
International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

22

Mobile Stand-alone Application Code Off-loading:

Architecture and Challenges

Abhishek Dwivedi

NMIMS, Mumbai

Padmaja Joshi
CDAC, Mumbai

Abhay Kolhe
NMIMS, Mumbai

ABSTRACT

Dynamically migrating code for execution from a device to a

remote server has been a topic of active research for nearly a

few years now. With the advent and the rapid growth of

mobile devices, this area has been extended to mobile

operating systems. Although mobile devices such as phones

and tablets are available with increasing the hardware

specifications to include more RAM and CPU cores, they do

not often keep up with the demands of ever growing mobile

applications. In the context of mobile devices, this field has

come to be known as Mobile Cloud Computing (MCC). It

combines mobile computing and cloud computing to achieve

dynamic code migration of applications to a remote server,

achieve reduced power usage and faster execution. In this

paper, a review of the most prevalent techniques of MCC that

are shaping this field is done. The paper also covers the

complete architecture that is used to achieve these results.

Along with various architectures, approaches a study of their

advantages and disadvantages, as well as the way forward is

discussed.

General Terms

Mobile Cloud Computing, code migration, code off-loading.

Keywords

MCC, code offloading, code migration, class-level offload,

method-level offload, thread-level offload, code

augmentation, Mobile Cloud Computing.

1. INTRODUCTION
The technologies of cloud computing and mobile computing

have in the past few years, witnessed tremendous growth

independently of each other. Since the past few years, mobile

application ecosystems such as Android, iOS, and Windows 8

have become popular for hosting many types of mobile

applications [1]. This has led to an entire industry specializing

in commercial applications that run on mobile devices. Such

applications are providing ever richer functionality on mobile

devices.

Cloud computing can be defined as the aggregation of

computing as a utility and software as a service where

applications are delivered as services over the internet and the

hardware and systems software in data centers provide those

services [1]. Cloud computing enables an application to utilize

computing resources that are remotely located, that is termed

as a cloud. These resources have better computing power,

memory than single standalone devices.

On the other side, mobility has become an important

characteristic of the computing environment. However,

mobile applications that require to process real-time data from

sensors such as GPS or cameras, or video games and image

processing applications are computationally intensive. Such

applications demand significant battery consumption as well

as a good computing power, and thus restricting the

developers in implementing them for mobile devices [1]. It is

in this regard that Mobile Cloud Computing (MCC) has been

developed as a new paradigm. In recent years, MCC has been

harnessed to address these problems. Thus, portions of the

mobile application can be offloaded to the cloud to exploit the

larger resources of the cloud. This frees the mobile device of

at least that part of the computation burden, thus reducing its

battery consumption. In this paper, some of the recent

techniques used for offloading the code are discussed with the

architecture that is followed to achieve this goal.

The paper is organized as follows. The next section provides

the background of the mobile cloud computing concept.

Section 3 discusses the basic architecture that is common to

all mobile code offloading techniques. Section 4 discusses the

major approaches to achieve mobile code offloading, their

issues, and advantages and disadvantages of each. Section 5

discusses the impact of offloading especially in terms of the

power consumption of the mobile device and the effect of

network latency. Section 6 concludes the paper with

identification of the work that needs to be done in this area.

2. BACKGROUND
The migration techniques discussed in this paper primarily

focus on either reducing battery usage, or reducing the CPU

cycles of the mobile device [2] [3] [4] for executing them. The

applications chosen are not client-server ones but are mainly

standalone. The standalone applications are divided in such a

way that a portion of it will run on mobile device and the

remaining portion may be executed on the remote server to

improve battery usage and its performance. For this the

portion that can be executed on the remote server needs to be

migrated to it. This migration is also affected by the network

strength between the mobile device and the remote server.

The stronger the network strength, the greater are the chances

of a portion of the app’s code to be dynamically offloaded to

the server or cloud.

The decision to offload the code is also taken by measuring

certain metrics about the performance outcomes of executing

the code locally, vis-à-vis executing it remotely. Most

techniques ensure that anchored classes, i.e. classes which use

the mobile device’s hardware such as camera, sensors, GPS

etc. are not offloaded. There are also provisions to allow code

migration via downward task migration [3]. This allows for

offloaded classes to exploit the functioning of the mobile

device’s hardware such as its cameras or sensors.

It must be emphasized that MCC can involve ‘pervasive

computing’, in that data and applications can freely move

amongst mobile devices and remote servers [3]. This can

result in code migration that can take place across other

mobile devices or servers in a cloud. Alternately, MCC may

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

23

be implemented on the client-server “push-pull” model, where

requests sent by the client are acted upon by a single

dedicated server.

3. BASIC ARCHITECTURE
This section details the basic architecture followed while code

offloading.

The application whose code is to be augmented is first

subjected to a transformation by injecting code in such a way

that the architecture is induced into the application. Needless

to mention, the injection must also maintain the correctness of

the original application from the user’s point of view. As a

first step of transformation, all classes that can be migrated to

cloud or remote server for execution are identified and/ or

marked. Typically these are the classes that do not

communicate with the hardware of the mobile device, such as

cameras, GPS sensor, gravity sensor or are GUI classes [4].

There are two possible approaches to this. In the first

approach anchored classes (classes that use hardware of the

mobile device and must execute on the mobile device only)

are marked whereas in the second one remotable classes are

marked. In the first approach, there is a possibility of incorrect

behavior if some class is missed through the scrutiny and is

not marked as anchored. The second approach may affect the

performance of the application but not the behavior [5].

Hence, a majority of the approaches are seen to follow the

second approach.

The entire application resides at the client, which is the

mobile device in this case. At the server end, the replica of the

client’s VM is created, with only the remotable part, or the

complete application. The code at the server end may be

transferred from the client or upon a request from the client

server may download it from the play store or a particular

location. In the former approach large bandwidth is required

and hence, usually not preferred.

At run time, offloading can be done at the class level, the

method level, or at the thread level.

3.1 What to Offload?
It is typically observed that offloading improves the

performance of the application running on the mobile device

as the server or cloud architecture on which the code is

offloaded has better computing power as compared to the

mobile device. There is a direct correlation between execution

speed and Round Trip Time (RTT), as well as between

execution time and the latency of the network connection. The

higher the RTT, the greater is the latency or waiting period of

the application, which in turn increases the runtime, as well as

the power consumption of the application.

The offloading should be performed in such a manner that the

correctness of the application’s execution is maintained. The

right flow of execution shall ensure that even after offloading

portions of the application to a remote server, the execution is

as expected.

One approach is to offload all execution to the server that

does not need device-dependent hardware resources (such as

camera, motion sensors) because it is assumed that the server

has greater computational resources than any mobile device.

However, the conditions to offload dynamically may not

always be favorable as we shall see later. The favorability to

offload may also depend on the section of code to be

offloaded. For instance, in some approaches if the section of

code utilizes native APIs that are dependent on the underlying

OS / hardware, then such code cannot be offloaded. Similarly,

most approaches do not offload those portions of the code that

use device specific hardware like GPS, camera, motion

sensors etc. The execution of such code is left to the device

itself.

3.2 Factors Outside the Code
The main factors outside the code that influence the decision

to offload the execution of a particular class are the network

strength, location of the remote server (as it affects RTT) and

the power being consumed by a section of the application.

Depending on these, the offloading mechanism may defer

offloading to the server in two corresponding scenarios. The

first scenario arises if the network strength is low (such as in a

2G or 3G network) or if RTT is above a threshold. In this

case, the cost of power of sending data on a weak network,

and listening for a response back from the server may

altogether be greater than the cost of local execution. The

second scenario may arise when the size of the transmitted

data is too large. This results in the cost of offloading (in milli

Joules) being higher than the cost of running the class on the

mobile device [4].

3.3 Dependency Within the Code
Logically the remotable classes that need high computing

should be migrated to the remote server or cloud. In addition

to these, it may be necessary to offload even those classes that

the offloading mechanism does not flag as being heavy on

system resources. These classes are those that are very likely

to be called by the offloaded classes. If they are not offloaded,

the communication between the mobile device and the remote

server may increase. This increases the waiting time, thereby

increasing the power consumption spent in listening to

responses, eventually reducing the speed of execution of the

application. Code migration is also performed to offload those

classes that are tightly coupled with the offloaded classes [4].

In this technique, a directed call graph is constructed where

the vertices represent the classes, and the edges represent the

direction of the invocation. All the classes that are grouped

together in the call graph are considered to be migrated

together.

3.4 Profiler
In dynamic analysis, the profiler service comes into picture.

The purpose of the profiler is to compute the runtime costs of

the various parts of an application. These costs are typically

power consumption and CPU cycles. The profiler also keeps

monitoring physical parameters such as power consumption,

available bandwidth and network latency. If a class method is

deemed to be computationally intensive at runtime, the

profiler can mark it to be offloaded to the remote server.

However, the final decision to offload rests with the

offloading mechanism that shall weigh other factors like

network strength and latency also, before offloading a

particular method for execution.

3.5 Static Analysis and Clustering
The decision to offload depends on the cost of computation of

particular methods within classes. This can be done by a

combination of static analysis, and profiling the methods at

runtime.

In static analysis, a call-graph of the application is

constructed. The nodes consist of classes or particular

methods within classes, whereas directed edges represent the

invocations [2][4][5]. The callers or callees are typically

methods of classes, or classes themselves [4]. Nodes may also

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

24

contain corresponding CPU cycles or power consumption

figures (in milli Joules). Using this, an estimate of the power

consumption, and an estimate of frequency of calls to a class

(or a function within a class) is prepared.

Classes that are likely to invoke each other can also be

clustered [5]. These are offloaded altogether or made to reside

The basic architecture of this model of mobile cloud

computing techniques is shown in Fig 1. A mobile device

hosts an application, and also communicates with the remote

server/ VM. The server/VM on cloud has either the entire

application, or at least the remotable portion of the application

hosted on the client as discussed previously.

The Listeners at both ends are used for communication

between the mobile device and remote server / cloud. A

socket connection (either TCP or a normal socket) is

established between the two listeners prior to the

Fig 1: Basic model of code offloading in MCC

at the local device, in order to reduce the latency of

communication. For this purpose also, a directed call-graph is

constructed.

Another component that takes decision of offloading is

profiler. The profiler takes input such as CPU cycles

required, network bandwidth available etc. Based on these

parameters, profilers provides info if the condition is suitable

to offload or not. Using inputs from the static call-graph and

the profiler, the system dynamically decides to migrate the

instance of a class onto the remote server for execution. This

procedure is also termed as dynamic profiling [2].

4. OFFLOADING APPROACHES
Based on the inputs of the profiler, the decision-making unit

initiates the process of offloading the code. There are two

main paradigms by which this is achieved.

4.1 Class Level/method Level Offload
In this paradigm, the most granular unit of offloading or

migration is always the class. Any class (or particular methods

within the class) that is deemed to be computationally heavy,

is a candidate to be offloaded during runtime, provided certain

favorable conditions are met. At runtime, the cost of

execution of particular methods may be computed. This cost

is typically in terms of power consumption. If the network is

found to be strong enough, and if the cost of offloading is

determined to be lesser than the cost of local execution, then

that portion of the code is offloaded.

commencement of execution of the application at the client.

4.1.1 Requirement of proxy creation
As the execution of a class is decided dynamically a proxy

class needs to be created for every remotable class. Proxy

classes can be implemented using the relevant in-built

libraries of Java, or refactoring tools such as Dexmaker[9].

Thus, for every instance of a remotable class, a corresponding

proxy object is also generated. All invocations to the

remotable instance happen via the proxy object of that

instance. If a remotable instance resides locally on the device,

the proxy transfers control of execution to the instance.

Otherwise, the proxy transfers control to the remote server /

cloud for execution. An RPC mechanism can be used for

communication as it encapsulates the method invocation, its

arguments and other details, and transmits the same to the

remote server. After execution, the results are transmitted

across to the mobile device.

4.1.2 Synchronization
It is imperative that the instances of remotable classes on the

mobile device should be synchronized with the corresponding

instances on the server. If any remotable method is invoked,

then based on the inputs of the profiler the system may decide

that its execution must be migrated to the server. In such a

scenario the following sequence of events follow. The client

first transmits the latest copy of an object to the server. This

transmission makes sure that the copy at the server is now

synchronized with the client's copy. Along with the

synchronized object, the client also encapsulates the signature

of the method being invoked and its argument list to be

transmitted to the server. The updated values of the object are

then used during the execution of methods at server/cloud

end.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

25

After execution, the server sends the modified object to the

mobile device. This along with results if any, are transmitted

back to the client mobile device. At the client end the results

are returned to the appropriate caller for further execution.

The transmission of the modified object from the server back

to the client ensures that the client also has the latest copy of

the object. Keeping the latest copy of an object ensures

subsequent execution done locally is smooth in the event that

the profiler decides that execution must now be done locally.

As mentioned earlier, this situation may arise in case of a

drastic drop in network bandwidth, high network latency etc.

4.1.3 Implementations with Class / Method Level

Offload
MAUI [4] is one of the base techniques, that has been used as

a benchmark for later work in the field. It migrates code at the

method-level. However, it requires programmers of the

mobile application to annotate the code with certain pre-

defined keywords to let the offloader application determine at

runtime, which portion can be offloaded to the remote server /

cloud. A similar approach is also followed in [8], in which

programmers are also required to design their application in

terms of services requested by AIDL invocations. The basic

premise of MAUI is to combine the approaches of fine-

grained code offload, with minimal programmer intervention

[4] and changes required to the applications. Microsoft’s .Net

CLR language has been used in development, though its

techniques could equivalently be applied to the Android

environment also. MAUI is able to create two versions of the

application, one that runs on the mobile device and the other

on the remote server. It also uses a profiler to determine the

runtime behavior of classes (in terms of milli Joules or CPU

time). Then, it factors the network connectivity in terms of

strength and RTT to determine if a computationally intensive

portion can be offloaded [4]. This computation is done by

serializing the state of the offloaded method and determining

the cost of transfer over the existing network.

The Profiler keeps monitoring the energy consumption or

CPU cycles of the classes currently running. The optimization

condition maximizes the energy that a method will consume

upon executing locally and if it were to be transferred over the

existing network. The constraints are the time to execute

locally and the transfer time being less than a pre-defined

threshold L [4].

DPartner [5] is one of the more recent implementations, built

upon previously known techniques, including MAUI. Like

MAUI, this technique also offloads only a portion of the code

dynamically at runtime. Unlike MAUI it does not require the

programmer to specifically annotate code to be marked for

offloading. It automatically scans the class files and marks

those classes as remotable, which use the sensor hardware of

the mobile device [5].

4.2 Thread Level Offload

This paradigm is in contrast to the class level / method level

offload. The main difference is that it operates at the further

granularity of a thread. To achieve this, it requires access to

and interactions with the heap or stack of the JVM running the

application. Therefore, modifications by programmers to the

code of the original application are no longer necessary.

Instead, it either requires permanent modifications to the

underlying JVM, or constructing a customized JVM that

implements the offloading mechanism. One particular

technique inserts a middleware that runs between the

application and the underlying JVM [3].

4.2.1 Implementations with Thread level offload
CloneCloud adopts an approach that is very similar to that of

MAUI. However, it offloads even fine-grained code at the

method level instead of at the class level [2], by spawning

threads that are migrated to the remote server/cloud. The

primary goal in this technique is to obtain an improvement in

the execution time of the application. The results of

improvements in speed and energy consumption obtained by

the authors follow the same patterns, as those observed in case

of MAUI and DPartner. Before runtime, CloneCloud uses to

static analysis to first designate partitions in a program’s code

that are suitable for offloading. These partitions are marked as

execution points, one at the start and the other at the end of

the partition. At runtime, when a starting execution point is

encountered, execution is first suspended. The suspended

thread would be, at that point of its execution be using states.

These consist of stack states, heap states and register contents

all belonging to the underlying JVM. These captured states

are also marked in the phone’s VM. The other threads on the

phone continue processing.

The necessary states needed to execute the code within the

partition (up to the ending execution point) are collected, and

spawned into a thread. This thread is then transferred by an

RPC mechanism to a remote cloud, where it is executed. The

executed thread and its changed states are then transferred

back to the mobile device, where it is merged with the original

thread. In effect, the new states of the thread received from the

cloud are updated in the device’s corresponding thread. After

merger, execution of the suspended thread resumes just after

the end of the partition.

COMET [7] (Code Offloading by Migrating Execution

Transparency) is a technique similar to CloneCloud, but by

using Distributed Shared Memory (DSM). DSM enables it to

offload fine-grained code to multiple nodes onto a cloud. This

raises concerns about synchronization between multiple

threads running on different cloud nodes. COMET manages

synchronization by enabling the device to pull all the changed

states of a particular method (or its partition) such as stacks,

method-level registers and heap objects, from the cloud nodes.

Then, it updates all the dirtied fields locally in a sequence

determined by the “happens-before” relationship. In this way,

the mobile device shall have the correctly updated states.

Some of the advantages of this technique are that it can

support multi-threading and migration of a thread at any finer

level. Like CloneCloud, COMET too requires modifications

in the JVM to achieve its purpose.

In CloneCloud [2] in order to decide which partition must be

offloaded, dynamic profiling of the running application is

performed i.e. the most heavily used partitions of code are

analyzed. The network strength and latency at the point in

time are also profiled to determine a cost model of the code to

be offloaded [2]. If the cost to offload is lesser than the cost of

local execution, then that partition is marked for offloading, .

Once a partition is marked to be offloaded, and when the

control reaches at the beginning of the partition (the first

execution point), execution is suspended and the current states

of the method are collected.

In systems such as CloneCloud and COMET, when a thread is

received at the cloud, its states are recreated at the cloud, so

that the thread is ready for execution. After the thread has

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

26

finished execution, the states of the thread are sent back to the

mobile device. In CloneCloud, at the device end the thread

contexts received from the cloud are overlaid over the

suspended thread. The local heap states, registers and stacks

are updated with those received from the cloud. COMET first

uses the “happens-before” relationships to arrive at the final

values of states, before doing this activity. The suspended

thread is resumed again for execution. CloneCloud also

maintains a table at both the device and cloud end. For every

object in the heap, it contains an ID at the device, and same

ID at the cloud. The table is synchronized at both ends, to

facilitate garbage collection of objects, destroyed at the other

end.

exCloud uses a Stack-On-Demand approach to offload code

on the cloud [3]. It introduces a middle-ware system that is

able to migrate tasks as coarse as VM instances, to as fine as

run-time stack frames [3]. It also supports multiple cloud

nodes so that parallel programs can be executed, thus

providing what the authors argue is true cloud mobility

instead of a “push-pull” mechanism in a client-server system

[3]. The cloud relies on multiple cloud nodes to execute an

application. exCloud however places a middleware between

the application and the underlying JVM to achieve its goals.

A system somewhat similar to exCloud, called MobiCloud

has also been developed. It extends the functionality of the

server to treat mobile devices in an ad-hoc network as a cloud

[6]. It is built on top of the MANET network, and facilitates

routing, allocation of resources and security [6]. It also

utilizes a concept known as concept-aware routing, according

to which battery power, CPU power, bandwidth are factored

to make routing decisions [6]. This helps in efficient

migration of the code of a mobile app during runtime.

Determining which portion of the code to migrate is done

dynamically by exCloud and COMET. COMET makes every

attempt to transmit dirtied data to the cloud. exCloud’s Stack-

on-Demand approach migrates heap data based on its

threshold of loading. The greater the loading, the more likely

it is to be migrated to the cloud. Migration can also be

performed if there are runtime exceptions. In CloneCloud,

static analysis is performed to first scan the code of the entire

application, to determine the partitions suitable for offload.

In all the techniques however, certain constraints determine

the kind of code that can be offloaded. The code should not

access native code i.e. device or platform dependent code

(typically written in C). Also, it must not access device

hardware such as cameras, GPS or other sensors. The latter

constraint is also present in the techniques focusing on class

/method level offload.

4.3 Metrics to Determine Offloading
Most techniques discussed in the previous sections, such as

MAUI, DPartner, CloneCloud and MobiCloud use

optimization techniques to dynamically determine whether a

section of the code must be offloaded.

The cost to execute a particular code entity (like a class, a

method or code within a method) is typically in terms of

energy consumed (in milli-Joules), CPU cycles and memory.

This cost is compared to that of the cost of migration, under

favorable conditions. The most favorable condition is when

network latency is low. If the cost to offload the code entity

under current conditions is lesser than the cost were local

execution to continue, offloading is performed.

5. IMPACT OF CODE OFFLOADING
Interestingly the Power Saver Mode (PSM) may not always

result in optimum performance of a mobile device under

dynamic code offloading. The reason is because if the

latencies approach the sleep interval, the mobile device

expends energy in waiting for a response besides causing the

application to slow down [4].

Higher RTT between the device and the remote server

increases the time that the device waits for responses from the

server, which in turn increases the power consumption of the

device. Thus, the performance of offloading systems within

3G networks is expectedly poorer than within Wi-Fi

networks. Even within a network, increasing latencies due to

RTT values can result in increased power consumption on the

part of the mobile device. A similar general pattern of power

consumption is followed by most offloading techniques

discussed, both under Wi-Fi and 3G networks.

Another and equally important factor is the bandwidth of the

network. A higher bandwidth network allows for larger data

transfer whereas a lower bandwidth increases the latency of

transfer, thus actually slowing down overall execution of the

app.

The energy consumption (in milli Joules) is the highest when

the entire application runs on the mobile device. As discussed

earlier, even within a strong network such as Wi-Fi,

increasing RTT directly impacts the energy consumption due

to increased latency. Lastly, the energy consumption increases

sharply in case the network is a 3G network, thus indicating

the effect of reduced bandwidth influencing the system to

defer offloading more often and continue execution on the

mobile device.

6. CONCLUSION AND FUTURE WORK
This paper reviews the most recent and prevalent work done

in the field of Mobile Cloud Computing. The paper details the

two major approaches class or method level code offload and

thread level code offload. The former can be implemented by

modification to the source and may also require programmers

to annotate certain methods, though one technique eliminates

this. It is also platform and architecture independent. The

latter approach requires permanent modifications to the

underlying JVM, but has the disadvantage that the application

may not be portable across platforms and devices. However,

unlike the first approach, this one has finer granularity of code

offload, in that sections of methods with only a subset of the

method’s states can be offloaded remotely for execution. The

class-level/method-level approach on the other hand is

coarser. Both class-level and thread-level offloading

techniques can be extended for multi-threaded applications.

But, the finer granularity of thread-level techniques may also

come at the cost of native code and native API’s being

difficult or impossible to offload remotely. This problem is

nearly non-existent in the class-level techniques of code

migration. However, code that uses device hardware such as

cameras and sensors is not offloaded in most techniques.

Static analysis techniques are employed to a much greater

extent in class-level approach, to identify code that can or

cannot be offloaded at runtime. Most thread-level offloading

techniques rely on the demand or usage statistics of JVM

states such as heap objects, stacks and registers.

International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

27

The primary limitation of thread-level offload is that native

level states cannot be offloaded, at least not in most of the

cases. The class-level offloading techniques deal with coarse-

level offloads, which is why they may impose greater

penalties on the bandwidth. The way forward may be to

combine the positives of both approaches: finer-grained

offload may be required in the class/method level approach so

as to reduce network overheads, thus improving speeds of

execution. This would especially be useful under networks

with low bandwidths and/or high RTT. On the other hand,

thread-level offloading techniques have to find means of

executing native code/APIs remotely. A library of well known

APIs and which is defined at the cloud may also help.

Protocols to transfer relevant address spaces with as little

overheads as possible may have to be developed in such

cases.

Finally, the future of MCC promises a lot of advancement and

delivery of many more of its goals. The goal will be to bring

all the capabilities of a desktop on a mobile device. It will not

be surprising if a lot of research work is seen in this domain in

the coming years.

7. ACKNOWLEDGMENTS
Our thanks are due to the team at C-DAC Mumbai and

NMIMS University, with whose support this study was made

possible.

8. REFERENCES
[1] Niroshinie Fernando, Seng W. Loke, Wenny Rahayu.

2013 Mobile Cloud Computing: A Survey. Future

Generation Computer Systems 29.

[2] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis,

Mayur Naik, Ashwin Patti. 2011 CloneCloud: Elastic

Execution between Mobile Device and Cloud. In

Proceedings of Eurosys ’11.

[3] Ricky K. K. Ma, King Tin Lam, Cho-Li Wang. 2011 ex-

Cloud, Transparent Runtime Support for Scaling Mobile

Applications in Cloud. In Proceedings of the

International Conference on Cloud and Service

Computing.

[4] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho,

Alec Wolman, Stefan Saroiu, Ranveer Chandra,

Paramvir Bahl. 2010. MAUI: Making Smartphones Last

Longer with Code Offload. In Proceedings of

MobiSys’10.

[5] Ying Zhang, Gang Huang, Xuanzhe Liu1, Wei Zhang,

Hong Mei, Shunxiang Yang. 2012. Refactoring Android

java Code for On-Demand Computation Offloading. In

the Proceedings of OOPSLA’12.

[6] Dijiang Huang, Xinwen Xhang, Myong Kang, Jim Luo.

2010. MobiCloud: Building Secure Cloud Framework

for Mobile Computing and Communication. In

Proceedings of Fifth IEEE International Symposium on

Service Oriented System Engineering.

[7] Mark S. Gordon, D. Anoushe Jamshidi, Scott Mahlke, Z

Morley Mao, Xu Chen. 2012. COMET:Code Offload by

Migrating Execution Transparently. In Proceedings of

10th USENIX Symposium on Operating Systems Design

and Implementation.

[8] Dejan Kovachev, Ralf Klamma. Framework for

Computation Offloading in Mobile Cloud Computing.

International Journal of Artificial Intelligence and

Interactive Multimedia, issue 7, volume 1.

[9] Dexmaker: Programmatic code generation for

Android,http://code.google.com/p/dexmaker

IJCATM : www.ijcaonline.org

