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ABSTRACT 
In this paper, we present a new class of distributions called 

kumaraswamy Generalized Exponentiated Exponential 

Distribution, that is based upon the cumulative distribution 

function of Kumaraswamy (1980) distribution, which is more 

flexible and is a natural generalization of the exponential, 

Exponentiated Exponential and kumaraswamy Generalized 

exponential distributions as special cases found in literature. 

Also, the analytical shapes of the corresponding probability 

density function and hazard rate function are derived with 

graphical illustrations. Expressions for the rth moments are 

calculated and the variation of the skewness and kurtosis 

measures is investigated. Likelihood estimators of the 

parameters are derived. Moreover, analysis of real data set, 

representing the breaking stress of carbon fibers, is conducted 

to demonstrate the usefulness of the proposed distribution. 
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1. INTRODUCTION 

The Exponentiated Exponential (𝐸𝐸) distribution, a most 

attractive generalization of the exponential distribution, is 

defined as a particular case of Gompertz-Verhulst distribution 

function (see Ahuja and Nash (1967)). The EE distribution 

has been introdused and studied by Gupta and Kundu (1999, 

2001 , 2003 , 2004, 2007). They observed that this distribution 

can be used in place of gamma and weibull distributions, 

since the two parameters of the gamma, wiebull, and EE 

distributions have increasing as well as decreasing hazard 

function depending on the value of the shape parameters, also 

they have a constant hazard function when the shape 

parameter is equal to one (Gupta and Kundu (1999)). 

A random variable (rv) 𝑋is said to have the 𝐸𝐸 distribution if 

its cumulative distribution function (cdf) is defined by 

𝐹 𝑥 =  1 − exp⁡(−𝜆𝑥) 𝛼 , 𝑥 > 0, 𝛼, 𝜆

> 0,                         (1.1) 

and the probability density function (pdf) is given by 

𝑓 𝑥 = 𝛼𝜆 exp −𝜆𝑥  1 − exp −𝜆𝑥  𝛼−1, 𝑥 > 0, 𝛼, 𝜆 > 0, 

(1.2) 

whereα and𝜆are respectively shape and scale parameters. For 

different value of the shape parameters, the pdf can take 

different shapes. 

Adding parameters to a well-established family of 

distributions are a time honored device for obtaining more 

flexible new families of distributions. Cordeiro and Castro 

(2011) defined the cdf𝐹(𝑥) and the pdf 𝑓(𝑥) of the 

Kumaraswamy generalized (𝐾𝑤𝐺) distribution by 

𝐺 𝑥 = 1 −  1 − 𝐹𝑎 𝑥  𝑏 , −∞ < 𝑥 < ∞                            (1.3) 

and 

𝑔 𝑥 = 𝑎𝑏𝑓 𝑥 𝐹𝑎−1 𝑥  1 − 𝐹𝑎 𝑥  𝑏−1                             (1.4) 

respectively, where 𝑓(𝑥) = 𝑑𝐹(𝑥)/𝑑𝑥 and𝑎, 𝑏 > 0 are 

additional shape parameters to the distribution F. Except for 

some special choices of the function𝐹(𝑥),The density  

𝑔 𝑥 will be difficult to deal with some generality. One major 

benefit of the KwG   distribution is its ability of fitting skewed  

data that cannot be properly fitted by existing distributions. 

This fact was demonstrated recently by Cordeiro et al. (2010) 

who apply the Kumaraswamyweibull distribution to failure 

data. 

A physical interpretation of the 𝐾𝑤𝐺 distribution given by 

Equations (1.3) and (1.4) (for a and b positive integers) is as 

follows. Consider that a system is formed by b independent 

components and that each component is made up of a 

independent subcomponents. Suppose the system fails if any 

of the b components fails and that each component fails if all 

of the a subcomponents fail. Let𝑋𝑗1 , … , 𝑋𝑗𝑎 denote the 

lifetimes of the subcomponents within the 𝑗𝑡𝑕  component, 

𝑗 = 1,… , 𝑏  having a common cdf𝐺(𝑥). Let 𝑋1denote the 

lifetime of the𝑗𝑡𝑕component, for 𝑗 = 1,… , 𝑏  and let 𝑋   

denote the lifetime of the entire system. Then, the cdf of 𝑋 is 

𝑃𝑟 𝑋 ≤ 𝑥 = 1 − 𝑃𝑟 𝑋1 > 𝑥, 𝑋2 > 𝑥, … , 𝑋𝑏 > 𝑥  

= 1− Pr 𝑋1 > 𝑥  𝑏 = 1− 1 − Pr 𝑋1 ≤ 𝑥  𝑏  

= 1− 1 − Pr 𝑋11 ≤ 𝑥, 𝑋12 ≤ 𝑥… , 𝑋1𝑎 ≤ 𝑥  𝑏  

= 1 −  1 −  Pr 𝑋11 ≤ 𝑥  𝑎 𝑏 = 1 −  1 − 𝐹𝑎 𝑥  𝑏  

So, it follows that the 𝐾𝑤𝐺 distribution given by (1.3) and 

(1.4) is precisely the time to failure distribution of the entire 

system. 

In this paper, we introduce a new variant of KwG  extended 

family of distribution by selecting in (1.3), the 𝐸𝐸 cdf (1.1) 

whichyields 

𝐺 𝑥 = 1 −  1 −   1 − exp −𝜆𝑥  𝛼  𝑎 𝑏 , 𝑥 > 0, 𝛼, 𝑎, 𝑏 > 0. 

(1.5) 
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We shall write 𝑋~𝐾𝑤𝐺𝐸𝐸 to denote an absolutely continuous 

rv𝑋possessing the𝐾𝑤𝐺extended 𝐸𝐸 distribution with 

parameters 𝜆, 𝛼, 𝑎, 𝑏and cdf given by (1.5). 

The aim of this paper is to reveal some statistical properties of 

the 𝑋~𝐾𝑤𝐺𝐸𝐸distribution. 

2. DENSITY, MOMENTS AND QUANTILES 

The pdf of the 𝐾𝑤𝐺𝐸𝐸(𝜆, 𝛼, 𝑎, 𝑏) distribution with cdf (1.4) is 

given by 

𝑔 𝑥 = 𝑎𝑏𝛼𝜆 exp −𝜆𝑥  1 − exp −𝜆𝑥  𝑎𝛼−1 

{1 − [ 1 − exp −𝜆𝑥  𝛼 ]𝑎}𝑏−1 , 𝑥 > 0.  (2.1) 

Remarks 

(i) For𝑎 = 1, 𝑏 = 1(1.4) and (2.1) reduce to the case of the 𝐸𝐸 

distribution. 

(ii) For 𝑎 = 1, 𝑏 = 1, 𝛼 = 1,  (1.4) and (2.1) reduce to the case 

of the exponential distribution. 

(iii) For  𝛼 = 1,(1.4) and (2.1) reduce to the case of the 

kumaraswamy Generalized exponential distributions 

distribution (see Nadarajah et al. (2012)). 

The following theorem gives simple conditions under which 

the pdf (2.1) is decreasing or unimodal. 

Theorem (1.2) 

The pdf of the 𝐾𝑤𝐺𝐸𝐸, given by (2.1), is decreasing or 

unimodal if𝑎𝛼 − 1 < 0or 𝑎𝛼 − 1 ≥ 0  respectively. 

Proof 

The first derivative of 𝑔(𝑥) is given by 

𝑔  𝑥 = 𝑎𝑏𝛼𝜆2 exp −𝜆𝑥  1 − exp −𝜆𝑥  𝑎𝛼−2 1

−   1 − exp −𝜆𝑥  𝛼  𝑎  𝑏−2𝜂 𝑥 , 𝑥 > 0, 

where 

𝜂 𝑥 =  1 −  1 − exp −𝜆𝑥  𝑎𝛼    𝑎𝛼 − 1 exp −𝜆𝑥 

−  1 − exp −𝜆𝑥   

− 𝑎𝛼 𝑏

− 1 exp −𝜆𝑥  1 − exp −𝜆𝑥  𝑎𝛼 , 

the function 𝜂(𝑥)has no (one) zero on (0, ∞)provided 

𝜂 0 = 𝑎𝛼 − 1 ≤ 0 (> 0)that is,𝑔(𝑥) has no (one) critical 

point provided 𝜂 0 ≤ 0  > 0 .Since 𝑔(𝑥)is nonnegative 

and𝑔 𝑥 = 0and, is decreasing (unimodal) provided  𝜂 0 ≤

0  > 0 . 

Fig. (2.1) below shows thepdfcurves for the 𝐾𝑤𝐺𝐸𝐸   

distribution for selected values of the parameters 𝜆, 𝛼, 𝑎and b. 

(a) a=0.5, α=2, (bold), 0.9, 1(plain), 0.7, 1.3(point), b=25, 

λ=0.1 

 (b) a=0.5, α=5, (bold), 1, 2(plain), 1.5, 1.5(point), b=40, 

λ=0.1 

Fig. 2.1: Thepdf 𝒈(𝒙)of the 𝑲𝒘𝑮𝑬𝑬distribution for 

selected values of the parameters. In Fig.𝟐. 𝟏 𝒂  𝒂𝜶 < 𝟏, 

showing that𝒈(𝒙)is decreasing. In Fig.𝟐. 𝟏 𝒃  𝒂𝜶 > 𝟏, 

showing that  𝒈(𝒙) is increasing-decreasing. 

The 𝑟𝑡𝑕moment of the 𝐾𝑤𝐺𝐸𝐸 distribution is given by 

𝐸 𝑋𝑟 = 𝑟 𝑥𝑟−1

∞

0

𝐺  𝑥 𝑑𝑥 = 𝑟 𝑥𝑟−1

∞

0

 

 1 −   1 − exp −𝜆𝑥  𝛼  𝑎 𝑏𝑑𝑥, 
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using the fact that 

 1 −   1 − exp −𝜆𝑥  𝛼  𝑎  𝑏

=  (−1)𝑖
∞

𝑖=1

 
𝑏

𝑖
  1 − exp −𝜆𝑥  𝑎𝛼𝑖 , 

again, 

 1 − exp −𝜆𝑥  𝑎𝛼𝑖 =  (−1)𝑗

∞

𝑗 =1

 
𝑎𝛼𝑖

𝑗
 (exp −𝜆𝑥 )𝑗 , 

then 

𝐸 𝑋𝑟 = 𝑟   −1 𝑖+𝑗

∞

𝑗=1

∞

𝑖=1

 
𝑏

𝑖
  

𝑎𝛼𝑖

𝑗
  𝑥𝑟−1

∞

0

(exp −𝜆𝑥 )𝑗 𝑑𝑥, 

=    −1 𝑖+𝑗

∞

𝑗 =1

∞

𝑖=1

 
𝑏

𝑖
  

𝑎𝛼𝑖

𝑗
 
𝛤(𝑟 + 1)

(𝑗𝜆)𝑟
.                 (2.2) 

Since (2.2) is a convergent series for any  𝑟 ≥ 0 , therefore 

putting 𝑟 = 1, we obtain the mean as 

𝐸 𝑋 =    −1 𝑖+𝑗

∞

𝑗 =1

∞

𝑖=1

 
𝑏

𝑖
  

𝑎𝛼𝑖

𝑗
 
𝛤(2)

(𝑗𝜆)𝑟
, 

and putting 𝑟 = 2, we obtain the second moment as 

𝐸(𝑋2) =    −1 𝑖+𝑗

∞

𝑗 =1

∞

𝑖=1

 
𝑏

𝑖
  

𝑎𝛼𝑖

𝑗
 
𝛤(3)

(𝑗𝜆)𝑟
. 

The𝑞𝑡𝑕quantile of the  𝐾𝑤𝐺𝐸𝐸  distribution is given by  

𝑄 𝑢 = 𝐺−1 𝑞 =
1

𝜆 log  1 −  1 −  1 − 𝑞 
1

𝑏 

1

𝑎𝛼
 

, 

 0 ≤ 𝑞 ≤ 1, 

where𝐺−1(. )is the inverse distribution function. 

In particular, the median of the  𝐾𝑤𝐺𝐸𝐸  distribution is given 

by 

𝑚𝑒𝑑𝑖𝑎𝑛  𝑋 =
1

𝜆 log  1 −  1 −  1 −
1

2
 

1

𝑏
 

1

𝑎𝛼

 

.  

For 𝑎 = 1, 𝑏 = 1 we get the corresponding results for the 𝐸𝐸 

distribution. 

3. QUANTILE MEASURES 

To illustrate the effect of the shape parameters 𝒂 and 𝒃 on 

skewness and kurtosis of the new distribution, we consider 

measures based on quantiles. The shortcomings of the 

classical kurtosis measure are well known. There are many 

heavy-tailed distributions for which this measure is infinite, 

So, it becomes uninformative precisely when it needs to be. 

Indeed, our motivation to use quantile based measures 

stemmed from the non-existence of classical kurtosis for 

many generalized distributions. 

The Bowley'sskewness (Kenney and Keeping, (1962)) is one 

of the earliest skewness measures defined by 

𝑆𝑘 =
𝑄 3/4 − 2𝑄 1/2 + 𝑄(1/4)

𝑄 3/4 − 𝑄(1/4)
, 

The Moors kurtosis (Moors, (1988)) based on cotiles is 

defined by 

𝐾𝑢 =
𝑄(7/8) − 𝑄(5/8) − 𝑄(3/8) + 𝑄(1/8)

𝑄(6/8) − 𝑄(2/8)
, 

where Q(.) represents the quantile function define in (2.3). 

The measures Sk and Ku are less sensitive to outliers and they 

exist even for distributions without moments. For symmetric 

unimodal distributions, positive kurtosis indicates heavy tails 

and peakedness relative to the normal distribution, whereas 

negative kurtosis indicates light tails and flatness. For the 

normal distribution, 𝑆𝑘 = 𝐾𝑢 = 0. 

In figures 3.1 and 3.2, we plot the measures Sk and Ku for the  

𝐾𝑤𝐺𝐸𝐸(0.1, 0.5, 𝑎, 𝑏)distribution, as functions of 𝑏 (for fixed 

a) and as functions of a (for fixed b), respectively. These plots 

indicate that the Bowley skewness always decreases when an 

increases (for fixed b), and always increases when b increases 

(for fixed a). On the other hand, the Moors kurtosis always 

decreases when a increases (for fixed b) and always increases 

when b increases (for fixed a). So, these plots indicate that 

both measures can be very sensitive on these shape 

parameters, thus indicating the importance of the proposed 

distribution. 
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Fig. (3.1): The Bowleyskewness  of  the  𝑲𝒘𝑮𝑬𝑬distribution 

as function of 𝒃 some values of 𝒂 and as function of 𝒂 for 

some values of 𝒃. 

Fig. (3.2): The Moors kurtosis of the  𝑲𝒘𝑮𝑬𝑬  distribution 

as function of 𝒃 for some values of 𝒂 and as function of 𝒂 

for some values of 𝒃. 

4. HAZARDRATE FUNCTION 
The hazard rate function (hrf) of the 𝐾𝑤𝐺𝐸𝐸distribution is 

given by 

𝑕 𝑥 =
𝑎𝑏𝛼𝜆𝑒𝑥𝑝(−𝜆𝑥)(1 − 𝑒𝑥𝑝(−𝜆𝑥))𝑎𝛼−−1

 1 −   1 − exp −𝜆𝑥  𝛼  𝑎 
.              (4.1) 

Note that for all 𝑏, 𝜆,  we have 

h 0 =  
0             For aα > 1
abαλ     For aα = 1
∞          For aα < 1

 , 

h ∞ = b λ   For all aα. 

The following theorem gives simple conditions under which 

hrf (4.1) is decreasing or increasing. 
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For any 𝑎, 𝑏, 𝜆the hrf is an increasing if 𝑎𝛼 > 1, and it is a 

decreasing function if 𝑎𝛼 < 1. For 𝑎𝛼 = 1, it is constant (Fig. 

(4.1)). 

Remarks 

(i) For 𝑎 = 1, 𝑏 = 1, h(x) is increasing if 𝛼 > 1, decreasing if 

𝛼 < 1, and constant if 𝛼 = 1, which is a well-known results 

for the 𝐸𝐸 distribution (Gupta (2001)). 

(ii) For𝑎 = 1, 𝑏 = 1, 𝜆 = 1, h(x) is constant for all  𝛼, which 

is a well-known results for the exponential distribution 

(Venkatesan and Sundaram (2011)). 

Fig. (4.1) below shows the hrf curves for the𝐾𝑤𝐺𝐸𝐸  

distribution for selected 𝜆, 𝛼, 𝑎and 𝑏. 

 Fig. (4.1): aα<1 (plain), 𝒂𝜶 = 𝟏 (bold), 𝒂𝜶 > 𝟏 (point), 

𝒃 = 𝟒𝟎, 𝝀 = 𝟎. 𝟏 

5. STOCHASTIC ORDERING 
Stochastic ordering of positive continuous random variables is 

an important tool for judging the comparative behavior. We 

will recall some basic definitions. A random variable X is said 

to be smaller than a random variable Y in the 

(i) stochastic order (denoted by  𝑋 ≤𝑠𝑡 𝑌 ) if 𝐹 𝑋 𝑥 = 𝐹 𝑌 𝑥    

for all 𝑥. 

(ii) hazard rate order (denoted by  𝑋 ≤𝑕𝑟 𝑌) if  𝑕𝑋 𝑥 =

𝑕𝑌(𝑥) for all 𝑥. 

(iii) likelihood ratio order (denoted by  𝑋 ≤𝑙𝑟 𝑌 ) if  𝑓𝑋(𝑥)/

𝑓𝑌(𝑥) decreases in 𝑥. 

The following implications [see Ross ((1996), Chap. 9)] are 

well known: 

𝑋 ≤𝑙𝑟 𝑌 𝑋 ≤𝑕𝑟 𝑌,𝑋 ≤𝑠𝑡 𝑌 .       (5.1) 

The  𝐾𝑤𝐺𝐸𝐸 distributions are ordered with respect to the 

strongest likelihood ratio ordering, as shown in the following 

theorem. 

 

Theorem (5.1) 

Let𝑋~KwGEE(𝜆, 𝛼, 𝑎, 𝑏1)and 𝑌~KwGEE(𝜆, 𝛼, 𝑎, 𝑏2). If   

𝑏2 < 𝑏1 then 

𝑋 ≤𝑙𝑟 𝑌 𝑋 ≤𝑕𝑟 𝑌, 𝑋 ≤𝑠𝑡 𝑌 . 

Proof 

First note that 

𝑔𝑋(𝑥)

𝑔𝑌(𝑥)
=

𝑏1{1 −  1 − exp −𝜆𝑥  𝑎𝛼 }𝑏1−1

𝑏2{1 −  1 − exp −𝜆𝑥  𝑎𝛼 }𝑏2−1 , 

Since, for 𝑏2 < 𝑏1, 

𝑑

𝑑𝑥

𝑔𝑋 𝑥 

𝑔𝑌 𝑥 
= 𝑎𝛼𝜆

𝑏1

𝑏2

 𝑏2 − 𝑏1  1 − exp −𝜆𝑥  𝑎𝛼  

{1 −  1 − exp −𝜆𝑥  𝑎𝛼 }𝑏1−1 

𝑔𝑋(𝑥)/𝑔𝑌(𝑥)is decreasing in 𝑥; that is 𝑋 ≤𝑙𝑟 𝑌.The 

remaining statements follow from the implications (5.1). 

6. ESTIMATION OF 𝑲𝒘𝑮𝑬𝑬DISTRIBUTION 
In this section, we determine the maximum likelihood 

estimates (𝑀𝐿𝐸𝑠) of the parameters (𝜆, 𝛼, 𝑎, 𝑏) of 

the𝐾𝑤𝐺𝐸𝐸distribution. Suppose𝑋1 , 𝑋2 , … , 𝑋𝑛  is a random 

sample of size n from the𝐾𝑤𝐺𝐸𝐸 distribution. Then the 

likelihood function is given by 

 𝑔𝑋 𝑥𝑖 

𝑛

𝑖=1

=  ab αλ exp −𝜆𝑥𝑖  1 − exp −𝜆𝑥𝑖  
𝑎𝛼−1

𝑛

𝑖=1

 

 1 −  1 − exp −𝜆𝑥𝑖  
𝑎𝛼  𝑏−1, 

and the log-likelihood function is given by 

𝐿 = log   𝑔𝑋 𝑥𝑖 

𝑛

𝑖=1

 = 𝑛 𝑙𝑜𝑔 𝑎𝑏𝛼𝜆 − 𝜆 𝑥𝑖

𝑛

𝑖=1

 

+ 𝑎𝛼 − 1  log 1 − exp −𝜆𝑥𝑖  

𝑛

𝑖=1

 

+ 𝑏 − 1  log 1 −  1 − exp −𝜆𝑥𝑖  
𝑎𝛼  .

𝑛

𝑖=1

 

The estimates of the parameters maximize the likelihood 

function. Taking the partial derivatives of the log-likelihood 

function with respect to 𝜆, 𝛼, 𝑎, 𝑏respectively and equalizing 

the obtained expressions to zero yields to likelihood 

equations. 

𝜕𝐿

𝜕𝜆
=

𝑛

𝜆
−  𝑥𝑖

𝑛

𝑖=1

+  𝑎𝛼 − 1  
𝑥𝑖 exp −𝜆𝑥𝑖 

 1 − exp −𝜆𝑥𝑖  

𝑛

𝑖=1

 

 −(𝑏 − 1)  
𝑎𝛼𝑥𝑖𝑒𝑥𝑝(−𝜆𝑥𝑖)(1 − 𝑒𝑥𝑝(−𝜆𝑥𝑖))𝑎𝛼−1)

1 − (1 − 𝑒𝑥𝑝(−𝜆𝑥𝑖))𝑎𝛼
,

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝛼
=

𝑛

𝛼
+ 𝑎 log 1 − exp −𝜆𝑥𝑖  

𝑛

𝑖=1

 

− 𝑏 − 1  
𝑎𝑥𝑖 1 − exp −𝜆𝑥𝑖  

𝑎𝛼 log 1 − exp −𝜆𝑥𝑖  

1 −  1 − exp −𝜆𝑥𝑖  
𝑎𝛼

𝑛

𝑖=1

, 



International Journal of Computer Applications (0975 – 8887) 

Volume 94 – No 4, May 2014 

6 

𝜕𝐿

𝜕𝑏
=

𝑛

𝑏
+  𝑙𝑜𝑔[1 −  1 − exp −𝜆𝑥𝑖  

𝑎𝛼 ],

𝑛

𝑖=1

 

𝜕𝐿

𝜕𝑎
=

𝑛

𝑎
+ 𝛼 log 1 − exp −𝜆𝑥𝑖  

𝑛

𝑖=1

 

− 𝑏 − 1  
𝑎𝑥𝑖 1 − exp −𝜆𝑥𝑖  

𝑎𝛼 log 1 − exp −𝜆𝑥𝑖  

1 −  1 − exp −𝜆𝑥𝑖  
𝑎𝛼

𝑛

𝑖=1

. 

The maximum likelihood estimates (𝑀𝐿𝐸𝑠)𝜆 , 𝛼 , 𝑎 , 𝑏 of the 

parameters 𝜆, 𝛼, 𝑎, 𝑏are obtained numerically by solving the 

non-linear equations
𝜕𝐿

𝜕𝜆
= 0,

𝜕𝐿

𝜕𝛼
= 0,

𝜕𝐿

𝜕𝑎
= 0,and

𝜕𝐿

𝜕𝑏
= 0. 

The likelihood ratio test will be used to test the null 

hypothesis 𝐻0: 𝑎 = 1, 𝑏 = 1(𝐸𝐸 distribution). When  0H   is 

true, the deviance teststatistic𝑑𝑛 = −2{𝐿 𝜆 , 𝛼 , 1,1 −

𝐿 𝜆 , 𝛼 , 𝑎 , 𝑏  },where𝜆 , 𝛼 are the MLEs of𝜆, 𝛼under𝐻0: 𝑎 =

1, 𝑏 = 1,  has approximately a chi-square distribution with 2 

degree of freedom. 𝐻0is rejected at a significance level of 𝛼if  

𝑑𝑛 > 𝜒2,𝛼
2 . 

In addition, for model selection, we use the Akiake 

Information Criterion (𝐴𝐼𝐶), the Bayesian Information 

Criterion (𝐵𝐼𝐶) and the Consistent Akaike Information 

Criteria (𝐶𝐴𝐼𝐶) defined as: 

𝐴𝐼𝐶 = −2 𝑙𝑜𝑔  𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 + 2𝑞 

𝐵𝐼𝐶 = −2 𝑙𝑜𝑔  𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 + 𝑞𝑙𝑜𝑔(𝑛) 

𝐶𝐴𝐼𝐶 = −2 𝑙𝑜𝑔  𝑙𝑖𝑘𝑒𝑙𝑖𝑕𝑜𝑜𝑑 +
2𝑞𝑛

𝑛 − 𝑞 − 1
 

where𝑞 is the number of parameters in the model and n is the 

sample size. For more details about the 𝐴𝐼𝐶, 𝐵𝐼𝐶, and 𝐶𝐴𝐼𝐶 

see Akiake (1969), Schwarz (1978), and Bozdogan (1987) 

respectively. The model with smaller 𝐴𝐼𝐶, 𝐵𝐼𝐶 and 𝐶𝐴𝐼𝐶 is 

the one that better fits the data. 

7. APPLICATION 
In this section, we use a real data set to show that the  𝐾𝑤𝐺𝐸𝐸  

distribution can be a better model than one based on the EE 

and exponential distribution. We make a results comparison 

of the models fit. We consider an uncensored  

data set corresponding an uncensored data set from consisting 

of 100 observations on breaking stress of carbon fibers as 

discussed by Shams (2013). The data are:  

3.7 2.74 2.73 2.5 3.6 3.11 1.12 

3.27 2.87 1.47 3.11 1.84 0.39 1.71 

2.88 4.42 2.41 3.19 3.22 1.69 2.03 

3.28 3.09 1.87 3.15 4.9 3.68 1.61 

2.48 2.82 3.75 2.43 2.95 2.97 1.69 

3.39 2.96 2.53 2.67 2.93 3.22 4.38 

0.85 1.61 2.05 3.39 2.81 4.2 2.17 

3.33 2.55 3.31 3.31 2.85 2.56 1.17 

3.56 2.79 4.7 3.65 3.15 2.35 5.08 

2.55 2.59 2.38 2.81 2.77 2.17 2.48 

2.83 1.92 2.03 1.8 1.89 1.41 1.18 

3.68 2.97 1.36 0.98 2.76 4.91 1.25 

3.68 1.84 1.59 1.57 1.08 2.12 3.51 

3.19 1.57 0.81 5.56 1.73 1.59 2.17 

2 1.22      

The following tablegives a comparison between the 𝑀𝐿𝐸𝑠, 

log-likelihood, 𝐴𝐼𝐶, 𝐵𝐼𝐶 and 𝐶𝐴𝐼𝐶 for the fitted 𝐾𝑤𝐺𝐸𝐸, 𝐸𝐸 

and exponential distributions to the given data. The table 

shows small values of both 𝐴𝐼𝐶, 𝐵𝐼𝐶, and 𝐶𝐴𝐼𝐶 which favour 

selecting the 𝐾𝑤𝐺𝐸𝐸 distribution.   

      

      

      

      

      

      

      

      

       

 

Model parameter MLE L AIC BIC CAIC 

Exponential λ 0.381476 -196.371 394.742 397.347 394.783 

EE 
λ 

α 

1.01317 

7.78824 
-146.182 296.365 301.575 296.488 

KwGEE 

λ 

α 

a 

b 

0.110961 

4.95024 

0.660032 

66.246 

-141.318 290.637 301.057 291.058 
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The results in the above table show that the fitted 𝐾𝑤𝐺𝐸𝐸  

distribution should be selected based on either the 𝐶𝐴𝐼𝐶 

or𝐵𝐼𝐶 or 𝐴𝐼𝐶 procedure. 

For the given data, under𝐻0,  𝐿 𝜆 , 𝛼 , 1,1 = −146.182thus  

𝑑𝑛 = 9.728 > 𝜒2.0.05
2 = 5.991, 

therefore, we cannot accept the null hypothesis, i.e. The 

likelihood ratio test rejects the assumption that the EE model 

is sutable for the given data. 

Also, let𝐻0, 𝐿 𝜆 , 1,1,1 = −196.371,(exponential 

distribution) thus 

𝑑𝑛 = 110.106 > 𝜒3.0.05
2 = 7.815,  therefore, we cannot 

accept the null hypothesis, i.e. The likelihood ratio test rejects 

the assumption that the exponential model is sutable for the 

given data. 

Let 𝑛 be the total number of breaking stress of carbon fibers 

whose survival times, uncensored data, are available. Relabel 

the 𝑛 survival times in order of increasing magnitude such 

that 𝑡(1) ≤ 𝑡(2) ≤ ⋯ ≤ 𝑡(𝑛). The Kaplan-Meier (1958) 

estimator (KME), also known as the product limit estimator, 

of a survival function is defined as 

G n t =   1 −
1

n − r + 1
 , t > 0

t: t(i)≤t

. 

Figs. (7.1), (7.2) and (7.3) show, respectively, the p-p plot of 

the KME versus the fitted exponential, 𝐸𝐸 and  𝐾𝑤𝐺𝐸𝐸  

survival functions for the given data. 

Fig. (7.1): p-p plot of KME versus fitted exponential 

survival function 

Fig. (7.2): p-p plot of KME versus fitted EE survival 

function 

Fig. (7.3): p-p plot of KME versus fitted 𝑲𝒘𝑮𝑬𝑬 survival 

function 

Visually, the depicted points for fitted  𝐾𝑤𝐺𝐸𝐸  survival 

function are very near the 45𝑜   line, indicating very good fit 

as compared with the fitted 𝐸𝐸 survival function. 

Since 𝜆 = 0.110961, 𝛼 = 4.95024, 𝑎 = 0.660032, and 

𝑏 = 66.246, then the estimated hrt 𝑕(𝑥) is as shown in the 

following figure. 
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Fig. (7.4): The estimated hazard rate function of 𝑲𝒘𝑮𝑬𝑬 

distribution based on observations the breaking stress of 

carbon fibers. 

8. CONCLUSION 
We note that for  𝐾𝑤𝐺𝐸𝐸  distribution, the 𝐴𝐼𝐶, 𝐵𝐼𝐶 

and𝐶𝐴𝐼𝐶 are smaller than the corresponding 𝐴𝐼𝐶,𝐵𝐼𝐶 and 

𝐶𝐴𝐼𝐶 of the EE and exponential distributions. Also the fitted  

𝐾𝑤𝐺𝐸𝐸 survival function indicates strong linear relationship 

between the empirical and fitted survival functions comparing 

with the fitted 𝐸𝐸 and exponential survival functions. All 

these results lead us to the real data set was analyzed and the 

𝐾𝑤𝐺𝐸𝐸  has provided a good fit for the given data and was 

more appropriate model. 
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