the first data of the

second backup run is written to the disk, the block recipes of

previous backup run aligned to it is loaded into the cache to

decrease the search time and overcome the chunk lookup disk

bottleneck problem.

4. FLASH BASED DE-DUPLICATION

SYSTEMS
To avoid the chunk index disk bottleneck problem, a recently

popular is to make use of flash memory. Flash memory is

much faster to access than a disk based search. Flash stands in

between DRAM and disk both in terms of access speed as

well as the cost. It takes 100 to 1000 time’s lower access

times than the hard disk. B. Debnath et.al.[21] has proposed a

technique called chunkstash: speeding up inline storage de-

duplication by making use of flash memory. RAM lookup and

bloom filter reduces the disk lookup to a large extent by Zhu

et.al.[14] but still some amount of disk lookup involved takes

a lot of time. Hence to reduce that overhead, the lookups are

made from the flash based index. It is a chunk metadata store

on the flash memory. A small fraction of the index is fetched

into the RAM to decrease the search time and the number of

access.

G. Lu et.al.[23] has proposed a technique called bloomstore, a

bloom filter based memory efficient key-value pairs for

indexing of data de-duplication on flash. They proposed an

efficient KV store on flash with a bloom filter [7] based index

structure called bloomstore. The unique features of this

proposal include no index store on the RAM and storage of

both the index structure and the chunk index in the flash.

Their design not only reduces the RAM overhead but also

achieves high insertion/lookup throughput by reducing the

number of flash page read. The RAM was loaded with a small

size bloom filter per bloomstore and keeping a flash page

sized data buffer. The index structure acts like a prefilter to

avoid many unnecessary flash page lookup.

5. FILE RECONSTRUCTION
The file reconstruction is one of the most important steps of

the entire de-duplication system. The file once stored into the

disk has to be reconstructed back when a request for the file

arrives. File reconstruction is to rebuild the file content from

the fingerprints of the chunks stored in the file recipe after it

has been de-duplicated and written into the disk File

reconstruction can be performed using a structure called file

recipe [13]. When any particular file is written into the disk,

all the information about the file is placed inside the file

recipe. File reconstruction estimates the read performance of

the file; hence various techniques to control the read

performance have been mentioned.

D. Meister et.al. [24] has proposed file recipe compression in

data de-duplication systems. Many compression schemes have

been applied to shrink the file recipe. The idea behind the file

recipe compression is to assign code words to the fingerprints,

so the code words can be placed inside of the 20 byte SHA

key in the file recipe. One of the techniques is zero chunk

suppression. Many of the files contain chunks completely

filled with zeroes. The fingerprint of the zero chunks can be

found in advance and can be replaced with a code word.

Hence the zero chunks need not be checked in the chunk

index nor has to be stored inside the disk. Second approach is

chunk index page oriented approach where each chunk not

longer than necessary are assigned a code word. The chunk

index’s pages are used for assigning the code words. The last

approach in this is statistical approach where the statistics is

used to assign code words to fingerprints based on the

probability of the usage of the chunks. Limitation of this

system is that it cannot be applied to all the data sets.

Due to the high fragmentation of the chunks across many of

the disk locations, the quality of the fragmentation and the de-

duplication of data are reduced to a large extent. Y. Tan

et.al.[26] has proposed a technique for reducing the de-

linearization of data placement to improve duplication

performance. The de-linearization of the data placement

reduces the spatial locality of the data streams which is used

for increasing the read performance. This approach reduces

such de-linearization by compromising over the compression

ratios. They have proposed a method called De-Frag to do the

same. The key idea is to choose some duplicate data to be

written into the disk instead of removing it. The decision is

taken based on a metric called Spatial locality level used to

measure the spatial locality for the chunks. If the dynamically

calculated spatial locality value is lower than the pre-set

value, then the chunk is written into the disk instead of

removing it. The calculation of the spatial locality level is

based on the broders theorem. From the results D-Frag has

improved the de-duplication performance including the de-

duplication throughput, efficiency and read performance.

Y. J. Nam et.al.[27] has proposed an approach to improve the

read performance of the data de-duplication systems. Here a

new indicator called cache aware Chunk Fragmentation Level

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

39

(CFL) has been proposed which estimates the degraded read

performance by taking both incoming chunk information and

read cache effects into consideration. CFL monitor checks

whether the read performance of the current data stream is

worse than the demanded read performance in terms of a

value called CFL value. The CFL monitor includes two

parameters, optimal chunk fragmentation and cache aware

current chunk fragmentation. Another approach is the

selective duplication that improves the read performance by

improving the current level of the fragmentation in the

chunks.

It has been found from many results that compressing the data

after performing de-duplication produces better results than

performing de-duplication over compressed data. The most

commonly used compression algorithm is ziv Lempel

algorithm [28], [14]. Many other compression algorithms such

as easy Zlib, Huffman etc can also be made use. It is always

better to compress the data before storing the de-duplicated

data into the disk.

6. EVALUATION TECHNIQUE
D. Harnik et.al.[29] has performed the estimation of de-

duplication ratios in large data sets. Estimation technique

depends on two categories which are sampling phase and

scanning phase. It provides various formulas used for

estimating the performance of the de-duplication system. The

main factor for finding the efficiency of the data de-

duplication system is to evaluate using the de-duplication

ratio. De-duplication ratio is defined as the ratio of the

original size of the data before performing de-duplication to

the de-duped size of the data after applying de-duplication on

the data. There are many factors which affects the de-

duplication ratio. First is based on the type of the data being

used. More user created, unstructured, encrypted and

compressed data produces higher de-duplication ratios.

Secondly based on the data change rate, less change in the

data sets produces higher de-duplication ratio. Third is based

on the retention policy, where longer retention policy results

in higher de-duplication ratio. Fourth is the full to incremental

backup ratio where more full backup’s results in higher de-

duplication ratio than the incremental backup.

7. CONCLUSION
This paper has covered various research work performed on

the data de-duplication. All the steps involved in the de-

duplication algorithm have been explained briefly. It provided

an overview on all the existing works happening on data de-

duplication framework. Comparisons between the

methodologies have also been discussed. From these works, it

is obvious that still a lot more challenges need to be addressed

in the future researches. They are creation of more optimized

chunking algorithm. Better methodologies for solving the

chunk lookup disk bottleneck problem which are not restricted

only to similarity or the locality of the backup runs can be

created. And creation of more optimized algorithms to

increase the read and write performances of data de-

duplication systems. For the future, many other problems

related to data de-duplication systems can be discussed

including study on performance evaluation factors mentioning

the results as well.

8. REFERENCES
[1] Eshghi, K. A. 2005. Framework for Analyzing and

Improving Content-Based Chunking Algorithms.

Technical Report HPL-2005-30(R.1), Hewlett Packard

Laboratories, Palo Alto, CA.

[2] Thein, N.L. and Thwel, T.T. 2012. An efficient Indexing

Mechanism for Data De-duplication. In Proceedings of

the 2009 International Conference on the current trends

in Information Technology (CTIT), 1-5.

[3] Kruss, E., Ungureanu, C. and Dubnicki, C. 2010.

Bimodal Content Defined Chunking for Backup

Streams. In Proceedings of the 8th USENIX

Conference on File and Storage Technologies (FAST’

10),

[4] Rabin, M. O. 1981. Fingerprinting by random

polynomials. Technical Report TR-15-81, Center for

Research in Computing Technology, Harvard University.

[5] Bloom, B. H. 1970. Space/time tradeoffs in hash coding

with allowable errors. Communications of the ACM,

13(7), 422-426.

[6] Peter, C. 2012.A Survey of Indexing Techniques for

Scalable Record Linkage and Deduplication. In

Proceedings of the IEEE Transactions on Knowledge and

Data Engineering. 24(9), 1537-1555.

[7] http://en.wikipedia.org/wiki/Bloom_filter

[8] Quinlan, S. and Dorward, S. 2002. Venti: A new

Approach to Archival Storage. In Proceedings of the

USENIX Conference on File and Storage Technologies,

89- 101.

[9] Fan, L., Cao, P., Almeida, J. and Broder, A. Z. 2000.

Summary cache: a scalable wide area web cache sharing

protocol. In Proceedings of the IEEE Transactions on

Networking, 8(3), 281- 293.

[10] Chazelle, B., Kilian, J., Rubinfled, R. and Tal, A. 2004.

The Bloomier Filter: an efficient data structure for static

support lookup tables. In Proceedings of the 15th annual

ACM-SIAM symposium on Discrete Algorithms, 30-39.

[11] Wei, J., Jiang, H., Zhou, K. and Feng, D. 2013.

Efficiently Representing Membership for Variable Large

Data Sets. In Proceedings of the IEEE Transactions on

Parallel and Distributed Systems, Vol.25, 960-970.

[12] https://www.wikipedia.org

[13] Bhagwat D., Eshghi, Long D. D. E., and Lilibridge M.,

“Extreme binning: Scalable, parallel deduplication for

chunk-based file backup”, Proceedings of the 7th IEEE

International Symposium on Modelling, Analysis and

Simulation (MASCOTS), 1-9, 2009.

[14] Zhu, B., Li, k., and Patterson, H. 2008. Avoiding the disk

bottleneck in the Data Domain deduplication file system.

In Proceedings of the 6th USENIX Conference on File

and Storage Technologies (FAST), 269-282.

[15] Lillibridge, M., Eshghi, K., Bhagwat, D., Trezise, G. and

Camble, P. 2009. Sparse indexing: Large scale, inline

deduplication using sampling and locality. In

Proceedings of the 7th USENIX Conference on File and

Storage Technologies (FAST), 111-123.

[16] Can, W., Qin, Z. G., Yang, L. and Juan, W. 2012. A Fast

Duplicate Chunk Identifying Method Based on

Hierarchical Indexing Structure. In Proceedings on IEEE

International Conference on Industrial Control and

Electronics Engineering, 624-627.

[17] Wildani, A., Miller, E. L., and Rodeh, O. 2013. HANDS:

A Heuristically arranged non-backup inline

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

40

deduplication system. In Proceedings of the IEEE 29th

International Conference on Data Engineering (ICDE),

446-457.

[18] Sengar, S.S. and Mishra, M. 2012. E-DAID: An Efficient

Distributed Architecture for inline data deduplication. In

Proceedings of the IEEE International Conference on

Communication Systems and Network Technologies

(CSNT), 438-442.

[19] Xia, W., Jiang, H., Feng, D. and Hua, Y. 2011. SiLo: a

similarity-locality based near exact deduplication scheme

with low RAM overhead and high throughput. In

Proceedings of the USENIX Annual Technical

Conference (ATC), 26-28.

[20] Andre, B., Dirk, M. and Kaiser, J. 2013. Block locality

caching for data deduplication system. In Proceedings of

the 6th ACM International Systems and Storage

Conference, 19-24.

[21] Biplob, D., Jin, L. and Sudipta, S. 2010. Chunkstash:

Speeding up Inline Storage Deduplication using Flash

Memory. In Proceedings of the 2010 USENIX Annual

and Technical Conference, 16-21.

[22] en.wikipedia.org/wiki/SHA-1

[23] Lu, G., Nam, Y. J. and Du, D. H. 2012. BloomStore:

Bloom filter based memory efficient key-value store for

indexing of data deduplication on flash. In Proceedings

of the 28th IEEE Symposium on Mass Storage Systems

and Technologies (MSST), 1-11.

[24] Meister, D., Tim, S. and Brinkmann, A. 2013. File recipe

compression in data deduplication systems. In

Proceedings of 11th USENIX Conference on File and

Storage Systems and Technologies (MSST), 175-182.

[25] Kaczmarczyk, M., Barczynski, M., Killian, W. and

Dubnicki, C. 2012. Reducing impact of data

fragmentation caused by inline deduplication. In

Proceedings of the 5th ACM Annual International

Systems and Storage Conference (SYSTOR).

[26] Feng, D., Sha, E.H., Ge, X., Tan, Y. and Yan, Z. 2012.

Reducing the delinearization of data placement to

improve deduplication performance. In Proceedings of

the 2012 SC Companion: High Performance Computing,

Networking Storage and Analysis, 796-800.

[27] Young, J. N., Park, D. and David, H. C. D. 2012.

Assuring Demanded Read Performance of Data

Deduplication Storage with Backup Datasets. In

Proceedings of the IEEE 20th International Symposium

on Modeling, Analysis and Simulation of Computer and

Telecommunication systems, 201-208.

[28] Ziv, J. and Lempel, A. 1978. Compression of Individual

Sequences via Variable-Rate Coding. In Proceedings of

the IEEE Transactions on Information Theory, 530-536.

[29] Harnik, D., Margalit, O., Naor, D., Sotnikov, D. and

Vernik, G. 2012. Estimation of deduplication ratios in

large data sets. In Proceedings of the 28th IEEE

Conference on Mass Storage Systems and Technologies

(MSST), 1-11.

[30] Gowsikhaa, D., Manjunath., Abirami, S. 2012.

Suspicious Human activity detection from Surveillance

videos. In Proceedings of the International Journal on

Internet and Distributed Computing Systems,

Vol.2,No.2, 141-149.

[31] Gowshikaa, D., Abirami, S., Baskaran, R. 2012.

Automated Human Behaviour Analysis from

Surveillance videos: a survey. In Proceedings of the

Artificial Intelligence Review. DOI 10.1007/s 10462-

012-9341-3.

[32] Gowsikhaa, D., Abirami, S. and Baskaran, R. 2012.

Construction of Image Ontology using Low level

features for Image Retrieval. In Proceedings of the

International Conference on Computer Communication

and Informatics, (ICCCI 2012, January 10-12), 129-134.

[33] Mark, R. C. and Steve Whitner. Data De-duplication for

Dummies. Wiley Publishing, Inc.

IJCATM : www.ijcaonline.org

