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1. INTRODUCTION 
After the introduction of fuzzy sets by L.A Zadeh [17] in 

1965, there we have been a number of generalizations of this 

fundamental concept. The notion of intuitionistic fuzzy sets 

was introduced by Atanassov [1] in 1983. Using the notion of 

intuitionistic fuzzy sets, Coker [5] introduced the notion of 

intuitionistic fuzzy topology in 1997. This approach provides 

a wide field for investigation in the area of fuzzy topology and 

its application. The aim of this paper is to study the relations 

between intuitionistic fuzzy -closed sets and the other 

intuitionistic fuzzy sets already exists.Moreover we 

investigate intuitionistic fuzzy -irresolute map and study 

some of its properties 

 

2. PRELIMINARIES 
Definition 2.1: [1] Let X be a nonempty set. An intuitionistic 

fuzzy set (IFS  in short) A in X is an object having the form A 

= {<x, μA (x), υA (x) > : x∈ X}, where the function μA : X → 

[0,1] and υA :X→ [0,1] denotes the degree of  membership  

μA(x) and the degree of non membership A (x) of each 

element x∈ X to the set A respectively and 0≤ μA (x)+ υA (x) 

≤ 1 for each x∈ X. 

Definition 2.2 :[1]: Let A and B be  intuitionistic fuzzy sets of 

the  form  

 A = {<x, μA (x), υA(x) >: x ∈ X}, and form B= {<x, μB(x), 

υB (x) >: x∈ X}.Then 

(a) A  B if and only if μA(x) ≤ μB (x) and νA(x) ≥ νB(x) for all 

x  X 

(b) A = B if and only if A  B and B  A 

(c) Ac = { x, νA(x), μA(x)  / x  X}        

(d) A  B = { x, μA(x)  μB(x), νA(x)  νB(x)  / x  X} 

(e) A  B = { x, μA(x)  μB(x), νA(x)  νB(x)  / x  X}. 

The   intuitionistic fuzzy sets   
~
0  = { <x, 0 ,1>  x  X }  and 

~
1 ={ <x, 0 ,1>  x  X } are respectively the empty  set and 

whole set  of X . 

Definition 2.3 :[1]: Let (α,β) ∈[0,1] with α + β ≤ 1, An 

intuitionistic fuzzy point (IFP), written as p(α,β)  is defined   to 

be IFS of X given by  

 

p(α,β) (x) =    (α,β)   if  x= p 

 

                      (0,1)   otherwise 

 

Definition 2.4 : [5]: An intuitionistic fuzzy topology (IFT) on 

X is a family of IFSs  which satisfying the following axioms. 

(i) 
~
0 ,   

~
1   τ 

(ii) G1  G2  τ for any G1 ,  2G    τ 

(iii)   Gi  τ for any family  {Gi / i  I}   τ 

In this case the pair (X, τ) is called an intuitionistic fuzzy 

topological space(IFTS) and each intuitionistic fuzzy set in τ 

is known as an intuitionistic fuzzy open set (IFOS  for short 

)in X. 

The complement A of an IFOS in an IFTS (X, τ)  is called an 

intuitionistic fuzzy closed set (IFCS  )  in  (X, τ ). 

Definition 2.5 : [5]: Let (X, τ) be an intuitionistic fuzzy 

topology  and 

 A ={<x, μA (x), υB (x) >: x ∈ X}, be an intuitionistic fuzzy 

set in X. Then the intuitionistic fuzzy interior and 

intuitionistic fuzzy closure are defined by 

Int (A) =   {G/ G is an intuitionistic fuzzy open      

set in X and G   A} 

Cl(A)  = { K/ K in an intuitionistic  fuzzy closed 

set in X and  A    K } 

 Remark 2.6  :[5]: For any intuitionistic fuzzy set A in (X, τ)  

, we have 

(i) cl (AC) = [int (A)]C ,  

(ii)  int (AC) = [cl (A)]C  ,  

(iii)  A is an intuitionistic fuzzy closed set in X  Cl  

(A) = A  
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(iv) A is an intuitionistic fuzzy open  set in  X  int (A) 

=A 

 

Definition 2.7 :[6]: An intuitionistic fuzzy set A = {<x, μA (x), 

υB (x) >: x ∈ X} in an intuitionistic fuzzy topology space (X, τ) 

is said to be 

(i)  Intuitionistic fuzzy semi closed if int(cl (A)    A. 

(ii) Intuitionistic fuzzy pre closed if cl(int(A)) A. 

Definition 2.8: An intuitionistic fuzzy set A of an intuitionistic 

fuzzy topological space (X,) called 

(i)intuitionistic fuzzy generalized closed set [15] (intuitionistic 

fuzzy g – closed) if cl(A)  U whenever 

 A  U and U is intuitionistic fuzzy semi open 

(ii)intuitionistic fuzzy g – open set[14], if  the complement of an 

intuitionistic fuzzy  g –  closed set  is called intuitionistic fuzzy g 

- open set. 

(iii)intuitionistic fuzzy semi open ( resp. intuitionistic fuzzy 

semi closed)[6]  if there exists an intuitionistic fuzzy open    

(resp. intuitionistic fuzzy closed)  such that  UA  Cl(U) ( 

resp. int(U)  A  U). 

Remark 2.9 : [15]: Every intuitionistic fuzzy closed set    

(intuitionistic fuzzy open  set) is intuitionistic fuzzy g-  closed 

(intuitionistic fuzzy g- open) set) but the converse            may 

not be true 

Definition 2.10  An intuitionistic fuzzy set A of an 

intuitionistic fuzzy topological space  ( X, ) is called 

(i) an intuitionistic fuzzy w-closed [14] if  cl(A)  O 

whenever A O and O is intuitionistic fuzzy semi open. 

 ( X, ) 

(ii) an intuitionistic fuzzy rw-closed set[16] if cl(A)  O 

whenever A O and O is intuitionistic fuzzy regular  semi 

open. ( X, ) 

(iii) an intuitionistic fuzzy rg-closed set[16] if cl(A)  O 

whenever A O and O is intuitionistic fuzzy regular open. ( 

X, ) 

(iv) ) an intuitionistic fuzzy generalized α-closed set [8] 

(IFGαCS if αcl(A)  O whenever A O and O is IFαOS in( 

X, ) 

(iv) ) an intuitionistic fuzzy α-generalized closed set [12] 

(IFαGCS if αcl(A)  O whenever A O and O is IFOS in( X,

) 

Definition 2.11 :[12]  An iuitionistic fuzzy set A of an 

intuitionistic fuzzy topological space (X,) called an 

(i) intuitionistic fuzzy -open set ( IF OS  in short ) if A int 

(cl (int (A))) 

(ii) ) intuitionistic fuzzy -closed set ( IF CS  in short) if cl 

(int(cl(A))  A. 

Definition 2.12 :[8]   An iuitionistic fuzzy set A of an 

intuitionistic fuzzy topological space (X,) called intuitionistic 

fuzzy alpha generalised closed set ( IFGCS  in short)  if  

cl(A) U and U is an IFOS in (X,). 

Definition 2.13 : [5] Let X and Y are nonempty sets and f: 

X→Y is a function. 

 (a)  If B = {< y, μB (y) ,υB (y) > : y   Y } is an  

intuitionistic fuzzy set in Y, then the pre image of B  

under f denoted by f-1(B) , is defined by 

 f-1(B) ={<x ,f-1(μ B(x)),f-1(υB(x))  >  : x   X}  

(b)  If A= {<{x, μ A (x) ,υ B (x),)> / x X} is an intuitionistic  

fuzzy set in X, then the image of A under f denoted by f(A) is 

the intuitionistic fuzzy set in Y  defined by  

f(A) = {<y ,f (μA (y)), f (υA(y)) > :  y   Y} where f(υA) = 1-

f(1-(υA)). 

Definition 2.14: [10] An intuitionistic fuzzy set A of an 

intuitionistic topology space (X ,)  is called an 

(i) intuitionistic fuzzy -closed set (IF -CS)  if A    cl(U) 

whenever  A  U and U is intuitionistic fuzzy  open set in X 

(ii)  intuitionistic fuzzy -open set  (IF -OS)  if the 

complement  
cA  of an intuitionistic  fuzzy -closed set 

Definition 2.15 :[13] Let f be a mapping from an IFTS (X, τ) 

into an IFTS (Y,σ). Then f is said to be an  

(i) intuitionistic fuzzy open mapping (IF open mapping) if 

f(A) is an IFOS in Y for every IFOS A in X.  

(ii) intuitionistic fuzzy closed mapping (IF closed mapping) if 

f(A) is an IFCS in Y for every IFCS A in X.  

Definition 2.16   :[11] : A mapping f: (X,τ ) → (Y, σ) is said 

to be intuitionistic fuzzy  –continuous if the inverse image of 

every intuitionistic fuzzy closed set of Y is intuitionistic fuzzy 

 -closed in X 

Definition 2.17 : [11]: A topological space (X, τ ) is called 

intuitionistic fuzzy   - T 1/2space 

 ( IF  -- T1/2 space in short) if every intuitionistic fuzzy    -

closed set is intuitionistic 

fuzzy closed in X. 

3. APPLICATIONS OF INTUITIONISTIC 

FUZZY  -CLOSED SET. 
 In this section we study the relations between Intuitionistic 

fuzzy  -closed sets and some other Intuitionistic fuzzy sets 

already exists. 

Definition3.1. Let A be an IFS in an IFTS (X, τ). Then the 

intuitionistic fuzzy - interior and intuitionistic fuzzy  - 

closure of A are defined as follows. 

-int(A) = ∪{G |G is an IF-OS in X and G⊆  A}, 

-cl(A) = ∩{K | K is an IF-CS in X and A  ⊆ K }. 

Theorem 3.2:Every  IF preclosed set is IF  -closed set . 

Proof : Let A be a IF preclosed set. Let G is an  IF  open set 

such that A⊇ G. Then  cl  int  A  ⊇ cl  int G  ⊇

cl  G .Therefore cl  int  A  ⊇ cl  G .Since A is IF preclosed 

set we have  A ⊇  cl  int  A  ⊇ cl  G .Thus A ⊇

cl  G .Therefore A is IF  -closed set. 



International Journal of Computer Applications (0975 – 8887) 

Volume 94 – No 3, May 2014 

41 

Remark 3.3 : The converse above theorem need not be true as 

seen from the following example. 

Example3.4 :  Let X = { a,b} and  τ = {
~
0 ,   

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where U= { < a, 0.5,0.5 >, 

< b, 0.3,0.6 > }.Then the intuitionistic fuzzy set 

 A={  < a,0.5,0.5>,<b, 0.8, 0.2 > } is IF -closed set but not 

pre closed set. 

Remark 3.5 : IF − closed sets  and   IF  w-closed sets 

are independent to each oter   example 

Example 3.6:  Let X = { a,b} and  τ = {
~
0 , 

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where  U = { <a, 0.5, 0.5>, 

<b, 0.5,0.2>}. Then the intuitionistic fuzzy set A = {<a, 0.5, 

0.5>, <b, 0.5, 0.4>} is not intuitionistic fuzzy IF -closed set 

but not  IF w-closed set 

Example 3.7:  Let X = { a,b} and  τ = {
~
0 ,   

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where U= { < a, 0.5,0.5 >, 

< b, 0.4,0.6 > }.Then the intuitionistic fuzzy set 

A={  < a,0.5,0.5>,<b, 0.5, 0.5> } is IF w-closed set   not IF -

closed set. 

Remark 3.8 : IF − closed sets  and   IF  rw-closed sets 

are independent to each oter   example 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3.9 Let X = { a,b} and  τ = {
~
0 ,  

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where  U = { <a, 0.5, 0.5>, 

<b, 0.5,0.2>}. Then the intuitionistic fuzzy set A = {<a, 0.5, 

0.5>, <b, 0.5, 0.4>} is not intuitionistic fuzzy IF -closed set 

but not  IF rw-closed set 

 Example 3.10 :  Let X = { a,b} and  τ = {
~
0 ,   

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where U= { < a, 0.7,0.2 >, 

< b, 0.6,0.3> }.Then the intuitionistic fuzzy set  

 A={< a, 0.7,0.2 >, < b, 0.6,0.3>  } is IF  rw-closed set but not 

IF  -closed set. 

Remark 3.11: IF − closed set  and   IF  rg-closed set 

are independent to each oter   example. 

Example 3.12: Let X = { a,b} and  τ = {
~
0 , 

~
1 ,U } be an 

intuitionistic fuzzy topology on X.where  U = { <a, 0.5, 0.5>, 

<b, 0.5,0.2>}. Then the intuitionistic fuzzy set A = {<a, 0.5, 

0.5>, <b, 0.5, 0.4>} is not intuitionistic fuzzy IF -closed set 

but not  IF rg-closed set 
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Example 3.13: Let X = { a,b,c,d } and  τ = {
~
0 ,

~
1 ,U,V,W } 

be an intuitionistic fuzzy topology on X.where U={ < a, 

0.7,0.2 >, < b, 0.6,0.3> , < c, 0,1 >, < d,0,1> }  

V= { < a, 0.9,0.1 >, < b, 0.8,0.1 > , < c, 0,1 >, < d,0,1> }, 

W = { < a, 0.7,0.2 >, < b, 0.6,0.3> , < c, 0,1 >, < d,0,1> } 

Then the intuitionistic fuzzy set A={ < a,0 ,1>,< b,0, 1>,<c, 

0.7,0.2>, < d,0,1>} is IF rg-closed set but not IF -closed set 

 Remark3.14: Gα closed sets and IF closed sets are 

independent to each other for example 

Example 3.15: Let X = { a,b} and τ = {
~
0 , 

~
1 ,U  }be an 

intuitionistic fuzzy topology on          X.where U={< a, 

0.2,0.8>, < b, 0.3,0.7>}.Then the intuitionistic fuzzy set A={ 

< a,0.6,0.4>,<b, 0.7, 0.3> } is IF Gαclosed set but not IF -

closed set. 

Example 3.16: Let X = { a, b } and let and τ = {
~
0 , 

~
1 ,U  }be 

an intuitionistic fuzzy topology on          X.where U={< a, 

0.8,0.2 >, < b, 0.8, 0.1 >}. Then the intuitionistic fuzzy set. 

A={ < a,0.9,0.1 > ,<b, 0.7, 0.3> } is IF -closed set but is not 

IF Gαclosed set  . 
Remark  :3.17 αG closed sets and IF  closed sets  are 

independent to each other  for example 

Example 3.18: Let X = { a,b} and τ = {
~
0 , 

~
1 ,U  }be an 

intuitionistic fuzzy topology on          X.where U={< a, 0.2,0.6 

>, < b, 0.2,0.7>}.Then the intuitionistic fuzzy set A={ < 

a,0.4,0.6 >,<b, 0.2, 0.7 > } is IF αG closed set  but not IF -

closed set. 

Example 3.19: Let X = { a,b} and τ = {
~
0 , 

~
1 ,U  }be an 

intuitionistic fuzzy topology on          X.where U={< a, 0.2,0.4 

>, < b, 0.3,0.5 >}.Then the intuitionistic fuzzy set 

 A={ < a,0.5,0.1 >,<b, 0.6, 0> } is IF -closed set  but not IF 

αG −closed set. 

 

Remark 3.20 : From above  examples and  remarks  we get 

following diagram of implications. 

 

In this diagram   A                B means that A implies B    

 

   A                B means that B does not imply A   

             

  A                      B means that  A and   B  are  

independent  to each other. 

 

 

4. - irresolute mappings in intuitionistic fuzzy topological 

spaces. 

   In this section we introduce intuitionistic fuzzy - irresolute  

mapping and study  some of its properties. 

Definition 4.1: A mapping f: ( X, ) → (Y, σ) is called 

intuitionistic fuzzy - irresolute  ( IF-  - irresolute) if  

f -1 (V)  is  IF -  closed set is in ( X, ) for every IF -  

closed set V  of (Y, σ)   

Theorem 4.2:  If a mapping f :( X, ) → (Y, σ) is called IF 

- irresolute mapping  then it is  IF -continuous mapping but 

not conversely. 

Proof : Let V be any closed set in Y. since every closed set is 

IF -  closed set, V is IF -  closed set in Y. By assumption f -

1 (V) is  IF -closed set in X. Thus f is  IF  -continuous.  

 

 The converse of the above theroem need not be true as seen 

in the following example: 

Example 4.3: Let X= Y = {a, b},  and  intuitionistic  fuzzy 

sets U and V are defined as follows. 

 U={ <a,0.5,0.5>,<b,0.2,0.7 > }, 

 V={<a,0.5,0.5>,<b,0.6,0.4 > } be the intuitionistic fuzzy sets 

respectively and Let    -={
~
0 , 

~
1  ,U } and  σ ={

~
0 ,

~
1  ,V}  

be  intuitionistic fuzzy topologies on X and Y respectively. 

And let f :( X, ) → (Y, σ)  be the identity mapping. Clearly 

f is IF - continuous mapping. f-1({<a,0.5,0.5>,<b,0.4,0.6>} 

={<a,0.5,0.5>,<b,0.4, 0.6 >} in not IF  -closed set in 

X.Therefore f is not IF - irresolute  mapping. 

Theorem 4..4 : Let X,Y,and Z be any topological space. For 

any IF -irresolute map  f: ( X, ) → (Y, σ)  and  IF -

continuous map g :( Y, σ)  →(Z, υ) .The composition 

 g ₒ f  :( X, ) → (Z, υ) is  IF -continuous. 

Proof : Let  V be any closed set in Z. since g is IF  -

continuous map,g -1 (V) is IF -closed in Y. Since IF -f is 

irresolute map f -1 (g -1 (V)) is IF -closed in X.But  

f -1 (g -1 (V))  = (g ◦ f) -1 (V)  which is  -closed in X.Thus g ◦ f  

is IF -continuous map. 

Theorem 4.5 :If f: ( X, ) → (Y, σ)  is IF open  mapping and 

IF continuous then f is IF - irresolute map. 

Proof : Let A be a -closed set in Y. Let f -1 ( A) ⊇ O where 

O is open in X. since f is IF open,  

f (O) is open in Y. Thus we have A⊇ f (O) . This implies A⊇ 

Cl (f(O)). But cl (f(O) ⊇ f (cl(O) because f is IF 

continuous.Therefore A ⊇f( cl(O)).Hence f -1(A) is IF -

closed set  in X. Therefore f  IF - is irresolute. 

Theorem:4. 6 :If X, Y and  Z are topological spaces.and  f : ( 

X, ) → (Y, σ)  and 

 g :( Y, σ)  →(Z, υ) are  IF  -irresolute then composition g ◦ f 

: ( X, ) → (Z, υ) is IF  -irresolute map.  

Proof : Let V be a IF -closed set in Z. Since g is IF -

irresolute map , g -1 (V) is   IF  -closed set in ( Y, σ ).Also we 

are given that f is IF  -irresolute and therefore f  -1 g -1 (V)  is 

 IF  -closed set in ( X, ) .But f -1 (g -1 (V))  = (g ◦ f) -1 (V). 

Hence (g ◦  f) is IF  -irresolute map from X to Z.  

Theorem 4.7: Let f: (X, τ) → (Y, σ) be an IF -  irresolute, 

then f is an IF irresolute 

mapping if X is an IF -T1/2 space. 

Proof: Let A be an IFCS in Y. Then A is an IF-CS in Y. 

Therefore f -1  (A) is an 

IF -CS in X, by hypothesis. Since X is an IF -T1/2 space, f -1 

(A) is an IFCS in X. Hence. 
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 f is an IF irresolute  mappings. 

Theorem 4.8: Let f: (X, τ) → (Y, σ) be a mapping from an 

IFTS X into an IFTS Y. 

Then the following conditions are  equivalent  if  X and Y are 

IF -T1/2 spaces. 

(i) f is an IF- irresolute mapping 

(ii) f -1   (B) is an IF-OS in X for each IF-OS in Y 

(iii) cl(f -1  (B)) ⊆ f -1  ( cl(B)) for each IFS B of Y. 

Proof: (i) ⟹ (ii): It can be proved by using complement and 

definition 4.1. 

(ii) ⟹ (iii): Let B be any IFS in Y and B ⊆ cl(B). Then f -1   

(B) ⊆ f -1  (cl(B)). Since cl(B) 

is an IFCS in Y, cl(B) is an IF-CS in Y. Therefore f -1 ( cl(B)) 

is an IF-CS in X, 

by hypothesis. Since X is IF -T1/2 space. f -1  (cl(B)) is an 

IFCS in X. Hence 

cl(f -1(  (B)) ⊆ cl f -1  (cl(B))) = f -1 ( cl(B). That is cl f -1   (B)) ⊆ 

f -1   (cl(B)). 

(iii) ⟹ (i): Let B be an IF -CS in Y. Since Y is an IF - T1/2  

space , B is an IFCS in Y and 

cl(B) = B. Hence f -1    (B) = f -1   (cl(B)) ⊆  cl(f -1   (B)). But 

clearly f -1  (B) ⊇ cl(f -1   (B)). 

Therefore cl(f -1  (B)) = f -1   (B). This implies f -1  (B) is an 

IFCS and hence it is an IF-CSin X. Thus f is an IF- 

irresolute mapping. 

Theorem 4.9: Let f : (X, τ) → (Y, σ) be a an IF- irresolute 

mapping from an IFTS X into an IFTS Y. Then f -1     (B) ⊆ -

int( f -1  (cl(int(cl(B))))) for every IF-OS B in Y, if X and Y 

are IF - T1/2 spaces. 

Proof: Let B be an IF-OS in Y. Then by hypothesis f -1  (B) 

is an IF -OS in X. Since X is an IF -T1/2 space, f -1  (B) is an 

IFOS in X. Therefore  - int( (B)) = (B). since Y is an IF-T1/2 

space, B is an IF-OS in Y and B ⊆ cl(int(cl(B))). Now f -1   

(B) =- int(f -1   (B)) implies,  

f -1  (B) ⊆ -int(f (cl(int(cl(B)))). 

Theorem 4.10: If a mapping f : X → Y is intuitionistic fuzzy 

--irresolute mapping, then 

f (-cl(B)) ⊆  - cl( f (B)) for every IFS B of X. 

proof : Let B be an IFS of X. Since cl( f (B)) is an IF-CS in 

Y , by our assumption 

f -1  (cl( f (B))] is an IF-CS in X. Furthermore B ⊆f -1( f (B)) 

⊆  f -1(cl( f (B))) and hence  

-cl(B) ⊆ f -1[cl( f (B))] and consequently f [-cl(B)] ⊆  f [ f -

1[cl( f (B))]] ⊆ cl( f (B)).  

Theorem4.11 : If any union of IF-CS is an IF-CS, then a 

mapping f : X →Y from an IFTS 

X into an IFTS Y is intuitionistic fuzzy - -irresolute if and 

only if for each IFP p(α,β) in X and IF-CS B in Y such that f 

(p(α,β) )ϵ B, there exists an IF-CS A in X such that p(α,β)  ϵ A 

and 

 f (A) ⊆ B. 

Proof : Let f be any intuitionistic fuzzy-irresolute mapping, 

p(α,β) an IFP in X and B be any IF-CS in Y , such that f 

(p(α,β) )ϵ B. Thenp(α,β)  ϵ f -1(B) =-cl[ f -1(B)]. We take 

A =-cl[ f -1(B)]. Then A is an IF-CS in X, containing IFP  

p(α,β)  and 

 f (A) = f [-cl( f -1(B))] ⊆  f [ f -1(B)] ⊆  B. 

Conversely assume that B be any IF-CS in Y and IFP  p(α,β) 

(x)  in X, such that  

p(α,β)  ϵ f -1(B). By assumption there exists IF-CS A in X 

such that p(α,β)  ϵ  A and f (A) ⊆ B. Therefore p(α,β) (x) ϵ  A ⊆  

f -1(B) and p(α,β) ϵ  A =-cl(A) ⊆  - cl[ f -1(B)]. Sincep(α,β)  is 

an arbitrary IFP  and f -1(B) is union of all IFP contained in f -

1(B), f -1(B) is an IF-CS in X, so f is an intuitionistic fuzzy -

irresolute mapping.  

Corollary 4.12. A mapping f : X → Y from an IFTS X into 

an IFTS Y is intuitionistic fuzzy 

-irresolute if and only if for each IFP p(α,β) in X and IF-CS 

B in Y such thatf(p(α,β)) 

ϵ  B, there exists an IF-CS A in X such that p(α,β)  ϵ  A and 

A⊆   f -1(B). 

Proof. Follows fromTheorem4.11 

 

5. CONCLUSION  
In this paper we have studied the relations between 

intuitionistic fuzzy -closed sets and the other intuitionistic 

fuzzy sets already exists.Also we studied the intuitionistic 

fuzzy -irresolute map and some of its properties. 
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