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ABSTRACT 

Dynamically migrating code for execution from a device to a 

remote server has been a topic of active research for nearly a 

few years now. With the advent and the rapid growth of 

mobile devices, this area has been extended to mobile 

operating systems. Although mobile devices such as phones 

and tablets are available with increasing the hardware 

specifications to include more RAM and CPU cores, they do 

not often keep up with the demands of ever growing mobile 

applications. In the context of mobile devices, this field has 

come to be known as Mobile Cloud Computing (MCC). It 

combines mobile computing and cloud computing to achieve 

dynamic code migration of applications to a remote server, 

achieve reduced power usage and faster execution.  In this 

paper, a review of the most prevalent techniques of MCC that 

are shaping this field is done. The paper also covers the 

complete architecture that is used to achieve these results. 

Along with various architectures, approaches a study of their 

advantages and disadvantages, as well as the way forward is 

discussed.   
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Keywords 
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1. INTRODUCTION 
The technologies of cloud computing and mobile computing 

have in the past few years, witnessed tremendous growth 

independently of each other. Since the past few years, mobile 

application ecosystems such as Android, iOS, and Windows 8 

have become popular for hosting many types of mobile 

applications [1]. This has led to an entire industry specializing 

in commercial applications that run on mobile devices. Such 

applications are providing ever richer functionality on mobile 

devices. 

Cloud computing can be defined as the aggregation of 

computing as a utility and software as a service where 

applications are delivered as services over the internet and the 

hardware and systems software in data centers provide those 

services [1]. Cloud computing enables an application to utilize 

computing resources that are remotely located, that is termed 

as a cloud. These resources have better computing power, 

memory than single standalone devices.  

On the other side, mobility has become an important 

characteristic of the computing environment. However, 

mobile applications that require to process real-time data from 

sensors such as GPS or cameras, or video games and image 

processing applications are computationally intensive. Such 

applications demand significant battery consumption as well 

as a good computing power, and thus restricting the 

developers in implementing them for mobile devices [1]. It is 

in this regard that Mobile Cloud Computing (MCC) has been 

developed as a new paradigm. In recent years, MCC has been 

harnessed to address these problems. Thus, portions of the 

mobile application can be offloaded to the cloud to exploit the 

larger resources of the cloud. This frees the mobile device of 

at least that part of the computation burden, thus reducing its 

battery consumption.  In this paper, some of the recent 

techniques used for offloading the code are discussed with the 

architecture that is followed to achieve this goal.  

The paper is organized as follows. The next section provides 

the background of the mobile cloud computing concept. 

Section 3 discusses the basic architecture that is common to 

all mobile code offloading techniques. Section 4 discusses the 

major approaches to achieve mobile code offloading, their 

issues, and advantages and disadvantages of each. Section 5 

discusses the impact of offloading especially in terms of the 

power consumption of the mobile device and the effect of 

network latency. Section 6 concludes the paper with 

identification of the work that needs to be done in this area.  

2. BACKGROUND 
The migration techniques discussed in this paper primarily 

focus on either reducing battery usage, or reducing the CPU 

cycles of the mobile device [2] [3] [4] for executing them. The 

applications chosen are not client-server ones but are mainly 

standalone.  The standalone applications are divided in such a 

way that a portion of it will run on mobile device and the 

remaining portion may be executed on the remote server to 

improve battery usage and its performance. For this the 

portion that can be executed on the remote server needs to be 

migrated to it. This migration is also affected by the network 

strength between the mobile device and the remote server. 

The stronger the network strength, the greater are the chances 

of a portion of the app’s code to be dynamically offloaded to 

the server or cloud. 

The decision to offload the code is also taken by measuring 

certain metrics about the performance outcomes of executing 

the code locally, vis-à-vis executing it remotely. Most 

techniques ensure that anchored classes, i.e. classes which use 

the mobile device’s hardware such as camera, sensors, GPS 

etc. are not offloaded. There are also provisions to allow code 

migration via downward task migration [3]. This allows for 

offloaded classes to exploit the functioning of the mobile 

device’s hardware such as its cameras or sensors. 

It must be emphasized that MCC can involve ‘pervasive 

computing’, in that data and applications can freely move 

amongst mobile devices and remote servers [3]. This can 

result in code migration that can take place across other 

mobile devices or servers in a cloud. Alternately, MCC may 
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be implemented on the client-server “push-pull” model, where 

requests sent by the client are acted upon by a single 

dedicated server. 

3. BASIC ARCHITECTURE 
This section details the basic architecture followed while code 

offloading. 

The application whose code is to be augmented is first 

subjected to a transformation by injecting code in such a way 

that the architecture is induced into the application. Needless 

to mention, the injection must also maintain the correctness of 

the original application from the user’s point of view. As a 

first step of transformation, all classes that can be migrated to 

cloud or remote server for execution are identified and/ or 

marked. Typically these are the classes that do not 

communicate with the hardware of the mobile device, such as 

cameras, GPS sensor, gravity sensor or are GUI classes [4]. 

There are two possible approaches to this. In the first 

approach anchored classes (classes that use hardware of the 

mobile device and must execute on the mobile device only) 

are marked whereas in the second one remotable classes are 

marked. In the first approach, there is a possibility of incorrect 

behavior if some class is missed through the scrutiny and is 

not marked as anchored.  The second approach may affect the 

performance of the application but not the behavior [5]. 

Hence, a majority of the approaches are seen to follow the 

second approach. 

The entire application resides at the client, which is the 

mobile device in this case. At the server end, the replica of the 

client’s VM is created, with only the remotable part, or the 

complete application. The code at the server end may be 

transferred from the client or upon a request from the client 

server may download it from the play store or a particular 

location. In the former approach large bandwidth is required 

and hence, usually not preferred. 

 

At run time, offloading can be done at the class level, the 

method level, or at the thread level. 

3.1 What to Offload? 
It is typically observed that offloading improves the 

performance of the application running on the mobile device 

as the server or cloud architecture on which the code is 

offloaded has better computing power as compared to the 

mobile device. There is a direct correlation between execution 

speed and Round Trip Time (RTT), as well as between 

execution time and the latency of the network connection. The 

higher the RTT, the greater is the latency or waiting period of 

the application, which in turn increases the runtime, as well as 

the power consumption of the application. 

The offloading should be performed in such a manner that the 

correctness of the application’s execution is maintained. The 

right flow of execution shall ensure that even after offloading 

portions of the application to a remote server, the execution is 

as expected. 

One approach is to offload all execution to the server that 

does not need device-dependent hardware resources (such as 

camera, motion sensors) because it is assumed that the server 

has greater computational resources than any mobile device. 

However, the conditions to offload dynamically may not 

always be favorable as we shall see later. The favorability to 

offload may also depend on the section of code to be 

offloaded. For instance, in some approaches if the section of 

code utilizes native APIs that are dependent on the underlying 

OS / hardware, then such code cannot be offloaded. Similarly, 

most approaches do not offload those portions of the code that 

use device specific hardware like GPS, camera, motion 

sensors etc. The execution of such code is left to the device 

itself. 

3.2 Factors Outside the Code 
The main factors outside the code that influence the decision 

to offload the execution of a particular class are the network 

strength, location of the remote server (as it affects RTT) and 

the power being consumed by a section of the application. 

Depending on these, the offloading mechanism may defer 

offloading to the server in two corresponding scenarios. The 

first scenario arises if the network strength is low (such as in a 

2G or 3G network) or if RTT is above a threshold. In this 

case, the cost of power of sending data on a weak network, 

and listening for a response back from the server may 

altogether be greater than the cost of local execution. The 

second scenario may arise when the size of the transmitted 

data is too large. This results in the cost of offloading (in milli 

Joules) being higher than the cost of running the class on the 

mobile device [4].  

3.3 Dependency Within the Code 
Logically the remotable classes that need high computing 

should be migrated to the remote server or cloud. In addition 

to these, it may be necessary to offload even those classes that 

the offloading mechanism does not flag as being heavy on 

system resources. These classes are those that are very likely 

to be called by the offloaded classes. If they are not offloaded, 

the communication between the mobile device and the remote 

server may increase. This increases the waiting time, thereby 

increasing the power consumption spent in listening to 

responses, eventually   reducing the speed of execution of the 

application. Code migration is also performed to offload those 

classes that are tightly coupled with the offloaded classes [4]. 

In this technique, a directed call graph is constructed where 

the vertices represent the classes, and the edges represent the 

direction of the invocation. All the classes that are grouped 

together in the call graph are considered to be migrated 

together. 

3.4 Profiler 
In dynamic analysis, the profiler service comes into picture. 

The purpose of the profiler is to compute the runtime costs of 

the various parts of an application. These costs are typically 

power consumption and CPU cycles. The profiler also keeps 

monitoring physical parameters such as power consumption, 

available bandwidth and network latency. If a class method is 

deemed to be computationally intensive at runtime, the 

profiler can mark it to be offloaded to the remote server. 

However, the final decision to offload rests with the 

offloading mechanism that shall weigh other factors like 

network strength and latency also, before offloading a 

particular method for execution. 

3.5 Static Analysis and Clustering 
The decision to offload depends on the cost of computation of 

particular methods within classes. This can be done by a 

combination of static analysis, and profiling the methods at 

runtime.  

In static analysis, a call-graph of the application is 

constructed. The nodes consist of classes or particular 

methods within classes, whereas directed edges represent the 

invocations [2][4][5].  The callers or callees are typically 

methods of classes, or classes themselves [4]. Nodes may also 
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contain corresponding CPU cycles or power consumption 

figures (in milli Joules). Using this, an estimate of the power 

consumption, and an estimate of frequency of calls to a class 

(or a function within a class) is prepared. 

Classes that are likely to invoke each other can also be 

clustered [5]. These are offloaded altogether or made to reside                                                                                    

The basic architecture of this model of mobile cloud 

computing techniques is shown in Fig 1. A mobile device 

hosts an application, and also communicates with the remote 

server/ VM. The server/VM on cloud has either the entire 

application, or at least the remotable portion of the application 

hosted on the client as discussed previously. 

The Listeners at both ends are used for communication 

between the mobile device and remote server / cloud. A 

socket connection (either TCP or a normal socket) is 

established between the two listeners prior to the

 

Fig 1: Basic model of code offloading in MCC 

at the local device, in order to reduce the latency of 

communication. For this purpose also, a directed call-graph is 

constructed. 

Another component that takes decision of offloading is 

profiler.  The profiler takes input such as CPU cycles 

required, network bandwidth available etc. Based on these 

parameters, profilers provides info if the condition is suitable 

to offload or not. Using inputs from the static call-graph and 

the profiler, the system dynamically decides to migrate the 

instance of a class onto the remote server for execution. This 

procedure is also termed as dynamic profiling [2]. 

4. OFFLOADING APPROACHES 
Based on the inputs of the profiler, the decision-making unit 

initiates the process of offloading the code. There are two 

main paradigms by which this is achieved. 

4.1 Class Level/method Level Offload 
In this paradigm, the most granular unit of offloading or 

migration is always the class. Any class (or particular methods 

within the class) that is deemed to be computationally heavy, 

is a candidate to be offloaded during runtime, provided certain 

favorable conditions are met. At runtime, the cost of 

execution of particular methods may be computed. This cost 

is typically in terms of power consumption. If the network is 

found to be strong enough, and if the cost of offloading is 

determined to be lesser than the cost of local execution, then 

that portion of the code is offloaded. 

commencement of execution of the application at the client. 

4.1.1 Requirement of proxy creation 
As the execution of a class is decided dynamically a proxy 

class needs to be created for every remotable class. Proxy 

classes can be implemented using the relevant in-built 

libraries of Java, or refactoring tools such as Dexmaker[9].  

Thus, for every instance of a remotable class, a corresponding 

proxy object is also generated. All invocations to the 

remotable instance happen via the proxy object of that 

instance. If a remotable instance resides locally on the device, 

the proxy transfers control of execution to the instance. 

Otherwise, the proxy transfers control to the remote server / 

cloud for execution. An RPC mechanism can be used for 

communication as it encapsulates the method invocation, its 

arguments and other details, and transmits the same to the 

remote server. After execution, the results are transmitted 

across to the mobile device. 

4.1.2 Synchronization 
It is imperative that the instances of remotable classes on the 

mobile device should be synchronized with the corresponding 

instances on the server. If any remotable method is invoked, 

then based on the inputs of the profiler the system may decide 

that its execution must be migrated to the server. In such a 

scenario the following sequence of events follow. The client 

first transmits the latest copy of an object to the server. This 

transmission makes sure that the copy at the server is now 

synchronized with the client's copy. Along with the 

synchronized object, the client also encapsulates the signature 

of the method being invoked and its argument list to be 

transmitted to the server.  The updated values of the object are 

then used during the execution of methods at server/cloud 

end. 
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After execution, the server sends the modified object to the 

mobile device. This along with results if any, are transmitted 

back to the client mobile device.  At the client end the results 

are returned to the appropriate caller for further execution. 

The transmission of the modified object from the server back 

to the client ensures that the client also has the latest copy of 

the object. Keeping the latest copy of an object ensures 

subsequent execution done locally is smooth in the event that 

the profiler decides that execution must now be done locally. 

As mentioned earlier, this situation may arise in case of a 

drastic drop in network bandwidth, high network latency etc. 

4.1.3  Implementations with Class / Method Level 

Offload 
MAUI [4] is one of the base techniques, that has been used as 

a benchmark for later work in the field. It migrates code at the 

method-level. However, it requires programmers of the 

mobile application to annotate the code with certain pre-

defined keywords to let the offloader application determine at 

runtime, which portion can be offloaded to the remote server / 

cloud. A similar approach is also followed in [8], in which 

programmers are also required to design their application in 

terms of services requested by AIDL invocations. The basic 

premise of MAUI is to combine the approaches of fine-

grained code offload, with minimal programmer intervention 

[4] and changes required to the applications. Microsoft’s .Net 

CLR language has been used in development, though its 

techniques could equivalently be applied to the Android 

environment also. MAUI is able to create two versions of the 

application, one that runs on the mobile device and the other 

on the remote server. It also uses a profiler to determine the 

runtime behavior of classes (in terms of milli Joules or CPU 

time). Then, it factors the network connectivity in terms of 

strength and RTT to determine if a computationally intensive 

portion can be offloaded [4]. This computation is done by 

serializing the state of the offloaded method and determining 

the cost of transfer over the existing network. 

The Profiler keeps monitoring the energy consumption or 

CPU cycles of the classes currently running. The optimization 

condition maximizes the energy that a method will consume 

upon executing locally and if it were to be transferred over the 

existing network. The constraints are the time to execute 

locally and the transfer time being less than a pre-defined 

threshold L [4]. 

DPartner [5] is one of the more recent implementations, built 

upon previously known techniques, including MAUI. Like 

MAUI, this technique also offloads only a portion of the code 

dynamically at runtime. Unlike MAUI it does not require the 

programmer to specifically annotate code to be marked for 

offloading. It automatically scans the class files and marks 

those classes as remotable, which use the sensor hardware of 

the mobile device [5]. 

4.2 Thread Level Offload 

This paradigm is in contrast to the class level / method level 

offload. The main difference is that it operates at the further 

granularity of a thread. To achieve this, it requires access to 

and interactions with the heap or stack of the JVM running the 

application. Therefore, modifications by programmers to the 

code of the original application are no longer necessary. 

Instead, it either requires permanent modifications to the 

underlying JVM, or constructing a customized JVM that 

implements the offloading mechanism. One particular 

technique inserts a middleware that runs between the 

application and the underlying JVM [3]. 

4.2.1 Implementations with Thread level offload 
CloneCloud adopts an approach that is very similar to that of 

MAUI. However, it offloads even fine-grained code at the 

method level instead of at the class level [2], by spawning 

threads that are migrated to the remote server/cloud. The 

primary goal in this technique is to obtain an improvement in 

the execution time of the application. The results of 

improvements in speed and energy consumption obtained by 

the authors follow the same patterns, as those observed in case 

of MAUI and DPartner. Before runtime, CloneCloud uses to 

static analysis to first designate partitions in a program’s code 

that are suitable for offloading. These partitions are marked as 

execution points, one at the start and the other at the end of 

the partition. At runtime, when a starting execution point is 

encountered, execution is first suspended. The suspended 

thread would be, at that point of its execution be using states. 

These consist of stack states, heap states and register contents 

all belonging to the underlying JVM. These captured states 

are also marked in the phone’s VM. The other threads on the 

phone continue processing. 

The necessary states needed to execute the code within the 

partition (up to the ending execution point) are collected, and 

spawned into a thread. This thread is then transferred by an 

RPC mechanism to a remote cloud, where it is executed. The 

executed thread and its changed states are then transferred 

back to the mobile device, where it is merged with the original 

thread. In effect, the new states of the thread received from the 

cloud are updated in the device’s corresponding thread. After 

merger, execution of the suspended thread resumes just after 

the end of the partition. 

COMET [7] (Code Offloading by Migrating Execution 

Transparency) is a technique similar to CloneCloud, but by 

using Distributed Shared Memory (DSM). DSM enables it to 

offload fine-grained code to multiple nodes onto a cloud. This 

raises concerns about synchronization between multiple 

threads running on different cloud nodes. COMET manages 

synchronization by enabling the device to pull all the changed 

states of a particular method (or its partition) such as stacks, 

method-level registers and heap objects, from the cloud nodes. 

Then, it updates all the dirtied fields locally in a sequence 

determined by the “happens-before” relationship. In this way, 

the mobile device shall have the correctly updated states. 

Some of the advantages of this technique are that it can 

support multi-threading and migration of a thread at any finer 

level. Like CloneCloud, COMET too requires modifications 

in the JVM to achieve its purpose. 

In CloneCloud [2] in order to decide which partition must be 

offloaded, dynamic profiling of the running application is 

performed i.e. the most heavily used partitions of code are 

analyzed. The network strength and latency at the point in 

time are also profiled to determine a cost model of the code to 

be offloaded [2]. If the cost to offload is lesser than the cost of 

local execution, then that partition is marked for offloading,  . 

Once a partition is marked to be offloaded, and when the 

control reaches at the beginning of the partition (the first 

execution point), execution is suspended and the current states 

of the method are collected. 

In systems such as CloneCloud and COMET, when a thread is 

received at the cloud, its states are recreated at the cloud, so 

that the thread is ready for execution. After the thread has 
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finished execution, the states of the thread are sent back to the 

mobile device. In CloneCloud, at the device end the thread 

contexts received from the cloud are overlaid over the 

suspended thread. The local heap states, registers and stacks 

are updated with those received from the cloud. COMET first 

uses the “happens-before” relationships to arrive at the final 

values of states, before doing this activity. The suspended 

thread is resumed again for execution. CloneCloud also 

maintains a table at both the device and cloud end. For every 

object in the heap, it contains an ID at the device, and same 

ID at the cloud. The table is synchronized at both ends, to 

facilitate garbage collection of objects, destroyed at the other 

end. 

exCloud uses a Stack-On-Demand approach to offload code 

on the cloud [3]. It introduces a middle-ware system that is 

able to migrate tasks as coarse as VM instances, to as fine as 

run-time stack frames [3]. It also supports multiple cloud 

nodes so that parallel programs can be executed, thus 

providing what the authors argue is true cloud mobility 

instead of a “push-pull” mechanism in a client-server system 

[3]. The cloud relies on multiple cloud nodes to execute an 

application. exCloud however places a middleware between 

the application and the underlying JVM to achieve its goals. 

A system somewhat similar to exCloud, called MobiCloud 

has also been developed. It extends the functionality of the 

server to treat mobile devices in an ad-hoc network as a cloud 

[6]. It is built on top of the MANET network, and facilitates 

routing, allocation of resources and security [6]. It also 

utilizes a concept known as concept-aware routing, according 

to which battery power, CPU power, bandwidth are factored 

to make routing decisions [6]. This helps in efficient 

migration of the code of a mobile app during runtime. 

Determining which portion of the code to migrate is done 

dynamically by exCloud and COMET. COMET makes every 

attempt to transmit dirtied data to the cloud. exCloud’s Stack-

on-Demand approach migrates heap data based on its 

threshold of loading. The greater the loading, the more likely 

it is to be migrated to the cloud. Migration can also be 

performed if there are runtime exceptions. In CloneCloud, 

static analysis is performed to first scan the code of the entire 

application, to determine the partitions suitable for offload. 

In all the techniques however, certain constraints determine 

the kind of code that can be offloaded. The code should not 

access native code i.e. device or platform dependent code 

(typically written in C). Also, it must not access device 

hardware such as cameras, GPS or other sensors. The latter 

constraint is also present in the techniques focusing on class 

/method level offload. 

4.3 Metrics to Determine Offloading  
Most techniques discussed in the previous sections, such as 

MAUI, DPartner, CloneCloud and MobiCloud use 

optimization techniques to dynamically determine whether a 

section of the code must be offloaded. 

The cost to execute a particular code entity (like a class, a 

method or code within a method) is typically in terms of 

energy consumed (in milli-Joules), CPU cycles and memory. 

This cost is compared to that of the cost of migration, under 

favorable conditions. The most favorable condition is when 

network latency is low. If the cost to offload the code entity 

under current conditions is lesser than the cost were local 

execution to continue, offloading is performed. 

5. IMPACT OF CODE OFFLOADING 
Interestingly the Power Saver Mode (PSM) may not always 

result in optimum performance of a mobile device under 

dynamic code offloading. The reason is because if the 

latencies approach the sleep interval, the mobile device 

expends energy in waiting for a response besides causing the 

application to slow down [4]. 

Higher RTT between the device and the remote server 

increases the time that the device waits for responses from the 

server, which in turn increases the power consumption of the 

device. Thus, the performance of offloading systems within 

3G networks is expectedly poorer than within Wi-Fi 

networks. Even within a network, increasing latencies due to 

RTT values can result in increased power consumption on the 

part of the mobile device. A similar general pattern of power 

consumption is followed by most offloading techniques 

discussed, both under Wi-Fi and 3G networks. 

Another and equally important factor is the bandwidth of the 

network. A higher bandwidth network allows for larger data 

transfer whereas a lower bandwidth increases the latency of 

transfer, thus actually slowing down overall execution of the 

app. 

The energy consumption (in milli Joules) is the highest when 

the entire application runs on the mobile device. As discussed 

earlier, even within a strong network such as Wi-Fi, 

increasing RTT directly impacts the energy consumption due 

to increased latency. Lastly, the energy consumption increases 

sharply in case the network is a 3G network, thus indicating 

the effect of reduced bandwidth influencing the system to 

defer offloading more often and continue execution on the 

mobile device. 

6. CONCLUSION AND FUTURE WORK 
This paper reviews the most recent and prevalent work done 

in the field of Mobile Cloud Computing. The paper details the 

two major approaches class or method level code offload and 

thread level code offload. The former can be implemented by 

modification to the source and may also require programmers 

to annotate certain methods, though one technique eliminates 

this. It is also platform and architecture independent. The 

latter approach requires permanent modifications to the 

underlying JVM, but has the disadvantage that the application 

may not be portable across platforms and devices. However, 

unlike the first approach, this one has finer granularity of code 

offload, in that sections of methods with only a subset of the 

method’s states can be offloaded remotely for execution. The 

class-level/method-level approach on the other hand is 

coarser. Both class-level and thread-level offloading 

techniques can be extended for multi-threaded applications. 

But, the finer granularity of thread-level techniques may also 

come at the cost of native code and native API’s being 

difficult or impossible to offload remotely. This problem is 

nearly non-existent in the class-level techniques of code 

migration. However, code that uses device hardware such as 

cameras and sensors is not offloaded in most techniques. 

Static analysis techniques are employed to a much greater 

extent in class-level approach, to identify code that can or 

cannot be offloaded at runtime. Most thread-level offloading 

techniques rely on the demand or usage statistics of JVM 

states such as heap objects, stacks and registers. 
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The primary limitation of thread-level offload is that native 

level states cannot be offloaded, at least not in most of the 

cases. The class-level offloading techniques deal with coarse-

level offloads, which is why they may impose greater 

penalties on the bandwidth. The way forward may be to 

combine the positives of both approaches: finer-grained 

offload may be required in the class/method level approach so 

as to reduce network overheads, thus improving speeds of 

execution. This would especially be useful under networks 

with low bandwidths and/or high RTT. On the other hand, 

thread-level offloading techniques have to find means of 

executing native code/APIs remotely. A library of well known 

APIs and which is defined at the cloud may also help. 

Protocols to transfer relevant address spaces with as little 

overheads as possible may have to be developed in such 

cases. 

Finally, the future of MCC promises a lot of advancement and 

delivery of many more of its goals. The  goal will be to bring 

all the capabilities of a desktop on a mobile device. It will not 

be surprising if a lot of research work is seen in this domain in 

the coming years. 
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