
`International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

17

Enhancing Security of Improved RC4 Stream Cipher by

Converting into Product Cipher

Nishith Sinha

Dept. of Computer Science &
Engineering

Manipal Institute of Technology
Manipal University, Manipal

Mallika Chawda
Dept. of Computer Science &

Engineering
Manipal Institute of Technology

Manipal University, Manipal

 Kishore Bhamidipati
Assistant Professor

Dept. of Computer Science &
Engineering

Manipal Institute of Technology
Manipal University, Manipal

ABSTRACT

RC4 is one of the most widely used stream ciphers which

finds its application in many security protocols such as Wi-Fi

Protocol Access (WPA) and Wired Equivalence Privacy

(WEP). RC4 algorithm has several weaknesses. In order to

overcome those weaknesses and enhance its security,

numerous modifications have been suggested. These

amendments destroy the basis of various cryptanalysis attacks

on RC4. One such significant modification was the algorithm

proposed by Jian Xie et al [1]. In this paper, we propose an

enhancement to this algorithm by converting it into a product

cipher and thereby enhancing its security.

General Terms

Cipher, Security, Stream Ciphers, Product Ciphers

Keywords

Cryptanalysis, RC4

1. INTRODUCTION
Stream ciphers process one bit or one byte at a time for

encryption or decryption. One of the cornerstones of a stream

cipher is the pseudorandom bit generator. The pseudorandom

bit generator takes a key as the input and produces a stream of

random bits as the output using a deterministic algorithm.

This stream of random bits is known as keystream. The

keystream is then combined, one bit or one byte at a time with

the plaintext to produce the corresponding ciphertext. RC4 is

a prime example of stream cipher which is widely used in

many security protocols such as Wi-Fi Protocol Access

(WPA) and Wired Equivalence Privacy (WEP). These

protocols use RC4 because it is fast, utilizes less resource and

is easy to implement [2, 3].

The RC4 algorithm which was initially proposed in 1987 uses

a variable length key and its operations are byte oriented. It

uses a deterministic algorithm to produce a random

permutation. The RC4 algorithm can be divided into two

phases: Key Scheduling Algorithm (KSA) and Pseudo

Random Generation Algorithm (PRGA). KSA makes use of

the variable length key to initialize a 256 Bytes array S. This

operation is known as the initialization of the S-block. The

key is then used to produce a random permutation of the

initialized array S. This marks the end of the KSA phase.

Once the array S has been initialized, the key is no longer

used. PRGA phase now begins. It produces a random

sequence of words from the permutation in S known as the

key stream. During the decryption process, the key stream is

then XORed with the plaintext to produce the ciphertext.

During decryption, the ciphertext is XORed with the

keystream to produce the plaintext. The algorithm can be

summarized as:

1.1 Key Scheduling Algorithm

for i = 0 to 255

S [i] = i;

j = 0;

for i = 0 to 255

j = (j + S [i] + K [i % key_length]) % 256;

swap (S[i], S[j]);

1.2 Pseudo- Random Generation Algorithm

i = 0, j = 0;

while (true)

i = (i + 1) % 256;

j = (j + S[i]) % 256;

swap (S[i], S[j]);

t = (S[i] + S[j]) % 256;

k= S[t];

For encryption, the keystream k is XORed with the next byte

of plaintext to produce the ciphertext. In case of decryption,

the keystream is XORed with the ciphertext to produce the

plaintext.

However, this algorithm suffers from many weaknesses that

have been exposed by various cryptanalysis attacks. The

cryptanalysis of RC4 can be broadly divided into two

categories: attacks focused on exploiting the randomness of

KSA and attacks focused on exploiting the properties of the

internal states of PRGA. Fluhrer et al. [4] discovered a major

weakness in the RC4 algorithm i.e. it is possible to completely

attack RC4 if some portion of the secret key is known. Paul

and Maitra [5] detected that it is possible to derive the secret

key from the initial state array using biases. Klein [6]

identified the statistical relation in between the output byte

generated and the value of S[j] at the time of output

generation. A number of attempts were made to improve RC4,

making it resistant to the weaknesses identified. Paul and

Preneel [7] developed a new algorithm RC4A, which was

resistant to most attacks that applied on RC4. However, even

in RC4A, there existed certain relations between the internal

states of the S-box. These relations were destroyed by “An

Improved RC4 Algorithm”, proposed by Jian Xie et al [1].

However, there is scope available to further enhance this

algorithm because it only uses permutation for encryption. In

this paper, we impose substitution to the Improved RC4

`International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

18

Algorithm making it a product cipher, thereby improving its

security.

2. PROPOSED ALGORITHM
The proposed algorithm is an extension of the Improved RC4

Stream Cipher Algorithm proposed by Jian Xie et al. [1]. It

uses three secret keys- two secret keys K1 and K2 as seeds for

Enhanced RC4 and K3 as the key for Vigenère Cipher

substitution. It also uses two S-Boxes S1 and S2. Both of them

contain N elements from 0 to N-1. The Key Scheduling

Algorithm is the same as original RC4 except that it uses two

S-boxes instead of one, as proposed in the Enhanced RC4

Algorithm.

In PRGA two output streams are obtained from S1 and S2. The

output streams are XORed with each other. The resulting

stream is then XORed with the plaintext P, to obtain the

intermediary ciphertext, X. This intermediary ciphertext is

then fed as the input of Vigenère Cipher. In this final phase of

the encryption process, substitution on the intermediary

ciphertext X takes place using the key K3. This gives us the

final ciphertext C. The encryption process is stated below-

Seed (K1 & K2)

 Stream1 Stream2

 Plaintext

 Intermediary Ciphertext (X)

 K3

 Ciphertext (C)

 Fig 1: Encryption Process using Proposed Algorithm

In the algorithm proposed, Vigenère Cipher is used in the

final phase of the encryption process to perform substitution.

Vigenère Cipher is a polyalphabetic stream cipher. Each

character of the intermediary ciphertext X is encrypted using

K3 as the key. This final phase of encrypting using Vigenère

Cipher can be summarized as follows-

Encryption: Ca = (Xa + ka) mod 256 – (Equation 1)

Where C = C0…..Cn is the Ciphertext, X = X0…..Xn is the

Intermediary Ciphertext and K3 = k0…..km is the key used.

Decryption process is similar to encryption obeying the laws

of symmetric cryptography algorithms. The ciphertext C is

first decrypted using Vigenère Cipher with K3 as the key. The

output of this process is the intermediary plaintext Y. In the

next phase, keys K1 and K2 are used as the seed for the

Pseudorandom Stream Generator using Improved RC4. Two

output streams are obtained as the output of the stream

generation phase. The output streams are XORed with each

other. The resulting stream is then XORed with the

intermediary plaintext Y to give the final plaintext P.

Decryption Process is stated below-

 Ciphertext (C)

 Seed (K1 & K2)

 Stream1 Stream2

 Intermediary Plaintext(Y)

 Plaintext (P)

 Fig 2: Decryption Process using Proposed Algorithm

The proposed algorithm can be summarized as follows-

Encryption:

for i=0 to 255

 S1[i]=i;

 S2[i]=i;

j1 = j2 = 0;

for i = 0 to 255

 j1 = (j1 + S1[i] + K1[i]) mod 256;

 swap (S1[i], S1[j1]);

 j2 = (j2 + S2[i] + K2[i]) mod 256;

 swap(S2 [i], S2[j2]);

i = jl= j2=a=0;

while (true)

 i = (i+1)%256;

 jl = jl + S1[i];

 swap (S1[i], S1[j1]);

 j2= j2 + S2[i];

 swap (S2 [i], S2[j2])

 Stream1= S1 [(S1 [i]+ S1[j1]) mod 256];

 Stream2= S2 [(S2 [i]+ S2[j2]) mod 256];

 swap (S1 [S2 [j1]], S1 [S2 [j2]]);

 swap (S2 [S1 [j1]], S2 [S1 [j2]]);

 X[a] = Stream1 XOR Stream2 XOR P[a];

 C[a] = (X[a] + K3 [a]) mod 256

 a=a+1;

Decryption:

for a=0 to length(Y) – 1

 if K3 [a] < C[a] then

 Y[a] = (C[a] – K3[a]) mod 256

Pseudorandom Stream Generation

using Improved RC4 Algorithm

Encryption using

Vigenère Cipher

Pseudorandom Stream Generation

using Improved RC4 Algorithm

Decryption using

Vigenère Cipher

`International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

19

 else

 Y[a] = (256 + C[a] – K3[a]) mod 256

for i=0 to 255

 S1[i]=i;

 S2[i]=i;

j1 = j2 = 0;

for i = 0 to 255

 j1 = (j1 + S1[i] + K1[i]) mod 256;

 swap (S1[i], S1[j1]);

 j2 = (j2 + S2[i] + K2[i]) mod 256;

 swap (S2 [i], S2[j2]);

i = jl= j2 = a= 0;

while (true)

 i = (i+1)%256;

 jl = jl + S1[i];

 swap (S1[i], S1[j1]);

 j2= j2 + S2[i];

 swap (S2 [i], S2[j2])

 Stream1= S1 [(S1 [i]+ S1[j1]) mod 256];

 Stream2= S2 [(S2 [i]+ S2[j2]) mod 256];

 swap(S1 [S2 [j1]], S1 [S2 [j2]]);

 swap(S2 [S1 [j1]], S2 [S1 [j2]]);

 P[a] = Stream1 XOR Stream2 XOR Y[a];

 a=a+1;

3. RESULTS
The fundamental intent behind the proposed algorithm is to

convert the Improved RC4 Algorithm [1] which is a

permutation cipher into a product cipher by imposing

substitution using Vigenère Cipher. This would ensure higher

levels of security compared to Improved RC4 algorithm,

making it a better choice for confidentiality intrinsic

applications. Another important factor to be considered is the

time taken for encryption/decryption. Experimental results

show that there is a 0.8% to 1% increase in the time required

for encryption/decryption. This increase in time is negligible

validating the practicality of the algorithm. The algorithm

stated in the paper was implemented on Intel (R) Core (TM)

i3-2310M CPU @ 2.10 GHz having 3.84 GB of usable RAM.

Further in this section, we describe a few test cases and the

time required for encryption/decryption for a given size of

plaintext.

Table 1: Encryption for Plaintext (P) =

TheQuickBrownFoxJumpedOverTheLazyDog

Plaintext TheQuickBrownFoxJumpedOverTheLazyDog

K1 cherryblossom

K2 deception

X 'Ç=$”™bóK+ñièžùŠ{±ÂèÙÿVhØ×'õL2‡"

K3 baskerville

Ciphertext ˆ:¨‰„

kqÇU¬ž\ÎZböç$ILj»ÚN@“a±”mú

Table 2: Decryption for Ciphertext (C) =

ˆ:¨‰„

kqÇU¬ž\ÎZböç$ILj»ÚN@“a±”mú

Ciphertext
ˆ:¨‰„

kqÇU¬ž\ÎZböç$ILj»ÚN@“a±”mú

K1 cherryblossom

K2 deception

K3 baskerville

Y 'Ç=$”™bóK+ñièžùŠ{±ÂèÙÿVhØ×'õL2‡"

Plaintext TheQuickBrownFoxJumpedOverTheLazyDog

Table 3: Encryption for Plaintext (P) =

ONCEthereWASaDOGnamedROVER!

Table 4: Decryption for Ciphertext (C) =

]š$Øþ’ …p½vMá–+¥¡ƒáÏBÖ×

Ciphertext]š$Øþ’ …p½vMá–+¥¡ƒáÏBÖ×

K1 amnesia

K2 trichotillophobia

K3 arachnoid

Y ë9ž©¶i•.?Zßr-ÇD/"¼yaÓm´v

Plaintext ONCEthereWASaDOGnamedROVER!

The algorithm was run for a large number of test cases. The

time required for encrypting/decrypting was observed for

plaintext varying between 100kB to 1000kB. The values

obtained were compared against values obtained by

encrypting using Improved RC4 Algorithm [1] as shown in

Fig. 1, Appendix I. The increase in the time consumed in this

while comparing against the Improved RC4 Algorithm is

measured in Fig. 2, Appendix I. An increase of 0.8% to 1%

was observed. Considering the computational capabilities of

modern computers, this increase is negligible.

4. CONCLUSION
The algorithm proposed in the paper enhances the security of

Improved RC4 algorithm by imposing substitution, thereby

converting it into a product cipher. Time taken for

encryption/decryption using the proposed algorithm is

marginally more than the Improved RC4 Algorithm.

Experimental results show that there is a mere 0.8% - 1%

increase in the time required for encryption/ decryption. These

characteristics of the proposed algorithm make it a better

candidate for practical applications as compared to the

Improved RC4 Algorithm.

Plaintext ONCEthereWASaDOGnamedROVER!

K1 amnesia

K2 trichotillophobia

X ë9ž©¶i•.?Zßr-ÇD/"¼yaÓm´v

K3 arachnoid

Ciphertext]š$Øþ’ …p½vMá–+¥¡ƒáÏBÖ×

`International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

20

The algorithm suggested in the paper uses Vigenère Cipher

for substitution. One of the weaknesses associated with using

Vigenère Cipher is that it is not resistant to Kasiski test [8].

Security of the proposed algorithm can be compromised

because Kasiski test can help determine the length of the key

used for Vigenère Cipher [9]. As a part of future research

work, researchers can look at improving the proposed

algorithm making it resistant to Kasiski test.

Another possible scope of future research work can be

introducing parallelism in the proposed algorithm. The

decryption process consists of two major parts –

Pseudorandom Stream Generation using Improved RC4

algorithm and decryption using Vigenère Cipher. Both these

processes are independent of each other. Hence, we can

exploit parallelism by concurrent execution of these two

processes. This would reduce the time required for decryption,

thereby enhancing its efficiency.

5. REFERENCES
[1] Jian Xie, Xiaozhong Pan, “An Improved RC4 Stream

Cipher”, International Conference on Computer

Application and System Modeling (ICCASM), 2010

[2] Suhaila Omer Sharif, S.P. Mansoor, “Performance

analysis of Stream Cipher algorithms”, 3rd International

Conference on Advanced Computer Theory and

Engineering (ICATE), 2010..

[3] C.S Lamba, “Design and Analysis of Stream Cipher for

Network Security”, 2nd International Conference on

Communication Software and Networks,2010

[4] S.Fluthrer, I. Mantin, A. Shamir, “Weaknesses in the

Key Scheduling Algorithm of RC4”, SAC2001 (S.

Vaudenay, A. Youssef,eds.), col. 2259 of LNCS, pp. 1-

24, springer-Verlag, 2001

[5] G. Paul, S.Maitra, “RC4 state in formation at Any Stage

Reveals the Secret Key ”, presented in the 14th Annual

Workshop on Selected Areas in Cryptography, SAC

2007, August 16-17, Ottawa, Canada, LNCS (Springer)

pages 360-377.

[6] A Klein, Attacks on the RC4 Stream Cipher,

cage.ugent.be/~klein/RC4/RC4-en.ps

[7] S. Paul, B. Preneel, ―A New Weakness in the RC4 Key

stream Generator and an Approach to Improve the

Security of the Cipher‖, Fast Software Encryption, 11th

International Workshop, FSE 2004, Delhi, India,

February 5-7, 2004. Revised Papers, vol.3017, no.,

pp.245,259, 2004.

[8] William Stallings: “Cryptography and Network Security:

Principles and Practices” 4th Edition,

[9] Cryptanalysis of Vigenère Cipher-

http://www.nku.edu/~christensen/section%2012%20vige

nere%20cryptanalysis.pdf

APPENDIX I

Fig. 1: Time required for Encryption using Proposed Algorithm and Improved RC4 Algorithm

`International Journal of Computer Applications (0975 – 8887)

Volume 94 – No. 18, May 2014

21

Fig. 2: Time increase using Proposed Algorithm compared against Improved RC4 Algorithm

IJCATM : www.ijcaonline.org

