
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

34

Introducing High Availability in Threads based Grid

Middleware Architecture

Khurram Ali Shah
Software Engineering

UET Taxila, Pakistan

Ali Javed
Assistant Professor

UET Taxila,Pakistan

Muhammad Irfan
Software Engineering

UET Peshawar

ABSTRACT

The architecture proposed in “A Novel Grid Middleware” is a

light weight, easy to implement and an open grid computing

architecture in terms of allowing organizational/personal

computing resources to participate in the grid when their

computing resources are free. The architecture was based on

allocation, distribution and execution of the threads in the

grid. The current architecture does not have a solution on the

high availability of the grid. This research is an extension to

the earlier proposed architecture [1] and will make the

architecture to answer the real world problems of high

availability and will make it an implementable solution. This

research is providing solution to the scenarios that how can

threads based grid can ensure high availability in case threads

are lost during their execution or the resources of the grid

becomes unavailable for any reasons. This research provided

the architecture design on introduce high availability in the

threads based grid so that in case at any point of time a thread

has stopped responding, how the redundant thread can be

made available to ensure continues execution of the grid

based application.

General Terms

Threads, Grid, Middleware, Distributed Computing, Quality

of Service, Connectivity, Main program/thread, Redundant

program/thread.

Keywords

TDAC Server (Thread Distribution And Allocation Server),

TDAC Client (Thread Distribution And Allocation Client),

HASynchronizer (High Availability Synchronizer),

Checkpoints and Replica.

1. INTRODUCTION
The proposed grid middleware architecture in previous paper

[1] considered ideal conditions (no

thread/connectivity/resource loss) and described the basic

workflow of our grid middleware. In this research work, we

want to extend our previous architecture in terms of Quality of

Service. We will introduce such techniques that will ensure

high availability of grid resources and how grid middleware

will respond if a thread is lost or connectivity of resources is

down or malfunctioning in processing a foreign thread.

In brief we will develop data/process flow charts that will

prove the research work and we also will develop

architecture for answering how the architecture can be utilize

by the programmers.

We are Introducing two additional features. The first one is

Checkpoints in the Program/ Thread. The second feature is

simply Introducing a replica of the same program/thread .

High Availability Synchronizer is responsible to synchronize

the data and instruction execution between Main

Program/Thread and Replica Program. These Building blocks

(HA Synchronizer, Program/Thread, Replica

Program/Thread) are connected together in such a way that

Application requests HA Synchronizer for threads execution.

HA Synchronizer is communicating with both actual

Program/Thread and Replica Program/Thread in order to sync

the data when checkpoint is reached. HA Synchronizer is

placed in TDAC server to implement the enhanced

architecture.

2. RELATED WORKS
Evolution of Grids started from the fields such as the Internet,

distributed computing, web services, a number of

cryptography technologies given that security measures and

virtualization technology. These technologies were present

and used for various purposes. The grid technology combines

these technologies and takes advantages of features of these

fields to develop such a computational environment that

provides computational resources to perform various tasks.

These tasks could be stock exchange simulations and studies

for accurate oil and gas exploration, scientific research like

forecast of weather or serving corporate/business

requirements for an organization whose existence is

geographically dispersed. The showbiz industry makes severe

use of computers to provide movies using a growing number

of animations.

The objective of Grid Middleware is to provide users invisible

computing ability and fair access to the computational

resources [2] in a grid environment which is heterogeneous.

The architecture of gird middleware should be such that it

could be easily reused, robust [3] so that it requires minimal

time to develop and deploy it again. It is a combination of

software application and API’s that generates users and allow

them to use the resources of gird system.

When computational, storage, network and scientific

instruments combines together to form grid fabric of grid [4].

The resources could be computers clusters, servers and even

supercomputers existing at many physically distributed

organizations. Scientific instruments could be thermostats of

nuclear plans, sensor networks telescopes that provide real-

time data which might be transmitted directly to

computational sites or that could be stored in any database.

Now to use those resources in an effective manner, we need

middleware’s which provides the resources for computation

while protecting the critical data and resources of the resource

providers.

The middleware provides abstraction of network complexities

from the developers. Robust and easy useable middleware

design is very useful. [5]. It should reduce the development

and deployment time of it again. Globus Toolkit (GT) is a

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

35

very significant middleware and it is a de facto touchstone for

grid implementation. There are two similar incorporate

middleware products [6] that are UNICORE and Legion.

They offer the most significant components looked-for in grid

middleware. UNICORE [7] is the resultant of the project

UNICORE (UNiform Interface to COmputing REsources),

which has shaped the technology that presents faultless,

protected, and instinctive access to distributed grid resources.

Converting UNICORE into a gird service is done in

Unicore/GridService [8].

Legion is a theoretical foundation for a metasystem [9]. The

Legion object permits the carrying out of jobs in

heterogeneous platforms. Applications written in various

programming language can be executed as Legion provides

interoperability among objects developed in multiple

languages [10].

Condor is an application system that generates a HTC

environment. It efficiently uses of the processing cycles of

idle workstations in a network. Condor makes available a job

queuing method, scheduling procedure, priority plan, resource

observing, and resource management [11].

3. INTRODUCING HIGH

AVAILABILITY OF THREADS
In this section, the proposed model for ensuring high

availability of threads will be discussed and different

scenarios for high availability [12] of the grid will be

explored. We will also elaborate the data flow diagrams of the

architecture to show the implementable solution.

3.1 Building blocks of introducing High

Availability
Every Program/thread has 2 parts (Data, Instructions). In

order to ensure high availability and prevent thread loss we

are Introducing two additional features. The first one is

Checkpoints in the Program/ Thread. It is a number or title

pointing out that the certain instruction [13] has reached

during the execution of the thread and now it is the time to

sync its data with the thread initiator. It can be based on the

logical sequencing of the program.

Figure 1. Replica Program/Thread

The second feature is simply Introducing a replica of the same

program/thread . Checkpoints are also present in Replica

program which will sync the data with the thread initiator. In

case main program/thread is loss due to any reason, the

Replica program/thread will continue from the last reached

checkpoint.

3.2 Introducing High Availability

Synchronizer (HASynchronizer)
High Availability Synchronizer is responsible to synchronize

the data and instruction execution between Main

Program/Thread and Replica Program and checking the

availability of the main program and redundant

program/thread. It has 5 sub modules which are shown in

diagram and discussed below.

Figure 2. High Availability Synchronizer

Data: Keep updating data portion of the Program/thread with

itself.

Last Checkpoint Reached: Recording the checkpoint

reached in the program/thread of main and replica.

Program/Threads Information Matrix: Keep the

information about the systems on which main and replica

program are executed along with the program/thread

information[14].

Heartbeat Recorder: Keep checking the status of the main

or replica program/thread , its system/network availability

where main or replica program/thread is executed.

Program/Thread Redistributors:

Re-distribution module is activated in case a thread loss

happen or for any reason the systems executing the main or

replica program are not reachable.

3.3 Connecting Building Blocks
Above discussed building blocks (HA Synchronizer,

Program/Thread, Replica Program/Thread) are connected

together in such a way that Application requests HA

Synchronizer for threads execution [15]. HA Synchronizer is

communicating with both actual Program/Thread and Replica

Program/Thread in order to sync the data when checkpoint is

reached.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

36

Figure 3. Connecting the Building Blocks

3.4 High Level Data Message Flow
Data message flow is shown in following diagram with

detailed elaboration below.

Figure 4. Data Flow Diagram

i. P1 shares the checkpoint info and updated

data.

ii. R1 shares the checkpoint info and updated

data.

iii. HA Synchronizer will keep updating the

 data and checkpoint info from P1, R1 and will re-

distribute the program/thread to other systems [16]

in case of main program or replica program is not

 available.

3.5 Enhanced TDAC Server Architecture
HA Synchronizer is placed in TDAC server to implement the

enhanced architecture. Checkpoints Creator is added in

Application with TDAC Client so that checkpoints are created

in the thread.

Figure 5. Enhanced High Availability Architecture

3.6 Incorporating the HA building

blocks in the architecture

Server to server communication in presence of HA

Synchronizer takes place between two TDAC Servers in the

following diagram.

Figure 6. Incorporating the HA Synch in Enhanced

Architecture

3.7 Simulating Enhanced Architecture
Now a complete flow of the enhanced architecture is shown in

which a replica thread is executed simultaneously and HA

Synchronizer is also present. Note that now communication

between thread [17] and process occurs through TDAC server

because HA Synchronizer is present in TDAC Server.

Figure 7. Simulating Enhanced Architecture

Following steps describe the detail of high availability grid:

Step1: Application1 Requesting TDACServer1 To Allocate

Worker Process

Step2: TDACServer1 Requesting TDACServer2 and 7 To

Allocate Worker Process For Execution of Application1’s

Thread1 (main and Replica).

Step3: TDAC1 will send Thread1 (Main and Replica) to

Process1 of TDACServer2 and 7 respectively for execution.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

37

Step4: TDAC1 will keep synchronizing with TDAC2 And

TDAC7 as per earlier flows explained to Meet high

availability requirement.

4. DATA FLOW AND INTER-ACTION

BETWEEN THE BUIL-DING BLOCKS
In this section we will describe the data flow and Interaction

between the different building blocks, discussed in previous

section, of High Availability Architecture.

4.1 Initialization
The data flow diagram below shows the Starting of Main

Program/Thread and Redundant Program/Thread. HA

Synchronizer send an initialize message to Main and

Redundant Program/Thread, which in return send and

acknowledgement. Then HA Synchronizer send another

message to share checkpoint details and update the result

which is again acknowledged by the Main and Redundant

Program/Thread.

Figure 8. Initialization between HA Sync and

Main/Redundant Thread

4.2 Checkpoint Arrived
Here Data Sharing is shown when New Checkpoint is Arrived

and how data is being sync with the HA Synchronizer. When

a checkpoint is reached, the Main and Redundant

Program/Thread send a message to HA Synchronizer about

the details of checkpoint. HA Synchronizer in return send a

message to share data. As a result, the Main and Redundant

Program/Thread send the latest data and HA Synchronizer

send back an acknowledgement of data received.

Figure 9. Checkpoint arrived

4.3 Checkpoint Already Updated
Now Data Sharing is shown when Checkpoint is Already

Updated by Either Main or Redundant program/Thread. When

Main or Redundant program/thread send checkpoint details to

the HA Synchronizer and sync found that this checkpoint is

already updated, then it sends a message to the

program/thread that this data already exists. After that,

main/redundant program continue execution of instructions.

Figure 10. Checkpoint already updated

4.4 Heartbeat Recorder
HA Synchronizer will periodically send message to Main and

Redundant Program/Thread or Systems for checking their

availability. In return, Main and Redundant Program/Thread

will send an acknowledgement so that HA Synchronizer will

update Heartbeat Recorder Log. If acknowledgement is not

received in certain time then the Redistributor module is

activated which is discussed in next part.

Figure 11. Heartbeat Recorder

4.5 Redistribution In Case Of Thread Loss
In last part, Message Passing to redistribute the

program/thread to new systems is shown in case Main or

Redundant Thread is lost. HA Synchronizer selects available

resource after finding that main/redundant thread has lost and

request the new system to recreate thread. New system sends

acknowledgement and then HA Synchronizer encapsulate

thread, last checkpoint information and data, and send

package to the new system. Hence the new system starts the

execution of thread onward from the last checkpoint.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

38

Figure 12. Redistribution in case of Thread Loss

5. CONCLUSION AND FUTURE WORK
Our architecture provides a solution for thread distribution,

allocation and execution of application’s thread in the grid. It

is very easy to configure and any system/resource can be

added at any point in our architecture. We have provided an

administrative layer over Operating system.

We have introduced High Availability Synchronizer and

Replica Program/Thread to ensure high availability of threads

in our Grid. Now there is proper mechanism to handle high

availability issues such as thread loss, any resource goes down

and connectivity loss. In this way the proposed architecture is

more implementable and handles the real world problems.

Security and User Interface are the open research fields in this

proposed architecture and various methodologies can be used

to ensure the security and User Interface for this architecture.

Practical implementation of this architecture can open new

gates for research in Grid middleware. We recommend java

for its implementation because it is platform independent and

provides easy way for remote threads creation and

distribution.

6. REFERENCES
[1] Muhammad Asad Khan, Khurram Ali Shah, Muhammad

Irfan. “A novel grid middleware architecture”. FIT

'10 Proceedings of the 8th International Conference on

Frontiers of Information Technology. Published in ACM

DL 2010..

[2] Ian Foster, Carl Kesselman, and Steven Tuecke. The

anatomy of the grid: enabling scalable virtual

organizations, volume 2150 of Lecture Notes in

Computer Science, pages 200–222. Springer, 2001.

http://www.globus.org/alliance/publications/papers/anato

my.pdf

[3] Gregor von Laszewski and Kaizar Amin. Grid

Middleware, chapter Middleware for Communications,

pages 109–130. Wiley, 2004. Available online at:

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--

grid-middleware.pdf

[4] Andrew S. Grimshaw, Wm. A. Wulf, and the Legion

team. The Legion vision of a worldwide virtual

computer. Communications of the ACM, 40(1):39–45,

1997.

[5] Gregor von Laszewski and Kaizar Amin. Grid

Middleware, chapter Middleware for Communications,

pages 109–130. Wiley, 2004. Available online at:

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--

grid-middleware.pdf

[6] Parvin Asadzadeh, Rajkumar Buyya, Chun Ling Kei,

Deepa Nayar, and Srikumar Venugopal. Global grids and

software toolkits: a study of four grid middleware

technologies. Web Published, 2004. Available online at:

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/040

7001

[7] UNICORE. UNICORE objectives. Web Published, 2007.

Available online at: http://www.unicore.eu/unicore/

[8] David Snelling. UNICORE and the open grid services

architecture, pages 701–712. Wiley, 2003.

[9] Parvin Asadzadeh, Rajkumar Buyya, Chun Ling Kei,

Deepa Nayar, and Srikumar Venugopal. Global grids and

software toolkits: a study of four grid middleware

technologies. Web Published, 2004. Available online at:

http://www.citebase.org/abstract?id=oai:arXiv.org:cs/040

7001

[10] Legion. The Legion project. Web Published, 2007.

Available online at: http://legion.virginia.edu/

[11] Douglas Thain, Todd Tannenbaum, and Miron Livny.

Distributed computing in practice: the Condor

experience. Concurrency and Computation: Practice and

Experience, 17(2–4):323–356, 2004.

[12] A Goldchleger, F Kon, A Goldman. InteGrade:

object‐oriented Grid middleware leveraging the idle

computing power of desktop machines.

http://www.researchgate.net/publication/220105482_Inte

Grade_object-

oriented_Grid_middleware_leveraging_the_idle_computi

ng_power_of_desktop_machines/file/d912f50c63abdc87

3e.pdf

[13] Hassan, K ; Abbes, H. ; Jemni, M. "From desktop grid to

cloud computing based on BonjourGrid middleware".

Electrical Engineering and Software Applications

(ICEESA), 2013 International Conference.

[14] L Young, S McGough, S Newhouse. Scheduling

architecture and algorithms within the ICENI Grid

middleware,

http://www.lesc.ic.ac.uk/iceni/downloads/materials/AH

M2003/scheduling.pdf

[15] Hasanzadeh, M. Meybodi, M.R. "Deployment of gLite

middleware: An E-Science grid infrastructure" Electrical

Engineering (ICEE), 2013 21st Iranian Conference.

[16] E Caron, F Desprez, D Loureiro. Cloud computing

resource management through a grid middleware: A case

study with DIET and eucalyptus http://hal.archives-

ouvertes.fr/docs/00/43/57/85/PDF/RR-7096.pdf

[17] S Gorlatch, J Dünnweber. From grid middleware to grid

applications: Bridging the gap with HOCs

http://wiki.ci.uchicago.edu/pub/VDS/DslCS/HOCAbstra

ct/HOCbasics.pdf

Khurram Ali Shah has done MS in Software Engineering

from University of Engineering and Technology Taxila

Pakistan. He is working as Software Quality Assurance

engineer at Altair Technologies Islamabad. His research

interest includes Grid Computing, Data Communication,

Software Project Management, Software Quality Assurance

and Software Testing.

Ali Javed is serving as an Assistant Professor in the

Department of Software Engineering at UET Taxila, Pakistan.

He is also a PhD Scholar in Computer Engineering

Department at UET Taxila, Pakistan. He has received his MS

degree in Computer Engineering from UET Taxila, Pakistan

in February, 2010. He received Chancellor’s Gold Medal in

MS Computer Engineering degree and became the first MS

student in the history of UET Taxila to be awarded

http://www.globus.org/alliance/publications/papers/anatomy.pdf
http://www.globus.org/alliance/publications/papers/anatomy.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski--grid-middleware.pdf
http://www.unicore.eu/unicore/
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hassan,%20K..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Abbes,%20H..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Jemni,%20M..QT.&newsearch=true
http://www.lesc.ic.ac.uk/iceni/downloads/materials/AHM2003/scheduling.pdf
http://www.lesc.ic.ac.uk/iceni/downloads/materials/AHM2003/scheduling.pdf
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Hasanzadeh,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Meybodi,%20M.R..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6587675
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6587675
http://hal.archives-ouvertes.fr/docs/00/43/57/85/PDF/RR-7096.pdf
http://hal.archives-ouvertes.fr/docs/00/43/57/85/PDF/RR-7096.pdf
http://wiki.ci.uchicago.edu/pub/VDS/DslCS/HOCAbstract/HOCbasics.pdf
http://wiki.ci.uchicago.edu/pub/VDS/DslCS/HOCAbstract/HOCbasics.pdf

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 19, May 2014

39

Chancellor’s Gold Medal. He has received B.Sc. degree in

Software Engineering from UET Taxila, Pakistan, in

September, 2007. He got 3rd position in Software Batch-

2003F in BS Software Engineering degree. His areas of

interest are Digital Image Processing, Computer vision, Video

Summarization, Grid Computing, Mobile Application

Development, Software Requirements Engineering, Software

Quality Assurance and Software testing.

Muhammad Irfan is currently serving as Senior Service

Quality and Standards Analyst in Al Jazeera Media Network.

He is graduated from University of Engineering and

Technology in Computer Software Engineering. His area of

interests are Grid Computing, Project Management and

Service Management.

IJCATM : www.ijcaonline.org

