
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

23

Utilizing Round Robin Concept for Load Balancing

Algorithm at Virtual Machine Level in Cloud Environment

Stuti Dave

B H Gardi College of Engineering & Technology
Rajkot

Gujarat - India

Prashant Maheta
B H Gardi College of Engineering & Technology

Rajkot
Gujarat - India

ABSTRACT

Day by Day increasing traffic on internet introduces the

requirement of load balancing concept to get the most

utilization of the resources available on Cloud. There are so

many complex calculations and concepts implemented to

achieve better and better resource utilization and performance.

Out of all this complexity the Rounrobin algorithm provide

the simplest solution for load balancing in cloud environment.

So we are going to use roun robin as a base algorithm and

propose an improved version of load balancing algorithm in

the paper.

General Terms

Cloud load balancing, Round robin algorithm.

Keywords

Round robin, Load balancing, Virtual machine balancing,

Cloud Analyst.

1. INTRODUCTION
Current cloud computing environment serves in almost every

field of our life. But while fulfilling lots and lots of user

requests it faces few limitations to be overcome. Along with

providing us facilities like virtualization, resource sharing,

ubiquity, utility computing it ask us to focus on issues like

security, authentication, fault tolerance, load balancing, and

availability.

Lot of work is being carried out to achieve load balancing in

cloud infrastructure now days. There are so many load

balancing algorithms performing their task on different layers

of cloud with different level of complexities. To achieve great

level of load balancing people use many complex algorithms.

But as a result it adds more processing load on the system

executing such logic.

2. LOAD BALANCING
Implementing load balancing in your application simply

means to spread the incoming request load among the

available request executing nodes. Load balancing takes care

of the executing nodes that they do not get overloaded with

the user request. This simple care taken by the cloud manager

improves the performance drastically.

Basically there are 2 types of load balancing algorithm

depending on their implementation method according to [1].

A. Static Load Balancing Algorithm:

It does not depend on the current state of the system. Earlier

before setting up the request it decides that at which host the

request will be executed.

B. Dynamic Load Balancing Algorithm:

Decisions on load balancing depend on current state of the

system. The load balancer analyses the current load statistics

at each available host and executes request at appropriate host.

In the current cloud infrastructure we can introduce load

balancing concept at few levels. We can implement load

balancing at Service Broker, Server cluster and the Virtual

Machine Monitor (VMM). In Fig-1 we have shown a basic

cloud infrastructure as shown in [10]. Region N indicates

geographic location of the users. User bases are group of users

sending request traffic. With the help of Service Broker user

request will identify the suitable server which can fulfill their

requests. Here we have shown VM load balancer at executing

node cluster. In worse situations VM load balancer takes

decision to migrate VM rather than VM load with help of

VMM [1].

In basic round robin algorithm the Load balancer allocates a

VM to requesting node in cyclic manner equally among all

available nodes [3]. Main advantage of this algorithm is that it

utilizes all the resources in a balanced order and equal

numbers of VMs are allocated to all the nodes which ensure

fairness.

Load balancing algorithm, implemented at any level of cloud,

must try to fulfill any or all of the following characteristics

according to [2]:

a)Maximum context switches, CPU utilization, throughput

and

b) Minimum Turnaround time, Waiting time, Response time.

With context switches we mean switching among the CPU

states stored earlier so that execution can be resumed from it.

Throughput indicates the number of processes completed per

unit time. Utilization quotient of CPU is specified by CPU

utilization so we wish to keep it as high as possible.

Turnaround time is sum of the time a process spend in ready

queue waiting for memory along with doing input output

processes and executing on CPU. Waiting time is the amount

of time a process waits in ready queue. Response time is the

time the system starts responding the request, not the time it

completes responding.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

24

Fig 1: Basic Cloud Environment

3. SIMULATORS AND ALGORITHMS
To perform check on load balancing algorithms there are

plenty of simulators available. Cloudsim [6, 7] is the first tool

to simulate a complex cloud infrastructure for load balancing

purpose. CloudAnalyst, CloudReport are simulators which are

developed using Cloudsim packages.

In the CloudAnalyst terminology, [5] the user base is a cluster

of users sending requests and Data center is the cluster of

capable nodes which can perform according to the requests

arrived. Each Data Center instance hold Datacenter controller.

Datacenter controller utilizes VM Load Balancer to balance

the load by assigning specific VM to the incoming cloudlet.

Here cloudlet means request to the cloud for any service. And

the VM Load balancer follows basically 3 types of popular

load balancing techniques [4, 5]:

3.1Round Robin Algorithm

This is the simplest algorithm out of all available algorithms

for load balancing and hence do not require complex

algorithm implementations. It simply maintains a queue of

incoming requests and allocates them VM in Time scheduling

manner. Thus each request is allowed to be executed for

specific time quantum only then after if it is still incomplete, it

has to wait for its next round and if the request is complete it

allows other process to take charge of that VM based on the

algorithm.

 3.2 Throttled Algorithm

 This algorithm checks for suitable and available VM in the

list of VMs along with state (BUSY/ AVAILBLE). When a

request arrives at load balancer, it scans VM list available

with it. If suitable VM is found free it is allocated for request

execution otherwise the request is queued. Here the VM

searching process is speed up with help of introducing

indexing at each row of the VM list. Thus Throttled algorithm

is good as it does not introduce any implementation

complexity and though performs significantly.

3.3 Active monitoring Algorithm
This algorithm load balances the requests between available

VMs in a way that manages almost same number of active

requests on each VM at any given time. This algorithm is

similar to throttled [5]. But as it allocates multiple tasks/

requests on VM the complexity increases.

has to wait for its next round and if the request is complete it

allows other process to take charge of that VM based on the

algorithm.

 3.4 Throttled Algorithm

 This algorithm checks for suitable and available VM in the

list of VMs along with state (BUSY/ AVAILBLE). When a

request arrives at load balancer, it scans VM list available

with it. If suitable VM is found free it is allocated for request

execution otherwise the request is queued. Here the VM

searching process is speed up with help of introducing

indexing at each row of the VM list. Thus Throttled algorithm

is good as it does not introduce any implementation

complexity and though performs significantly.

3.5 Active monitoring Algorithm
This algorithm load balances the requests between available

VMs in a way that manages almost same number of active

requests on each VM at any given time. This algorithm is

similar to throttled [5]. But as it allocates multiple tasks/

requests on VM the complexity increases.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

25

Fig 2 Round Robin Algorithm

Fig 3 Throttled Algorithm

Fig 4 Active Monitoring Algorithm

4. ROUND ROBIN ALGORITHM AND

ITS VARIANTS
The round robin algorithm is one of the most popular and

simplest algorithm in any field we consider. The user is

always sure that the request processing will be simpler and

faster when round robin is working for the Load Balancing

goal. Because of these feature there has been lot of research

carried out to improve performance of this algorithm.

There are so many variants of round robin algorithm available

introducing different techniques focusing on different

measuring parameters of it. When one wishes to work on or

use Round robin algorithm, he must be familiar with its

terminology:

a) Burst Time: BT is the time duration which a request

requires to complete.

b) Time Quantum: TQ is the time duration for which a

request is allowed to access a VM.

4.1 PBDRR
In Priority Based Round Robin (PBDRR) algorithm [8], they

have calculated intelligent time slice which allocates a

different TQ to each process according to the priority given.

In their future work the deadline is to consider one of the

input parameter in addition to the priority in the algorithm.

4.2 MRR
In Modified Round Robin (MRR) algorithm [9], here Time

Slice (TS) is calculated based on (range× total no of process

(N)) divided by (priority (pr) × no of process in queue(p)).

Range is calculated by (maximum burst time +minimum burst

time) divided by 2. This algorithm improved a scheduling up

to some extent but not much.

4.3 TSPBRR
In Load balancing based on Time Slice Priority Based RR

(TSPBRR) [2], they have initially taken Time Quantum (TQ)

as half of the first request BT and then after time quantum is

calculated using equation TQi = TQ i-1 + ½ TQ i-1,i

indicating execution round number. This algorithm improved

over results of MRR but still they expect more improvement

in response time.

4.4 WRR
In Weighted round robin algorithm [3], it allocates all

incoming requests to the available virtual machines in round

robin fashion based on the weights without considering the

current load on each virtual machine. This may lead to wait

few request wait for a long time if it is allocated to a busy

VM.

4.5 RR with Server Affinity
In round robin algorithm with server affinity [10], The Round

Robin with server affinity VM load balancer maintains two

data structures, which are as listed below.

 Hash map: These stores the entry for the last VM

allocated to a request from a given Userbase.

 VM state list: this stores the allocation status (i.e.,

Busy/Available) of each VM.

When a request is received from the Userbase, if an entry for

the given Userbase exists in the hash map and if that

particular VM is available, there is no need to run the Round

Robin VM load balancing algorithm, which will save a

significant amount of time.

5. PROPOSED ALGORITHM – FairRR
All algorithms included in above section follows different

strategies to improve round robin algorithm’s performance

trying to make its simplicity intact. Because a complex

algorithm also increases executing node’s load and degrades

its performance.

Our algorithm follows quite simple strategy of implementing

dynamic TQ based on algorithm execution round. Our

algorithm steps can be enlisted as shown in fig -5.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

26

Fig 5 Flowchart for Proposed Algorithm

Initialize ready_queue, BT array,

TQ, VM_Statelist, round

Calculate BT = BT-TQ

Round = round+1

TQ= Avg(BT array)

TQ= min (BT array)

Allocate VM to request
in ready_queue

Set VM_State BUSY for
that VM_id

Deallocate VM, set
VM_State to
AVAILABLE

Execute Request on
VM

Readyqueue

round %2

Yes

No

= 0

=1

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

27

FairRR()
{

Initialize ready_queue, BT list, TQ, VM_State
list, round;
While(ready_queue != NULL)
{

if (round%2 == 0)
TQ= min(BT list);

else
TQ= avg (BT list);

Allocate VM to request in
ready_queue, set VM_State to BUSY;
Execute request;
Deallocate VM and set VM_State to
AVAILABLE;
round++;
New BT=BT-TQ;

}
}

Fig 6 Pseudo code for Proposed algorithm

Table 1 Example Execution of FairRR algorithm

Pseudo code for our proposed algorithm is shown in Fig-6.

Proposed algorithm is fair round robin algorithm because it

provides enough fair scheduling when the burst time of

incoming request load is having great variance. To better

explain this, consider the example shown here:

Example in Table-1 shows how the request gets quick

response as compared to normal round robin algorithm

independent of its request size or Burst time.

The example here also shows that the overall algorithm

execution requires less number of rounds to follow thus the

algorithm when applied to large number of request performs

faster providing better response time to any request.

FairRR(Fair Round Robin) algorithm thus provides fairness to

larger requests and smaller one also to the load coming at

executing node in the cloud.

6. SIMULATION ENVIRONMENT
To analyze result and compare them with existing algorithm,

we used CloudAnalyst tool for simulating FairRR algorithm.

The cloud environment set up generated was having following

configuration.

UserBase Settings, Datacenter Settings are shown in fig –7

and fig-8 respectively.

Fig 7 UserBase Settings

Task

Or

Request

BT At R0

TQ=

min(BT)=

4

At R1

TQ=

avg(BT)=8.5

At R2

TQ=

min(BT)=8

R1 20 16 8 Complete

R2 4 Complete Complete Complete

R3 12 8 Complete Complete

R4 8 4 Complete Complete

R5 10 6 Complete Complete

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

28

Fig 8 Datacenter Settings

User grouping factor which indicates number of simultaneous

users from a userbase is taken 1000. And Request grouping

factor indicating simultaneous requests a single application

server can support is taken 100. Executable instruction length

per request is taken 250 Bytes. There are 5 VMs working for a

Datacenter.

7. SIMULATION RESULT AND

COMPARISON
Fig-9, fig-10, fig-11, fig-12 represents results of round robin

algorithm, Throtled algorithm, active monitoring algorithm

and proposed algorithm. Comparison of overall response time

and Data Centre processing time is shown in the graph shown

in fig 13.

Fig 9 Round robin algorithm result

Fig 10 Throttled Algorithm result

Fig 11 Active monitoring Algorithm result

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No 4, May 2014

29

Fig 12 Fair RR Algorithm result

Fig 13 All algorithm result Comparison

8. CONCLUSION AND FUTURE WORK
Existing algorithm in cloud load balancing field are either

complex or not providing much promising results. By

introducing this algorithm we would like to present simple yet

efficient algorithm for load balancing in cloud environment.

Basically this algorithm keeps in mind the variations in

request size and the effect of number of rounds of algorithm

implementation so as to achieve fairness and faster processing

on incoming cloud requests resulting in faster load balancing.

9. ACKNOWLEDGMENTS
We would like to express our deep sense of gratitude towards

Prof. Rushit D. Trivedi of VVP Engineering College of

Rajkot (Gujarat) for providing us constant motivation and

support as and when required.

10. REFERENCES
[1] Stuti Dave, Prashant Mehta, “Role of Virtual Machine

Live Migration in Cloud Load Balancing”, IOSR Journal

of Computer Engineering (IOSR-JCE),e-ISSN: 2278-

0661, p- ISSN: 2278-8727Volume X, Issue X (Nov. -

Dec. 2013).

[2] Subasish Mohapatra, Subhadarshini Mohanty, K.Smruti

Rekha, “Analysis of Different Variants in Round Robin

Algorithms for Load Balancing in Cloud Computing”,

International Journal of Computer Applications (0975 –

8887),Volume 69– No.22, May 2013.

[3] Supreeth S, Shobha Biradar, “Scheduling Virtual

Machines for Load balancing in Cloud Computing

Platform”, International Journal of Science and Research

(IJSR), India Online ISSN: 2319-7064, Volume 2 Issue

6, June 2013.

[4] Subasish Mohapatra, K.Smruti Rekha, Subhadarshini

Mohanty, “A Comparison of Four Popular Heuristics for

Load Balancing of Virtual Machines in Cloud

Computing”, International Journal of Computer

Applications (0975 – 8887), Volume 68– No.6, April

2013.

[5] Bhathiya Wickremasinghe, Rajkumar Buyya ,

“CloudAnalyst: A CloudSim-based Tool for Modelling

and Analysis of Large Scale Cloud Computing

Environments”, 433-659 distributed computing project,

csse dept., university of melbourne, 22/6/2009.

[6] Rodrigo N. Calheiros, Rajiv Ranjan, César A. F. De

Rose, Rajkumar Buyya, “CloudSim: A Novel

Framework for Modeling and Simulation of Cloud

Computing Infrastructures and Services”, 2009.

[7] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling

and Simulation of Scalable Cloud Computing

Environments and the CloudSim Toolkit: Challenges and

Opportunities,” Proc. of the 7th High Performance

Computing and Simulation Conference (HPCS’ 09),

IEEE Computer Society, June 2009.

[8] Prof. Rakesh Mohanty, Prof. H. S. Behera, Khusbu

Patwari, Monisha Dash, M. Lakshmi Prasanna, “Priority

Based Dynamic Round Robin (PBDRR) Algorithm with

Intelligent Time Slice for Soft Real Time Systems”,

International Journal of Advanced Computer Science and

Applications, Vol. 2, No.2, February 2011.

[9] C. Yaashuwanth, R. Ramesh, “Design of Real Time

Scheduler Simulator and Development of Modified

Round Robin Architecture for Real Time System”,

International Journal of Computer and Electrical

Engineering (IJCEE), Vol. 10, No. 3, pp 43-47, March,

2010.

[10] Komal Mahajan, Ansuyia Makroo, Deepak Dahiya,

“Round Robin with Server Affinity: A VM Load

Balancing Algorithm for Cloud Based Infrastructure”,

http://dx.doi.org/10.3745/JIPS.2013.9.3.379, J Inf

Process Syst, Vol.9, No.3, September 2013.

IJCATM : www.ijcaonline.org

