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ABSTRACT

In this paper, we present a new class of distributions called
kumaraswamy  Generalized Exponentiated Exponential
Distribution, that is based upon the cumulative distribution
function of Kumaraswamy (1980) distribution, which is more
flexible and is a natural generalization of the exponential,
Exponentiated Exponential and kumaraswamy Generalized
exponential distributions as special cases found in literature.
Also, the analytical shapes of the corresponding probability
density function and hazard rate function are derived with
graphical illustrations. Expressions for the r"moments are
calculated and the variation of the skewness and kurtosis
measures is investigated. Likelihood estimators of the
parameters are derived. Moreover, analysis of real data set,
representing the breaking stress of carbon fibers, is conducted
to demonstrate the usefulness of the proposed distribution.
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1. INTRODUCTION

The Exponentiated Exponential (EE) distribution, a most
attractive generalization of the exponential distribution, is
defined as a particular case of Gompertz-Verhulst distribution
function (see Ahuja and Nash (1967)). The EE distribution
has been introdused and studied by Gupta and Kundu (1999,
2001, 2003, 2004, 2007). They observed that this distribution
can be used in place of gamma and weibull distributions,
since the two parameters of the gamma, wiebull, and EE
distributions have increasing as well as decreasing hazard
function depending on the value of the shape parameters, also
they have a constant hazard function when the shape
parameter is equal to one (Gupta and Kundu (1999)).

A random variable (rv) Xis said to have the EE distribution if
its cumulative distribution function (cdf) is defined by

F(x) = (1 — expifi-Ax))*,x > 0,2, A
>0, (1.1)

and the probability density function (pdf) is given by
f(x) = atexp(—2x) (1 — exp(—1x))*1,x > 0,a,1 > 0,
(1.2)

wherea andAare respectively shape and scale parameters. For
different value of the shape parameters, the pdf can take
different shapes.

Adding parameters to a well-established family of
distributions are a time honored device for obtaining more
flexible new families of distributions. Cordeiro and Castro
(2011) defined the cdfF(x) and the pdf f(x) of the
Kumaraswamy generalized (KwG) distribution by

Gx)=1-{1-F*(x)}’,—0<x <o (1.3)
and
g(x) = abf()F* ()1 — F*(x)}b~1 (1.4)

respectively, where f(x) =dF(x)/dx anda,b >0 are
additional shape parameters to the distribution F. Except for
some special choices of the functionF(x),The density
g(will be difficult to deal with some generality. One major
benefit of the KwG distribution is its ability of fitting skewed
data that cannot be properly fitted by existing distributions.
This fact was demonstrated recently by Cordeiro et al. (2010)
who apply the Kumaraswamyweibull distribution to failure
data.

A physical interpretation of the KwG distribution given by
Equations (1.3) and (1.4) (for a and b positive integers) is as
follows. Consider that a system is formed by b independent
components and that each component is made up of a
independent subcomponents. Suppose the system fails if any
of the b components fails and that each component fails if all
of the a subcomponents fail. LetX;s,...,X,denote the
lifetimes of the subcomponents within the jt* component,
j=1,..,b having a common cdfG(x). Let X ;denote the
lifetime of thej'*component, for j=1,..,b and let X
denote the lifetime of the entire system. Then, the cdf of X is

PriX<x)=1—-Pr(X; >x,X, > x,.., X > x)
= 1-{Pr(X; > x)}* = 1-{1 — Pr(X; < x)}*
=1-{1-Pr(X1 <%, X2 <X, X1q S0P
=1-{1-[Pr(X;; 0]} =1-{1-F ()}

So, it follows that the KwG distribution given by (1.3) and
(1.4) is precisely the time to failure distribution of the entire
system.

In this paper, we introduce a new variant of KwG extended
family of distribution by selecting in (1.3), the EE cdf (1.1)
whichyields

Gx)=1-{1-[(1-exp(—1x))%]1%}%,x > 0,a,a,b > 0.

(1.5)



We shall write X~KwGEE to denote an absolutely continuous
rvXpossessing theKwGextended EE  distribution  with
parameters 4, a, a, band cdf given by (1.5).

The aim of this paper is to reveal some statistical properties of
the X~KwGEEdistribution.

2. DENSITY, MOMENTS AND QUANTILES

The pdf of the KWGEE (4, @, a, b) distribution with cdf (1.4) is
given by
g(x) = abal exp(—Ax) (1 — exp(—Ax))** 1

{1 —[(1 — exp(=Ax))*]*}* 71, x > 0. (2.1)
Remarks

(i) Fora = 1,b = 1(1.4) and (2.1) reduce to the case of the EE
distribution.

(iiyFora=1,b=1,a =1, (1.4) and (2.1) reduce to the case
of the exponential distribution.

(iii) For a =1,(1.4) and (2.1) reduce to the case of the
kumaraswamy  Generalized  exponential  distributions
distribution (see Nadarajah et al. (2012)).

The following theorem gives simple conditions under which
the pdf (2.1) is decreasing or unimodal.

Theorem (1.2)

The pdf of the KwGEE, given by (2.1), is decreasing or
unimodal ifae — 1 < 0or aa — 1 = 0 respectively.

Proof
The first derivative of g(x) is given by

g(x) = abaA? exp(—Ax) (1 — exp(—Ax))**~2{1
—[(1 — exp(—Ax))*]2}P2n(x),x > 0,

where

n(x) = {1 - (1 — exp(—=1x))** H(aa — 1) exp(—2x)
— (1 —exp(=2Ax))}
—aa(b
— 1) exp(—1x) (1 — exp(—1x))**,

the function n(x)has no (one) zero on (0, o0)provided
n(0) =aa—1 <0 (> 0)that is,g(x) has no (one) critical
point provided 7n(0) <0 (> 0).Since g(x)is nonnegative
andg(x) = 0Oand, is decreasing (unimodal) provided 7n(0) <
0(>0).

Fig. (2.1) below shows thepdfcurves for the KwGEE
distribution for selected values of the parameters A, , aand b.
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(a) a=0.5, 0=2, (bold), 0.9, 1(plain), 0.7, 1.3(point), b=25,
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(b) a=0.5, a=5, (bold), 1, 2(plain), 1.5, 1.5(point), b=40,
2=0.1

Fig. 2.1: Thepdf g(x)of the KwGEEdistribution for
selected values of the parameters. In Fig.2.1(a) aa < 1,
showing thatg(x)is decreasing. In Fig.2.1(b) aa > 1,
showing that g(x) is increasing-decreasing.

The rt*moment of the KwGEE distribution is given by

E(X") = rj x"1G(x)dx = rf x" 1
0 0

{1 - [ - exp(-2x))*]*} dx,



using the fact that
{1 -[(1 - exp(=2x))*]*}
(b _
= D 1 () (1 - exp(-anye,
i=1
again,

[e3]

(1 — exp(—Ax)ee =Z( 1)1( )(exp( Y,

=
then

=)

E(X") = TZZ( 1) ( )( ] )f =1 (exp(—1x))/ dx,

i=1j=

ST (R e

Since (2.2) is a convergent series for any r > 0, therefore
putting r = 1, we obtain the mean as

SR /by [aaiy T'(2)
= —1)itJ -7
e =2 > 0 () () G
i=1j=1
and putting r = 2, we obtain the second moment as

E(X?) = ii(—niﬂ () (“;_’”') (r] f;)

i=1j=1

Theqt"quantile of the KwGEE distribution is given by
1

QW) =6"(q) =

17

Alog [1 -(1-a- q)%);

0<qg<1,
whereG ~1(.)is the inverse distribution function.

In particular, the median of the KwGEE distribution is given
by
1

.
Alog|1 - (1 ~(1- %)%>

Fora = 1,b = 1 we get the corresponding results for the EE
distribution.

3. QUANTILE MEASURES

To illustrate the effect of the shape parameters a and b on
skewness and kurtosis of the new distribution, we consider
measures based on quantiles. The shortcomings of the
classical kurtosis measure are well known. There are many
heavy-tailed distributions for which this measure is infinite,
So, it becomes uninformative precisely when it needs to be.
Indeed, our motivation to use quantile based measures
stemmed from the non-existence of classical kurtosis for
many generalized distributions.

The Bowley'sskewness (Kenney and Keeping, (1962)) is one

of the earliest skewness measures defined by

median (X) =
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o = QB/M —2001/2) +0(1/4)
QB/M -1/ '
The Moors kurtosis (Moors, (1988)) based on cotiles is
defined by

i = 20/8) —Q(5/8) —Q(/8) + @(1/8)
Q(6/8) —Q(2/8) '
where Q(.) represents the quantile function define in (2.3).
The measures Sk and Ku are less sensitive to outliers and they
exist even for distributions without moments. For symmetric
unimodal distributions, positive kurtosis indicates heavy tails
and peakedness relative to the normal distribution, whereas
negative kurtosis indicates light tails and flatness. For the
normal distribution, Sk = Ku = 0.

In figures 3.1 and 3.2, we plot the measures Sk and Ku for the
KwGEE(0.1,0.5, a, b)distribution, as functions of b (for fixed
a) and as functions of a (for fixed b), respectively. These plots
indicate that the Bowley skewness always decreases when an
increases (for fixed b), and always increases when b increases
(for fixed a). On the other hand, the Moors kurtosis always
decreases when a increases (for fixed b) and always increases
when b increases (for fixed a). So, these plots indicate that
both measures can be very sensitive on these shape
parameters, thus indicating the importance of the proposed
distribution.
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Fig. (3.1): The Bowleyskewness of the KwGEEdistribution
as function of b some values of a and as function of a for
some values of b.
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Fig. (3.2): The Moors kurtosis of the KwGEE distribution
as function of b for some values of a and as function of a
for some values of b.

4. HAZARDRATE FUNCTION

The hazard rate function (hrf) of the KwGEEdistribution is

given by

abatexp(—Ax)(1 — exp(—Ax))e 1
{1 - [ — exp(—Ax))*]*}

Note that for all b, A, we have

h(x) =

(4.1)

0 Foraa > 1
h(0) =4{abaA Foraa=1,
0o Foraa <1

h(e0) =bA Forall aa.

The following theorem gives simple conditions under which
hrf (4.1) is decreasing or increasing.



For any a, b, Athe hrf is an increasing if aa > 1, and it is a
decreasing function if aa < 1. For aa = 1, it is constant (Fig.

(4.2)).
Remarks

(i) Fora =1,b = 1, h(x) is increasing if @ > 1, decreasing if
a < 1, and constant if @ = 1, which is a well-known results
for the EE distribution (Gupta (2001)).

(ii) Fora = 1,b = 1,4 = 1, h(x) is constant for all «, which
is a well-known results for the exponential distribution
(Venkatesan and Sundaram (2011)).

Fig. (4.1) below shows the hrf curves for theKwGEE
distribution for selected A, a, aand b.
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Fig. (4.1): aa<1 (plain), aa = 1 (bold), aa > 1 (point),
b=40,2=0.1

5. STOCHASTIC ORDERING

Stochastic ordering of positive continuous random variables is
an important tool for judging the comparative behavior. We
will recall some basic definitions. A random variable X is said
to be smaller than a random variable Y in the

(i) stochastic order (denoted by X <., Y ) if Fy(x) = Fy(x)
for all x.

(ii) hazard rate order (denoted by X <., Y) if hy(x) =
hy (x) for all x.

(iii) likelihood ratio order (denoted by X <, Y ) if fy(x)/
fy (x) decreases in x.

The following implications [see Ross ((1996), Chap. 9)] are
well known:

X <ir Y(X <hr Y, X< —=st Y) (51)

The KwGEE distributions are ordered with respect to the
strongest likelihood ratio ordering, as shown in the following
theorem.
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Theorem (5.1)

LetX~KwGEE(A, a,a,by)and  Y~KwGEE(4, a, a, b,). If
b, < by then

X <y Y(X Shr V. X < Y)-
Proof

First note that

gx () _ bi{l — (1 — exp(=Ax))** Pt
gr(x)  ba{1— (1 —exp(—Ax))ae}baV’

Since, for b, < by,

dgxx) b y
Tx g, 00y~ ¥4y, (b2 = b0 — exp(=2x)

{1 — (1 — exp(—Ax))ae}b1-1

gx(x)/gy(x)is decreasing in x; that is X <, Y.The
remaining statements follow from the implications (5.1).

6. ESTIMATION OF KwGEEDISTRIBUTION

In this section, we determine the maximum likelihood
estimates (MLEs) of the parameters (1,a,a,b) of
theKwGEEdistribution. SupposeXy, X», ..., X, is a random
sample of size n from theKwGEE distribution. Then the
likelihood function is given by

gx(x) = ab a exp(—2Ax;)(1 — exp(—Ax;)) L
[laeo=]]

{1 - (1 —exp(—2ax))** 3},

and the log-likelihood function is given by

n n
L =log [H gx(xi)] =nlog(abal) — AZ X
i=1 i=1

+(aa — 1)2 log(1 — exp(—A2x;))
i=1

+(b— 1)2 log[1 — (1 — exp(=Ax))%].

The estimates of the parameters maximize the likelihood
function. Taking the partial derivatives of the log-likelihood
function with respect to A, @, a, brespectively and equalizing
the obtained expressions to zero vyields to likelihood
equations.

oL n x; exp(—2Ax;)
a1 4 xl + (aa - 1)Z(l—exp( —x;))

aaxiexp(—2x;)(1 — exp(—1x;))** 1)
~-1 Z 1— (1 — exp(—2x;))™ ’

Z_ = _+ aZlog(l — exp(—2Ax;))

ax; (1 — exp(=21x;))* log(1 — exp(—Ax;))
—(b- 1)2 1— (1 —exp(—Ax;))e ’



n
dL n
oL _n _ _ —71+.))aa
= b+Zlog[1 (1 — exp(—2Ax;))%],
<

n
oL n
o=t aZ log(1 — exp(—1x;))

C ax; (1 — exp(—Ax;)) log(1 — exp(—Ax;))
—(b- 1); T— (1 - exp(—Ax))@ '

The maximum likelihood estimates (MLEs)A, &, @, bof the
parameters 4, a, a, bare obtained numerically by solving the

. . aL aL daL aL
non-linear equatlonsﬁ = 0'5 = O'E = O,and£ =0.

The likelihood ratio test will be used to test the null
hypothesis Hy: @ = 1,b = 1(EE distribution). When H, is

true, the deviance teststatisticd, = —2{L(1,@ 1,1) —
L(A,& a b)}wherel, @are the MLEs ofA, aunderHy:a =
1,b = 1, has approximately a chi-square distribution with 2
degree of freedom. H,is rejected at a significance level of aif
dn > X

In addition, for model selection, we use the Akiake
Information Criterion (AIC), the Bayesian Information
Criterion (BIC) and the Consistent Akaike Information
Criteria (CAIC) defined as:

AIC = =2 log likelihood + 2q
BIC = -2 log likelihood + qlog(n)

- 2qn

CAIC = -2 log likelihood + ———
n—-q-—1

whereq is the number of parameters in the model and n is the
sample size. For more details about the AIC, BIC, and CAIC
see Akiake (1969), Schwarz (1978), and Bozdogan (1987)
respectively. The model with smaller AIC, BIC and CAIC is
the one that better fits the data.

7. APPLICATION

In this section, we use a real data set to show that the KwGEE
distribution can be a better model than one based on the EE
and exponential distribution. We make a results comparison
of the models fit. We consider an uncensored
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data set corresponding an uncensored data set from consisting
of 100 observations on breaking stress of carbon fibers as
discussed by Shams (2013). The data are:

3.7 2.74 2.73 25 3.6 3.11 1.12
3.27 2.87 1.47 311 184 0.39 1.71
2.88 4.42 241 319 322 169 2.03
3.28 3.09 1.87 315 49 3.68 1.61
2.48 2.82 3.75 243 295 297 1.69
3.39 2.96 2.53 267 293 322 4.38
0.85 1.61 2.05 339 281 4.2 2.17
3.33 2.55 3.31 331 285 256 1.17
3.56 2.79 4.7 365 315 235 5.08
2.55 2.59 2.38 281 277 217 2.48
2.83 1.92 2.03 1.8 189 141 1.18
3.68 297 1.36 098 276 491 1.25
3.68 1.84 1.59 157 1.08 212 3.51
3.19 1.57 0.81 556 173 159 2.17
2 1.22

The following tablegives a comparison between the MLEs,
log-likelihood, AIC, BIC and CAIC for the fitted KwGEE, EE
and exponential distributions to the given data. The table
shows small values of both AIC, BIC, and CAIC which favour
selecting the KwGEE distribution.

Model parameter MLE L AIC BIC CAIC
Exponential Iy 0.381476 -196.371 394.742 397.347 394.783
A 1.01317
EE -146.182 296.365 301.575 296.488
o 7.78824
A 0.110961
a 4.95024
KwGEE -141.318 290.637 301.057 291.058
a 0.660032
b 66.246




The results in the above table show that the fitted KwGEE
distribution should be selected based on either the CAIC
orBIC or AIC procedure.

For the given data, underH,, L(Z,& 1,1) = —146.182thus
d, =9.728 > x5 .05 = 5.991,

therefore, we cannot accept the null hypothesis, i.e. The
likelihood ratio test rejects the assumption that the EE model
is sutable for the given data.

Also, letH,,
distribution) thus

L(%,1,1,1) = —196.371,(exponential

d, = 110.106 > x3,,5 = 7.815, therefore, ~we  cannot
accept the null hypothesis, i.e. The likelihood ratio test rejects
the assumption that the exponential model is sutable for the
given data.

Let n be the total number of breaking stress of carbon fibers
whose survival times, uncensored data, are available. Relabel
the n survival times in order of increasing magnitude such
that t(l) < t2) << t(n)' The Kaplan-Meier (1958)
estimator (KME), also known as the product limit estimator,
of a survival function is defined as

_ 1
Go=[[fi-;055b o
titgy<t

Figs. (7.1), (7.2) and (7.3) show, respectively, the p-p plot of
the KME versus the fitted exponential, EE and KwGEE
survival functions for the given data.
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Fig. (7.1): p-p plot of KME versus fitted exponential
survival function
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Fig. (7.2): p-p plot of KME versus fitted EE survival
function
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Fig. (7.3): p-p plot of KME versus fitted KwGEE survival
function

Visually, the depicted points for fitted KwGEE survival
function are very near the 45° line, indicating very good fit
as compared with the fitted EE survival function.

Since 4=0.110961, @ = 4.95024,a = 0.660032, and
b = 66.246, then the estimated hrt h(x) is as shown in the
following figure.
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Fig. (7.4): The estimated hazard rate function of KwGEE
distribution based on observations the breaking stress of
carbon fibers.

8. CONCLUSION

We note that for KwGEE distribution, the AIC,BIC
andCAIC are smaller than the corresponding AIC,BIC and
CAIC of the EE and exponential distributions. Also the fitted
KwGEE survival function indicates strong linear relationship
between the empirical and fitted survival functions comparing
with the fitted EE and exponential survival functions. All
these results lead us to the real data set was analyzed and the
KwGEE has provided a good fit for the given data and was
more appropriate model.
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