# Intuitionistic Fuzzy Contra λ-Continuous Mappings

P. Rajarajeswari Assistant Professor, Department of Mathematics Chikkanna Government Arts college Tirupur-641602

# ABSTRACT

The aim of this paper is to introduce and study the concepts of intuitionistic fuzzy contra  $\lambda$  –continuous mappings in intuitionistic fuzzy topological space and obtain some of their basic properties.

# **KEYWORDS**

Intuitionistic fuzzy topology , intuitionistic fuzzy  $\lambda\text{-}$  closed set, intuitionistic fuzzy  $\lambda\text{-}$  open set and intuitionistic fuzzy contra  $\lambda\text{-}continuous$  mappings.

#### AMS subject classification: 54A40, 03F55

#### **1. INTRODUCTION**

The concept of intuitionistic fuzzy set was introduced Atanassov [1] in 1983 as a generalised of fuzzy sets. This approach provided a wide field to the generalization of various concepts of fuzzy Mathematics.In 1997 coker [3] defined intuitionistic fuzzy topogical spaces.Recently many concepts of fuzzy topological space have been extended in intuitionistic fuzzy (IF) topological space.We provide some characterizations of intuitionistic fuzzy contra  $\lambda$  - continuous mappings and establish the relationships with other classes of early defined forms of intuitionistic mappings.

# **2. PRELIMINARIES**

**Definition 2.1 [1] :** Let X be a nonempty fixed set. An intuitionistic fuzzy set (IFS in short) A in X is an object having the form  $A = \{<x, \mu_A(x), \upsilon_B(x) > : x \in X\}$ , where the function  $\mu_A : X \to [0,1]$  and  $\upsilon_A : X \to [0,1]$  denotes the degree of membership  $\mu_A(x)$  and the degree of non membership  $\upsilon_A(x)$  of each element  $x \in X$  to the set A respectively and  $0 \le \mu_A(x) + \upsilon_A(x) \le 1$  for each  $x \in X$ .

**Definition 2.2[1]:** Let A and B be intuitionistic fuzzy sets of the form

A = { $\leq x, \mu_A(x), \upsilon_A(x) >: x \in X$ }, and form

 $B=\{<\!\!x,\,\mu_B(x),\,\upsilon_B\ (x)>:x\in\ X\}. Then$ 

(a)  $A\subseteq B$  if and only if  $\mu_A(x)\leq \mu_B\left(x\right)$  and  $\nu_A(x)\geq \nu_B(x)$  for all  $x\in X$ 

(b) A = B if and only if  $A \subseteq B$  and  $B \subseteq A$ 

(c)  $A^c = \{ < x, v_A(x), \mu_A(x) > / x \in X \}$ 

 $(d) \ A \cap B = \{ < \mu_A(x) \land \mu_B(x), \nu_A(x) \lor \nu_B(x) > / x \in X \}$ 

(e) A U B = {< x,  $\mu_A(x) \lor \mu_B(x), \nu_A(x) \land \nu_B(x) > / x \in X$ }.

**Definition 2.3 [5]:** An intuitionistic fuzzy topology (IFT for short) on X is a family  $\tau$  of IFSs in X satisfying the following axioms.

(i)  $0, 1 \in \tau$ 

G. Bagyalakshmi Assistant professor, Department of Mathematics, AJK College of Arts and science Coimbatore -641105

(ii)  $G_1 \cap G_2 \in \tau \text{ for any } G_1 \,, G_2 \in \tau$ 

 $(iii) \qquad \cup \ G_i \in \tau \ \text{for any family} \ \{G_i / \, i \in I\} \ \sqsubseteq \ \tau$ 

In this the pair  $(X, \tau)$  is called an intuitionistic fuzzy topological space (IFTS) and each intuitionistic fuzzy set in  $\tau$  is known as intuitionistic fuzzy open set in X.

**Definition 2.4 [5]:** The complement  $A^c$  of an intuitionistic fuzzy open set A in an intuitionistic fuzzy topological space  $(X, \tau)$  is called intuitionistic fuzzy closed set in X.

Remark 2.5 [5]: For any intuitionistic fuzzy set A in

 $(X, \tau)$ , we have

(i) cl (
$$A^c$$
) = [int ( $A$ )]<sup>c</sup>,

(ii) int  $(A^c) = [cl (A)]^c$ ,

(iii) A is an intuitionistic fuzzy closed set in  $X \Leftrightarrow$ 

Cl(A) = A

(iv) A is an intuitionistic fuzzy open set in  $X \Leftrightarrow$ 

int (A) =A

**Definition 2.6.** Let  $(X, \tau)$  be an IFTS and IFS

A ={  $\{\leq x, \mu_B(x), \upsilon_B(x) >: x \in X\}$  is said to be

(a)intuitionistic fuzzy semi closed set [7] (IFSCS in short) if  $int(cl(A)) \subseteq A$ ,

(b)intuitionistic fuzzy  $\alpha$  – closed set [7] (IF  $\alpha$  -CS in short) if cl(int(cl(A)))  $\subseteq$  A,

(c)intuitionistic fuzzy pre-closed set [7] (IFPCS in short) if  $cl(int(A)) \subseteq A$ ,

(d)intuitionistic fuzzy regular closed set [7] (IFRCS in short) if cl(int(A)) = A,

(e) intuitionistic fuzzy generalized closed set [14] (IFGCS in short) if  $cl(A) \subseteq U$ , whenever  $A \subseteq U$ , and U is an IFOS.

(f)intuitionistic fuzzy generalized semi closed set [13] (IFGSCS in short) if  $scl(A) \subseteq U$ , whenever  $A \subseteq U$ , and U is an IFOS.

(g)intuitionistic fuzzy  $\alpha$  – generalized closed set [11]

(IF  $\alpha$  -GCS in short) if  $\alpha$  -cl(A)  $\subseteq$ U, whenever A  $\subseteq$  U, and U is an IFOS.

An IFS A is called intuitionistic fuzzy semi open set, intuitionistic fuzzy  $\alpha$  – open set, intuitionistic fuzzy pre open set, intuitionistic fuzzy regular open set, intuitionistic fuzzy generalized open set, intuitionistic fuzzy  $\alpha$  – generalized open set and (IFSOS,IF  $\alpha$  –OS, IFPOS, IFROS, IFGOS, IFGSOS, IF  $\alpha$  -GOS and) if the complement A<sup>c</sup> is an IFSCS, IF  $\alpha$  -CS, IFPCS, IFRCS, IFGCS, IFGSCS, and IF  $\alpha$  – GCS respectively.

**Definition 2.7 :** Let f be a mapping from an IFTS (X;  $\tau$ ) into an IFTS (Y;  $\sigma$ ). Then f is said to be

(a) intuitionistic fuzzy continuous [5] (IF continuous in short) if  $f^{-1}$  (B) is an IFOS in X for every IFOS B in Y.

(b) intuitionistic fuzzy contra continuous [4] if f  $^{-1}$  (B) is an IFCS in X for every IFOS B in Y,

(c) intuitionistic fuzzy contra semi continuous [4] if

f<sup>-1</sup> (B) is an IFSCS in X for every IFOS B in Y,

(e) intuitionistic fuzzy contra pre continuous([4]) if

 $f^{-1}$  (B) is an IFPCS in X for every IFOS B in Y.

Definition 2.8 [5]: Let X and Y are nonempty sets and

 $f: X \rightarrow Y$  is a function.

(a) If  $B = \{ \leq y, \mu_B(y), \upsilon_B(y) > : y \in Y \}$  is an

intuitionistic fuzzy set in Y, then the pre image of

B under f denoted by  $f^{-1}(B)$ , and is defined by

 $f^{-1}\left(B\right)=\{<\!\!x\,,f^{-1}\!\left(\mu_{B}(x)\right),f^{-1}\!\left(\upsilon_{B}(x)\right)\,>\,\colon x\,\in\,\,X\}$ 

(b) If  $A = \{\langle x, \mu_A(x), \upsilon_B(x), \rangle \rangle / x \in X\}$  is an intuitionistic fuzzy set in X, then the image of A under f denoted by f(A) is the intuitionistic fuzzy set in Y defined by

 $f(A) = \{ <\! y \ , f \ (\mu_A \ (y)), \ f \ (\upsilon_A(y)) > \colon \ y \in \ Y \} \ where$ 

 $f(v_A) = 1 - f(1 - \mu_A).$ 

**Definition 2.9 [6]** Let  $f : (X, \tau) \to (Y, \sigma)$  be any intuitionistic fuzzy continuous map if and if the pre image of each intuitionistic fuzzy open set in Y is an intuitionistic fuzzy topological space X.

**Definition 2.10** A mapping  $f : (X, \tau) \rightarrow (Y, \sigma)$  is called an

(i)intuitionistic fuzzy generalised semi- pre continuous ( IFGSP continuous for short ) mapping[12] if f<sup>-1</sup>(V) is an IFGSPCS in  $(X, \tau)$  for every IFCS V of  $(Y, \sigma)$ .

(ii) intuitionistic fuzzy alpha generalised continuous (IF $\alpha$ G continuous in short ) [10] mapping if f<sup>1</sup>(V) is an IF $\alpha$ GCS in (X,  $\tau$ ) for every IFCS V of (Y,  $\sigma$ ).

Through out this paper f :  $(X, \tau) \rightarrow (Y, \sigma)$  denotes a mapping from an intuitionistic fuzzy topological space  $(X, \tau)$  to another topological space  $(Y, \sigma)$ .

**Remark 2.11 [11]:** Every intuitionistic fuzzy continuous mapping is intuitionistic fuzzy g-continuous but the converse may not be true.

**Definition 2.12 [9] :**An intuitionistic fuzzy set A of an intuitionistic topology space  $(X, \tau)$  is called an

(i) intuitionistic fuzzy  $\lambda$ -closed set (IF  $\lambda$ -CS) if

 $A \supseteq cl(U)$  whenever  $A \supseteq U$  and U is intuitionistic fuzzy open set in X.

(ii) intuitionistic fuzzy  $\lambda$ -open set (IF  $\lambda$ -OS) if the complement  $A^c$  of an intuitionistic fuzzy  $\lambda$ -closed set A.

**Definition 2.13:** [9] A mapping  $f : (X, \tau) \rightarrow (Y, \sigma)$ 

is called an intuitionistic fuzzy  $\lambda$ -continuous if

 $f^{-1}(V)$  is an intuitionistic fuzzy  $\lambda$  -closed sets in

 $(X, \tau)$  for every IFCS V of  $(Y, \sigma)$ .

The family of all intuitionistic fuzzy  $\lambda$ -closed set

(resp. intuitionistic fuzzy  $\lambda\text{-open set}$  ) of an IFTS

(X,  $\tau$  ) is denoted by IF  $\lambda\text{-CS}(X).(\text{resp.IF}\;\lambda\text{-OS}(X))$ 

### **3. INTUITIONISTIC FUZZY CONTRA λ-CONTINUOUS MAPPINGS**

In this section, we introduce intuitionistic fuzzy contra  $\lambda$  –continuous mappings and study some of their properties.

**Definition 3.1 :** A mappings  $f: (X, \tau) \to (Y, \sigma)$  is called an intuitionistic fuzzy contra  $\lambda$  - continuous mappings if  $f^{-1}$  (B) is an IF  $\lambda$  -CS in (X, ) for every IFOS B of  $(Y, \sigma)$  on X.

**Example 3.2**: Let  $X = \{a, b\}$  and  $Y = \{u, v\}$  and

$$\tau = \{ \underbrace{0}_{\sigma}, \underbrace{1}_{\sigma}, \underbrace{U}_{\sigma} \} \text{ and } \sigma = \{ \underbrace{0}_{\sigma}, \underbrace{1}_{\sigma}, \underbrace{V}_{\sigma} \}$$

be topologies of X and Y respectively. Where

 $U = \{ \langle x, 0.5, 0.5 \rangle, \langle y, 0.3, 0.6 \rangle \}$  and

V= { <u, 0.5,0.5>, < v , 0.8,0.2> } be the topologies of X and Y respectively. Consider a mapping  $f: (X, \tau) \rightarrow (Y, \sigma)$  as f(a) =u and f (b) =v. This f is an intuitionistic fuzzy contra  $\lambda$  -coninuous mapping.

**Theorem 3.3**: Every intuitionistic fuzzy contra continuous mappings is an intuitionistic fuzzy contra  $\lambda$  – continuous mappings but not conversely.

**Proof**: Let  $f: (X, \tau) \to (Y, \sigma)$  be an intuitionistic fuzzy contra continuous mappings. Let A be an IFOS in Y By hypothesis f<sup>-1</sup> (A) is an IFCS in X. Since every IFCS is an IF  $\lambda$  –CS in X. Hence f is an intuitionistic fuzzy contra  $\lambda$  – continuous mapping.

Converse of the above theorem is not true as seen from the following example :

**Example 3.4 :** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$  and  $\tau = \{0, v\}$ 

1, U and  $\sigma = \{0, 1, V\}$ 

be topologies of X and Y respectively. Where

 $U = \{ \langle x, 0.5, 0.5 \rangle, \langle y, 0.3, 0.6 \rangle \}$  and

V= {  $\langle x, 0.5, 0.5 \rangle$ ,  $\langle y, 0.8, 0.2 \rangle$  } be the topologies on X and Y respectively. Consider a mapping

 $f: (X, \tau) \to (Y, \sigma)$  as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra  $\lambda$  -continuous mapping but not an intuitionistic fuzzy contra continuous mappings. Since intuitionistic fuzzy set V is an IFOS in Y.

But f  $^{\text{-1}}$  (V) = {< x, 0.5 , 0.5 > , < y , 0.8 .0.2 > } is not an IFCS in X.

**Theorem 3.5.** Let  $f: (X, \tau) \rightarrow (Y, \sigma)$  be an intuitionistic fuzzy contra weakly generalized continuous mapping and X an IF  $\lambda$  - T  $_{\frac{1}{2}}$  space. Then f is an intuitionistic fuzzy contra continuous mapping.

**Proof**: Let B be an IFOS in Y. By hypothesis,  $f^{-1}(B)$  is an IF  $\lambda$  - CS in X. Since X is an *IF*  $\lambda$  -  $T_{\frac{1}{2}}$  space,  $f^{-1}(B)$  is an IFCS in X. Hence f is an intuitionistic fuzzy contra continuous mapping.

**Theorem 3.6.** Let  $f : (X; \tau) \to (Y; \sigma)$  be a mapping from an IFTS X into an IFTS Y and X an IF  $\lambda$  - T <sub>1/2</sub> space. Then the following statements are equivalent.

(a) f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping, (b) f is an intuitionistic fuzzy contra continuous **Proof.** Obvious.

**Theorem 3.7**. Every intuitionistic fuzzy contra pre-continuous mapping is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping but not conversely.

**Proof.** Let  $f : (X, \tau) \to (Y, \sigma)$  be an intuitionistic fuzzy contra pre-continuous mapping. Let A be an IFOS in Y. By hypothesis,  $f^{-1}(A)$  is an IFPCS in X. Since every IFPCS is an IF  $\lambda$  –CS[8],  $f^{-1}(A)$  is an IF  $\lambda$  - CS in X. Hence f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping.

**Remark 3.8** : Converse of the above theorem is not true as seen from the following example.

**Example3.9** : Let  $X = \{a, b\}$  and  $Y = \{u, v\}$  and

 $\tau = \{0, 1, U\}$  and  $\sigma = \{0, 1, V\}$  be topologies of X and Y

respectively.

Where U = {  $\langle x, 0.5, 0.5 \rangle, \langle y, 0.3, 0.6 \rangle$  } and

V={ <u, 0.5, 0.5>, <v, 0.8, 0.2 > } be the topologies on X and Y respectively. . Consider a mapping

 $f: (X, \tau) \to (Y, \sigma)$  as f(a) = u and f(b) = v. This f is an intuitionistic fuzzy contra  $\lambda$  -coninuous mapping but not an intuitionistic fuzzy contra pre continuous mappings. Since Intuitionistic fuzzy set V is an IFOS in Y. But

 $f^{-1}$  (V) = {<a, 0.5 , 0.5 > , < b, 0.8 .0.2 > } is IF  $\lambda$  -closed set but not IF pre closed set in X.

**Remark 3.4:** The concept of intuitionistic fuzzy contra  $\lambda$  - continuous mapping and Intuitionistic fuzzy contra gcontinuous mappings are independent as seen from the following examples.

**Example3.5:** Let  $X = \{a, b\}$ ,  $Y = \{u, v\}$  and intuitionistic fuzzy sets U and V are defined as follows.U={<a,0.5,0.5>,<b,0.6,0.3>},

 $V = \{ \langle u, 0.5, 0.5 \rangle, \langle v, 0.6, 0.2 \rangle \}$ . Let  $\tau = \{ 0, 1, U \}$  and

 $\sigma = \{ \begin{array}{cc} 0 & 1 \\ & \sim \end{array}, \, V \}$  be intuitionistic fuzzy topologies on X and Y

respectively. Then the mapping

f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by f(a)=u and f(b)=v is intuitionistic fuzzy contra g-continuity but not intuitionistic fuzzy contra  $\lambda$ -continuity. Since Intuitionistic fuzzy set V is an IFOS in Y. But

f  $^{-1}$  (V) = {<a, 0.5 , 0.5 > , < b, 0.6 .0.2 > } is IFg-closed set but not IF  $\lambda \text{-}$  closed set in X

**Example 3.6:** Let  $X = \{a, b\}$  and  $Y = \{u, v\}$  and intuitionistic fuzzy sets U and V are defined as follows U={<a,0.5,0.5>, <b,0.5, 0.2>} and

 $V{=}\{<\!\!a,\!0.5,\!0.5\!\!>,<\!\!b,\!0.5,\!0.4\!\!>\} \text{ Let } \tau = \{ \begin{array}{cc} 0 & 1 \\ \sim & \sim \end{array} , U \end{tabular} \} \text{ and } \sigma$ 

= { 0 1, V } be intuitionistic fuzzy topologies on X and Y respectively. Then the mapping f:(X,  $\tau$  )  $\rightarrow$  (Y,  $\sigma$ )

defined by f(a)=u and f(b)=v is intuitionistic fuzzy contra  $\lambda$ continuous but not intuitionistic fuzzy contra g- continuous. Since Intuitionistic fuzzy set V is an IFOS in Y. But

 $f^{-1}\left(V\right)=\{<\!\!a, 0.5 \ , 0.5 > , < \! b, 0.5.0.4 > \}$  is IF  $\lambda\text{-closed but not}$  IF g-closed set in X

**Remark 3. 11 :** The concept of intuitionistic fuzzy contra  $\lambda$ continuous mappings and intuitionistic fuzzy contra semi continuous mappings are independent as seen from the following examples.

**Example 3.12 :** Let  $X = \{a, b\}, Y = \{u, v\}$  and

intuitionistic fuzzy sets U and V are defined

as follows U= {<a, 0.5, 0.5>, <b, 0.2, 0.5>},

V= {u, 0.5, 0.5>, <v, 0.4, 0.5>}.

Let  $\tau = \{ \begin{array}{ccc} 0 & 1 \\ \vdots & \vdots \\ \end{array}, U \}$  and  $\sigma = \{ \begin{array}{cccc} 0 & 1 \\ \vdots & \vdots \\ \end{array}, V \}$  be

intuitionistic fuzzy topologies on X and Y

respectively. Then the mapping

f: (X,  $\tau$ )  $\rightarrow$  (Y,  $\sigma$ ) defined by f(a)=u and f(b)=v is

intuitionistic fuzzy contra  $\lambda\text{-}$  continuous but not

intuitionistic fuzzy contra semi continuous. Since

Intuitionistic fuzzy set V is open in

Y.but f  $^{\text{-1}}$  (V) = {<a, 0.5 , 0.5 > , <b, 0.5 .04> } is IF  $\lambda-$ 

closed in X,but not IF semi closed in X.

**Example 3. 13 :** Let  $X = \{a, b\}$ ,  $Y = \{u, v\}$  and

intuitionistic fuzzy sets U and V are defined as follows:

 $U=\{<\!\!a, 0.5, 0.5 >, <\!\!b, 0.4, 0.6\!\!>\}$ 

 $V = \{ <a, 0.2, 0.8 >, <b, 0.1, 0.9 > \}.$ 

Let 
$$\tau = \{0, 1, U\}$$
 and  $\sigma = \{0, 1, V\}$  be

intuitionistic fuzzy topologies on X and Y respectively then the mapping f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by (a)=x and f (b)=y is intuitionistic fuzzy contra semi continuous

mapping but not intuitionistic fuzzy contra  $\lambda$  -

continuous mappings. . Since Intuitionistic fuzzy  $% \left( {{\mathbf{V}_{i}}} \right)$  set V is

open in Y.but f  $^{-1}$  (V) = {<a, 0.5 , 0.5 > , <b, 0.1 .0.9 > } is

IFsemi closed in X .but not IF  $\lambda$ - semi closed in X.

**Remark 3.14 :** The concept of intuitionistic fuzzy contra  $\lambda$ - continuous mappings and intuitionistic fuzzy contra generalised semi -pre continuous mappings are independent as seen from the following examples.

**Example 3.15 :** Let  $X=\{a, b\}$ ,  $Y=\{u, v\}$  and intuitionistic fuzzy sets U and V are defined as follows: U=  $\{<a, 0.5, 0.5 >, <b, 0.5, 0.3 >\}$  and

 $V = \{ <\!\!u, 0.5 .0.5 >, <\!\!v, 0 .5, 0 .4\!\!> \}.$ 

Let  $\tau = \{ \begin{array}{c} 0, 1, ..., U \}$  and  $\sigma = \{ \begin{array}{c} 0, 1, ..., V \}$  be intuitionistic fuzzy topologies on X and Y respectively then the mapping . f: (X,  $\tau$ )  $\rightarrow$  (Y,  $\sigma$ ) defined by f(a)=u and f (b)=v is intuitionistic fuzzy contra generalized semi -pre continuous mapping but not intuitionistic fuzzy contra  $\lambda$ - continuous mapping. Since Intuitionistic fuzzy set V is open in Y.but f  $^{1}$  (V) = {<a, 0.5, 0.5 >, <b, 0.5, 0.5 } is IFgeneralised semi preclosed in X .but not IF  $\lambda$ - semi closed in X.

**Example 3.16 :** Let  $X = \{a, b\}$ ,  $Y = \{u, v\}$  and intuitionistic fuzzy sets U and V are defined as follows:

 $U = \{ \langle a, 0.5, 0.5 \rangle, \langle b, 0.6, 0.3 \rangle \},\$ 

 $V = \{ \langle a, 0.5 . 0.5 \rangle, \langle b, 0 . 2, 0 . 8 \rangle \}.$ 

Let  $\tau = \{0, 1, U\}$  and  $\sigma = \{0, 1, V\}$  be intuitionistic

fuzzy topologies on X and Y respectively then the mapping f:  $(X, \tau) \rightarrow (Y, \sigma)$  defined by f(a)=u and f (b)=v is not intuitionistic fuzzy contra generalized semi -pre continuous mapping but intuitionistic fuzzy contra  $\lambda$ - continuous mapping. Since Intuitionistic fuzzy set V is open inY.but not generalised semi pre closed set in X.

Remark 3.17 : From the above theorems and remarks we get following types of implications.

(a) f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping,

(b) f<sup>-1</sup> (B) is an IF  $\lambda$  - OS in X for every IFCS B in Y.

#### Proof :

(a)  $\Rightarrow$  (b) : Let B be an IFCS in Y. Then B<sup>C</sup> is an IFOS in Y. By hypothesis,

 $f^{-1}(B^{C}) = (f^{-1}(B))^{C}$  is an IF  $\lambda$  -CS in X. Hence  $f^{-1}(B)$  is an IF  $\lambda$  –OS in X.

(b)  $\Rightarrow$  (a) : Let B be an IFOS in Y. Then B <sup>C</sup> is an IFCS in Y. By (b),  $f^{-1}$  (B<sup>C</sup>) =( $f^{-1}$  (B))<sup>C</sup> is an IF  $\lambda$  -OS in X. Hence  $f^{-1}$  (B) is an IF  $\lambda$  -CS in X. Therefore f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping.

**Theorem 3.19** :Let  $f: (X, \tau) \rightarrow (Y, \sigma)$  be a bijective mapping from an IFTS X into an IFTS Y. Then f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping if

 $cl(f(A)) \subseteq f(\lambda - int(A))$  for every IFS A in X



**Theorem 3.18:** Let  $f: (X; \tau) \rightarrow (Y; \sigma)$  be a mapping from an IFTS X into an IFTS Y. Then the following statements are equivalent

independent to each other

intuitionistic fuzzy contra  $\lambda$  - continuous mapping.

**Theorem 3.20** :Let  $f: (X, \tau) \rightarrow (Y, \sigma)$  be a mapping from an IFTS X into an IFTS Y. Then f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping if

 $f^{-1}$  (λ -cl(B)) ⊆λ - int( $f^{-1}$  (B)) for every IFS B in Y.

**Proof**: Let B be an IFCS in Y. Since every IFCS is an IF  $\lambda$  - CS, we have  $\lambda$  - cl(B) =B. By hypothesis, f<sup>-1</sup> (B) = f<sup>-1</sup> ( $\lambda$  - cl(B))  $\subseteq \lambda$  - int(f<sup>-1</sup> (B))  $\subseteq$  f<sup>-1</sup> (B):

This implies f<sup>-1</sup>(B) is an IF  $\lambda$  - OS in X. Hence f is an intuitionistic fuzzy contra continuous mapping. Then by Theorem 3.3, f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping.

**Theorem 3.21 :** An intuitionistic fuzzy continuous mapping f :  $(X; \tau) \rightarrow (Y; \sigma)$  is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping if IF  $\lambda$  -O (X)=IF  $\lambda$  -C(X).

**Proof.** Let A be an IFOS in Y. By hypothesis,  $f^{-1}(A)$  is an IFOS in X. Since every IFOS is an IF  $\lambda$  -CS,  $f^{-1}(A)$  is an IF  $\lambda$  -CS in X. Thus  $f^{-1}(A)$  is an IF  $\lambda$  -CS in X, by hypothesis. Hence f is an intuitionistic fuzzy contra  $\lambda$  - continuous mapping.

**Theorem 3.22 :** Let  $f : (X, \tau) \rightarrow (Y, \sigma)$  and

 $g:(Y\ ,\ \sigma\ )\rightarrow (Z\ ,\ \delta)$  be any two mappings.. Then the following statements hold.

(a) Let  $f: (X, \tau) \to (Y, \sigma)$  be an intuitionistic fuzzy contra  $\lambda$ -weakly generalized continuous mapping and

 $g:(Y,\,\sigma)\to(Z\,,\,\delta)$  an intuitionistic fuzzy continuous mapping. Then their composition gof :  $(X,\,\tau)\to(Z,\,\delta)$  is an intuitionistic fuzzy contra  $\lambda$ -continuous mapping

(b) Let  $f: (X, \tau) \to (Y, \sigma)$  be an intuitionistic fuzzy contra  $\lambda$  - continuous mapping and

 $g:(Y, \sigma) \to (Z, \delta)$  an intuitionistic fuzzy contra continuous mapping. Then their composition

gof :  $(X, \tau) \rightarrow (Z, \delta)$  is an intuitionistic fuzzy  $\lambda$ - continuous mapping.

(c) Let  $f : (X, \tau) \rightarrow (Y, \sigma)$  be an intuitionistic fuzzy  $\lambda$ -irresolute mapping and  $g : (Y, \sigma) \rightarrow (Z, \delta)$  an intuitionistic fuzzy contra  $\lambda$ -continuous mapping. Then their composition gof :  $(X, \tau) \rightarrow (Z, \delta)$  is an intuitionistic fuzzy contra  $\lambda$ -continuous mapping.

#### **Proof** :

(a) Let A be an IFOS in Z. According to the hypothesis, g<sup>-1</sup> (A) is an IFOS in Y. Since f is an intuitionistic fuzzy contra  $\lambda$  –continuous mapping,we have f<sup>-1</sup> (g<sup>-1</sup> (A)) = (gof)<sup>-1</sup> (A) is an IF  $\lambda$  –CS in X. Hence gof is an intuitionistic fuzzy contra  $\lambda$  – weakly generalized continuous mapping.

(b) Let A be an IFOS in Z. Hypothetically stating,

 $g^{-1}$  (A) is an IFCS in Y.

Since f is an intuitionistic fuzzy contra  $\lambda$  -continuous mapping, f<sup>-1</sup> (g<sup>-1</sup> (A)) = (gof)<sup>-1</sup> (A) is an IF  $\lambda$  –OS in X. Hence gof is an intuitionistic fuzzy  $\lambda$  –continuous mapping.

(c) Let A be an IFOS in Z. To state hypothetically, g<sup>-1</sup> (A) is an IF  $\lambda$  –CS in Y. Since f is an intuitionistic fuzzy

 $\lambda$ -irresolute mapping, f<sup>-1</sup> (g<sup>-1</sup> (A)) = (gof)<sup>-1</sup> (A) is an IF  $\lambda$ -CS in X. Hence gof is an intuitionistic fuzzy contra  $\lambda$ -continuous mapping.

#### 4. CONCLUSION

In this paper we have introduced intuitionistic fuzzy contra  $\lambda$  continuous mapping and studied some of its basic properties. Also we have studied the relationship between intuitionistic fuzzy contra  $\lambda$ -continuos mapping and some of the intuitionistic fuzzy mappings already exists.

#### **5. REFERENCES**

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets ans Systems, 20 (1986), 87 – 96
- [2] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [3] D. Coker, An introduction to instuitionistic fuzzy topological space, Fuzzy Sets and Systems., 88(1997), 81-89.
- [4] E. Ekici and B. Krsteska, Instuitionistic fuzzy contra strong pre-continuity, GFacta Univ. Ser.Math.Inform,2007,273-284
- [5] H. Gurcay, A. Haydar and D. Coker, On fuzzy continuity in Instuitionistic fuzzy topological space, J. Fuzzy Math., 5(1997), 365 – 378
- [6] I. M. Hanafy, Intuitionistic fuzzy continuity, Canad. Math. Bull., 52(2009), 544 -554
- [7] Joung Kon Jeon, Young Bae Jun and Jin Han Park, Intuitionistic fuzzy alpha continuity and Instuitionistic fuzzy pre-continuity, Int. J. Math. Math. Sci., 19(2005), 3091 – 3101.
- [8] Rajarajeswari P. and Bagyalakshmi G. 'λ –closed sets in intuitionistic fuzzy topological space' International Journal of Computer Applications. (0975-8887) Volume 34-No.1,November 2011.
- [9] Rajarajeswari P. and Bagyalakshmi G. 'λ –closed sets in intuitionistic fuzzy topological space' Foundation Topological topological space' FCS, Newyork,Uo.1,November.2012.International Journal of Applied Information Systems (IJAIS)–ISSN : 2249-0868
- [10] R. Santhi and K. Sakthivel, Intuitionistic fuzzy alpha generalized continuous mappings and intuitionistic alpha generalized irresolute mappings, Applied Mathematical Sciences, 4(2010), 1831 – 1842.
- [11] R.santhi and K.Sakthivel, Intuitionistic fuzzy contra alpha generalized continuous mappings, jour.Tri .math.soci,11(2009),73-82.
- [12] R.santhi and K.Sakthivel, Intuitionistic fuzzy generalized semi continuos mappings, Advances in Theoretical and Applied Mathematices, 5 (2009), 73-82.
- [13] S.S. Thakur and Pekha Chaturvedi, Regular generalized closed setein intuitionistic fuzzy topolical spaces, Universitatea Din Bacau studii Si Cercertari Stinti ce,6(2006),257-272.
- [14] Young Bae Jun and Seok Zun Song, Intuitionistic fuzzy semi pre-open sets and intuitionistic semi pre – continuous mappings, Jour .of Appl.Math and Comput.,19(2005).464-474.
- [15] L.A.Zadeh, Fuzzy sets, Information and control,8(1965), 338-353.