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ABSTRACT 

In this paper, a therapeutic strategy for the treatment of cancer 

using immunotherapy that aims to maximize the active 

immune response and to minimize the tumor cells level while 

reducing drugs side effects and treatment cost is proposed. 

Assume that the treatment amount that can be administered to 

a potential patient during therapy period is known precisely, 

an ODE model with control acting as an immunotherapy 

agent is presented and an optimal control problem is 

formulated to include an isoperimetric constraint on the 

immunotherapy treatment. The Pontryagin's maximum 

principle is used to characterize the optimal control taking 

into account the fixed isoperimetric constraint. The optimality 

system is derived and solved numerically using an adapted 

iterative method with a Runge-Kutta fourth order scheme and 

secant method routine. 
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1. INTRODUCTION 
Cancer is a general term applied to a large group of diseases 

that can affect any part of the body. One of its characteristics 

is the rapid proliferation of abnormal cells that can spread to 

other organs, forming what is called metastasis. Many cancers 

can be prevented by avoiding key risk factors. A significant 

number of cancers can be treated by surgery, immunotherapy 

and chemotherapy especially if detected early enough. In 

recent decades, mathematical modeling and optimal control 

theory are used as mathematical tools by scientists of 

biomathematics in the areas of oncology and epidemiology 

trying to better understand the evolution and stability of the 

disease for anticipating the action of the appropriate treatment 

and for finding the best way to administer the proper 

medications while minimizing side effects. It is noted with 

interest that many mathematical models were interested to the 

evolution and the treatment of some types of cancer such as 

brain cancer (Swanson and al. 2003 [1]), bladder cancer 

(Bunimovich and al. 2007 [2]) and prostate cancer (Celestia 

and al. 2009 [3]). Immunotherapy stimulates the natural 

defenses of the body commonly called immune response cells. 

However, the immunotherapy includes very different 

therapeutic strategies depending on whether they mobilize or 

enhance the resources of the patient’s immune system (active 

immunotherapy) or on the contrary, they are using 

immunological reagents brought from outside (passive 

immunotherapy). Malignant tumors in humans are poorly 

immunogenic and they are not generally recognized as foreign 

by the body. Therefore, the defense mechanisms of the body 

must be stimulated with different methods such as cytokines. 

The Interleukin-2 is a substance normally secreted by our 

cells, it stimulates certain immune cells and it can also be 

synthesized by the genetic engineering. It is used in infusion 

or subcutaneously. The Interleukin-2 is utilized both in cancer 

treatment and in HIV treatment. Many scientific studies 

concerned with immunotherapy have proposed cellular and 

molecular immunology to develop therapeutic strategies that 

augment the antitumor responses [4]. Bunimovich and al. 

have developed a mathematical model describing dynamical 

behavior of tumor cells with immune system after injection of 

BCG immunotherapy (Bacillus Calmette-Guerin) in the 

human bladder [2]. De Pillis and al. have extended a 

mathematical model that governs cancer growth with 

chemotherapy treatments to include immunotherapy using the 

Interleukin-2 with tolerated doses [5]. Castiglione and al. have 

constructed a mathematical model of the immune-cancer 

interaction to study the effect of immunotherapy via dendritic 

cell vaccines using an optimal scheduling and a vaccine 

administration with impulsive controls [6]. Mathematical 

models proposed by Kirschner and al. [7] and Chan and al. [8] 

have been conducted to study a method of treating cancer by 

immunotherapy using the Interleukin-2 in conjunction with 

the Adoptive Cellular Immunotherapy (ACI) that is a cell 

transfer in the host in order to transplant immune cells like 

’NK’ cells and ’CTL’ cells in the single tumor-site. This type 

of immunotherapy consists indeed to administer to the 

patients an artificial Interleukin-2 cells produced in vitro. It is 

an important part of what is now called targeted therapies. In 

this work, a cancer model originally discussed in Kirschner 

and Panetta [7] is analyzed. This paper is organized as 

follows: Section 2 describes mathematical models of cancer 

immunotherapy with a control term, the first part presents the 

basic mathematical model of cancer treatment using the ACI 

immunotherapy and the second one focuses on the 

introduction of an isoperimetric constraint to the basic model. 

The analysis of the optimization problem is also presented in 

the same section. In section 3, the iterative method is 

introduced and the numerical simulations are discussed. 

Finally, the results of this therapeutic approach are compared 

in the conclusion in section 4. 
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2. MATHEMATICAL MODELS 

2.1 Basic mathematical model of cancer 

treatment using immunotherapy 
In this section, an ODE system modeling the immune system 

dynamics of a cancer patient after the introduction of a 

treatment using immunotherapy (1) is presented. Three 

compartments characterizing the different populations are 

defined as follows: x(t) the activated immune cells (effector 

cells), y(t) the tumor cells and z(t) the concentration of IL-2 

cells in the single tumor-site compartment. Therefore, the 

model characterizing the interaction between these 

intervening cells is: 

                        
  

  
 =        + 

    

    
 +   (t) , 

                        
  

  
 =            

   

    
 ,                              (1) 

                        
  

  
 = 

    

    
      . 

In addition, assume that the parameters are all considered 

positive constants and the normalized initial data [9] for 

system (1) satisfy: 

                          =1≥0,   =1≥0,   =1≥0                              (2) 

The description of the different above model parameters (1) is 

listed in the following table: 

Table 1. The description of parameters and terms used 

Parameters Descriptions 

c Tumor antigenicity rate 

   Natural mortality rate of effector cells 

   Effector cells stimulation rate by IL-2 cells 

   Half saturation for proliferation term 

   Tumor cells growth rate 

b Tumor cells volume of change 

a Tumor cells loss rate 

   Half-saturation for cancer clearance 

   Self-limiting production rate of IL-2 cells 

   Half-saturation of production 

   Natural mortality rate of IL-2 cells 

 

The terms  
    

    
 , 

   

    
 and  

    

    
  are represented by Michaelis 

Menten form to indicate respectively: The saturated effects of 

the immune response, the tumor cells loss and the IL-2 source 

produced by effector cells. However, the term           
represents the tumor logistic growth function. Note that the 

following parameters: a, b,   ,   ,    and    are derived from 

scientific experiments [7]. The control u(t) represents an 

external source of effector cells using the Tumor Infiltrating 

Lymphocyte Therapy (TIL) to incubate effector cells derived 

from a tumor with a high concentration of external immune 

cells in vitro and then injected back into the patient at the 

tumor site using the Adoptive Cellular Immunotherapy (ACI) 

[7]. Experimentally, the possible values of u(t) are between 0 

and λ=1000 units per day during the 350 days of treatment 

period [7]. 

2.2 Mathematical model of cancer 

immunotherapy with an isoperimetric 

constraint 

2.2.1 Presentation of the model                                   
The basic model (1) is extended for considering the situation 

in which it is supposed that the precise amount of treatment 

that could be administered to the patient during the treatment 

period of 350 days is known. Then, an integral constraint is 

defined as follows:                                

                                                    

  

 

,                                        

This type of constraint is known as an isoperimetric constraint 

[10]. For proceeding to establish suitable solution methods to 

this kind of problem, it must be converted to a more familiar 

form in order to use properly the Pontryagin’s maximum 

principle. Thus, this problem can be handled by creating 

another state variable, h(t), such that: 

                                     h’(t)  =   (t), 

                                     h(0)  = 0,                                           (4) 

                                     h(  )  = C. 

After the introduction of an isoperimetric constraint, the basic 

model (1) of cancer treatment using immunotherapy is 

presented by the following new system: 
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Our goal is obviously to maximize the benefits based on the 

immunotherapy effects while minimizing the systemic ’cost’ 

of the control. Precisely, the principal objective is to be able 

to maximize the levels of effector cells as well as the 

Interleukin-2 cells and to reduce the tumor cells level while 

minimizing the ’cost’ of treatment also including side effects 

of the drugs. Our control is a function u(t) taking values 

between 0 and λ=1000 units.  Note that, a drug amount of 

1000 units per day is the maximum dosage available and zero 

is the minimum. 

2.2.2 The optimal control problem 
The problem is to maximize the objective function: 

      
 

 
                               

  

 

                      

where the positive parameter W≥0 balances the size of the 

terms and it represents a weight factor characterizing a 

patient’s level of acceptance of the treatment. 

Based on the objectives of our optimal control problem, an 

objective function is constructed in a manner to maintain the 
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same order of potency (k=2) for all terms within the integrand 

to ensure more consistency to our optimal control problem.  

Mathematically, an optimal control     U is sought such that: 

                            (  ) =          ( )                                  (7) 

where U is the control set defined by: 

U = {   Lebesgue − measurable, 0 ≤   (t) ≤ λ, t ∈ [0,   ]} 

The control system (5) is rewritten implicitly as follows: 

                            ’(t) = F(t,   (t),  (t)),                                (8) 

                             (0) =    given. 

with   (t) =                        is the state vector and   (t) 

is the control function. The objective function (6) is implicitly 

defined at control  (t) as follows: 

            ,      ,        

  

0

, 

 Consider the problem: 

                              

            ,      ,        

  

0

, 

                   subject to  ’(t) = F(t,   (t),   (t)),   (0) =   , 

                                            0 ≤   (t) ≤ λ. 

The Pontryagin’s maximum principle [11] provides necessary 

conditions for an optimal control problem. This principle 

converted the problem of finding a control which maximizes 

the objective function   subject to the state ODE and initial 

condition to the problem of maximizing the Hamiltonian H, 

pointwisely with respect to   implying that it is sufficient to 

derive the Hamiltonian H instead of deriving the objective 

function   defined in (6) in order to characterize the optimal 

control   . The Hamiltonian is defined from the formulation 

of the objective function as follows: 

H(t, x, y, z, h,  ,  ) = G(t, S (t),   (t)) +   F (t, S (t),   (t)) 

with  (t)=                             
  is the adjoint 

variable vector.  

Explicitly: 

      H(t, x, y, z, h,  ,  ) = 
 

 
 (x²(t)   y²(t)+z²(t)  W  ²(t)) 

                                      +  [       + 
    

    
 +   (t)] 

                                      +  [           
   

    
] 

                                      +  [
    

    
     ] 

                                      +  [  (t)]. 

The    where j = 1, 2, 3, 4 are our adjoint variables that 

determine the adjoint system which satisfies the optimality 

necessary conditions. 

Note, that the concavity with respect to the control   is correct 

for a maximization problem considering this second order 

condition: 

                                      
   

   
 =  W≤ 0 

Maximizing the objective function   is equivalent to maximize 

the Hamiltonian H which the maximum only depends on the 

control  , which implies that it is sufficient to derive H 

instead of deriving   for solving the optimality system, now 

the initial maximization problem (7) is rewritten as follows: 

H(t,   ,   ,   ,   ,   ,  ) =       H(t,   ,   ,   ,   ,  ,  ),                        

(10)   

Finally, it remains to clarify that since the Pontryagin’s 

maximum principle converts the optimization problem into a 

problem of maximizing the Hamiltonian H (10), thus the 

systemic ’cost’ of treatment is minimized logically including 

side effects and damages caused by the control as stated above 

in the definition of the Hamiltonian. 

The existence of a solution is proved using a classical     

existence result by Fleming and Rishel in [12]. Thus, the 

following properties must be checked: 

1. The class of all initial conditions with a control   in 

the  admissible control set U along with each state 

equation being satisfied is not empty; 

2. The control set U is convex and closed; 

3. The right-hand side of the state system is 

continuous, is bounded above by a sum of the 

bounded control and the state, and can be written as 

a linear function of   with coefficients depending 

on time and the state; 

4. The integrand of the objective functional  ( ) is 

concave on U; 

5. There exist constants   ,    > 0 and α >1 such that 

the integrand    ,      ,       of the objective 

functional  ( ) satisfies: 

                          ,      ,       ≤    −          
 

                (11) 

Since the system (5) has bounded coefficients and any 

solutions are bounded on the finite time interval [0,   ], a 

result from [13] is used to obtain the existence of the solution 

of the system (5). The control set U is convex and closed by 

definition. The system (5) is bilinear in the control and each 

right hand side of this system is continuous and can be written 

as a linear function of   with coefficients depending on time 

and state. Furthermore, the fact that all variables x, y, z, h and 

  are bounded on [0,   ] implies the rest of the third 

hypothesis. Finally, note that (    ,      ,      ) is convex in 

U. Thus, it can be subsequently proved that the integrand 

   ,      ,       in the objective functional (6) is concave in 

U.  

In addition, notice that there exists a constant α > 1 and 

positive numbers    and    satisfying:    

               ,      ,       ≤                                (12) 

                                       ≤    −          
 

  

where    depends on the upper bounds on x and z and by 

analogy it would be appropriate to set   =W and α=2.  

By applying the Pontryagin’s maximum principle [11] and the 

existence result for the optimal control from [12] and [13], the 

following theorem is obtained:                                                                                            
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2.2.2.1 Theorem 
Given optimal control   and solutions x, y, z and h of the 

corresponding state system (5), there exist adjoint variables 

      ,      ,                   satisfying the following 

equations: 
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)  

    

    
 + 

     

    
], 

   
   

  
 =  [ y+  c +   (   2  by)  
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       ], 

   
   

  
 = 0. 

with transversality conditions :   (  )=0, i = 1, 2, 3. 

Moreover, the optimal control is given by: 

                  (t)=min(λ, max(0, 
           

 
)).                       (14) 

2.2.2.2 Proof 
Due to the concavity of integrand of   with respect to  , a 

priori boundedness of the state solutions and the Lipschitz 

property of the state system with respect to the state variables. 

The existence of an optimal control has been given by [12] 

(see Corollary 4.1) and [13]. The adjoint equations and 

transversality conditions can be obtained by using 

Pontryagin’s Maximum Principle such that: 
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The optimal control     can be solve from the optimality 

conditions: 

              

                       
  

  
                  =0 

 

By the bounds in U of the control, it is easy to obtain    in the 

form of (14). 

3 NUMERICAL SIMULATION 

3.1 Summary of parameters and values 

used 
Note that it is always difficult to assign a set of general 

settings for patients with different cancer types and 

representing varying clinic cases. However, since the main 

purpose of this study is to use the optimal control theory for 

finding an optimal therapeutic strategy based on the Adoptive 

Cellular Immunotherapy (ACI) by introducing an 

isoperimetric constraint C that represents the treatment 

amount, the values of the parameters found in [7] are kept and 

it is stated that the stability properties of the model (5) are 

stored for these parameters. 

3.2 Numerical method 
There are many methods and techniques of programming that 

can be used to solve numerically the optimal control problem 

(7) and namely, to find    that maximizes the objective 

function (6). Generally to solve the optimality system of (1), 

an iterative method with a Runge-Kutta fourth order scheme 

is used and it is known under the name of Forward Backward 

Sweep Method (FBSM) [14]. The principle of this method is 

that from an initial guess, the state system is solved forward in 

time and then the adjoint system is solved backward in time. 

All information about the convergence of this method is given 

in [15]. 

In this paper, after defining and introducing an isoperimetric 

constraint to the basic model (1), note that all states of the 

system (5) have a free end conditions except the last state h(t) 

that both their initial and final conditions (4) are known. Our 

iterative method (FBSM) is limited and cannot deal with this 

type of problems directly. Therefore, another technique must 

be developed to be able to solve it numerically.  Note that the 

adjoint system (13) satisfies the following transversality 

conditions: 

                                (  )=0, i = 1, 2, 3.                               (16) 

where    (  ) is unknown. 

Firstly, suppose that   (  ) =θ. Then, the optimality system is 

solved using the FBSM iterative method with the given initial 

conditions and         = (0, 0, 0, θ). The iterations continue 

until convergence is achieved, a value of h(t) at the final time 

   is finally obtained and it is denoted by    which is a 

function that depends on θ. The main idea of this numerical 

solution technique is to define a new function f (θ)=    − C 

and to seek therefore the zeros of this function using a       

root-finding algorithm commonly known in numerical 

analysis as Secant method [14],[16]. Finally, the stored values 

for the variables t, x, y, z, h and   are outputted during the last 

iteration, when f (θ) was nearly 0. Therefore, these are taken 

to be the solutions of the optimal control problem (7). 

3.3 Numerical results 
According to the definition of the control set U, note that: 

                                          0 ≤   (t) ≤ λ , 

Therefore the choice of the constraint C (3) is linked however, 

to the parameters λ and    by the relation: 

                                           0 ≤   ≤ λ    ,                              (17) 

Note with interest that although the maximum dose that can 

be administered to the patient is on the order of 35 ×  0  cell 

units during the 350 days of treatment, the isoperimetric 

constraint is set C=14 ×  0  cell units for minimizing side 

effects of treatment. 

Biologically, the treatment tolerance varies between patient 

cases. Thus, two different biological cases are studied in 

which the obtained results are compared using different values 

of the weight factor ’W’ for testing the effectiveness of the 

proposed treatment. 

For numerical simulations, in addition to the optimal control   

 (t) and the system states x(t), y(t), z(t) and h(t), a new 

function will be graphically represented:   
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Where      represents the cumulative sum of the immune 

cells x(t) and z(t) and that will allow to have a clear idea about 

the total number of mobilized immune cells designed to 

eliminate the tumor. 

 

 

Fig 1: The graphic of the state x(t) with (x(0)=1 cell unit, 

C=14      cell units and c=0,015      ). 

 

Fig 2: The graphic of the state y(t) with (y(0)=1 cell unit, 

C=14      cell units and c=0,015      ). 

 

Fig 3: The graphic of the state z(t) with (z(0)=1 cell unit, 

C=14      cell units and c=0,015      ). 

 

Fig 4: The graphic of the state h(t) with (h(0)=0 cell unit, 

h(  )=C=14      cell units and c=0,015      ). 

 

Fig 5: The graphic of the optimal control    with (x(0)=1 

cell unit, y(0)=1 cell unit, z(0)=1 cell unit, h(0)=0 cell unit, 

C=14      cell units and c=0,015      ). 

 

Fig 6: The graphic of the function g(t) with (x(0)=1 cell 

unit, y(0)=1 cell unit, z(0)=1 cell unit, h(0)=0 cell unit, 

C=14      cell units and c=0,015      ). 

In the first biological case (W=1), it is noticed that the tumor 

occurs significantly from the 30th day of the treatment period 

(Fig 2) and the number of tumor cells begins to increase 

rapidly. At the same time, the natural immune response reacts 

positively increasing in a logical manner the number of 

effector cells and Interleukin-2 cells that acts directly on the 
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tumor site (Fig 1 and Fig 3). However, tumor cells continue to 

proliferate in a dangerous and brutal way despite the 

significant mobilization of natural immune defenses of the 

human body. 

After crossing the critical threshold of 3× 0  tumor cells per 

day in the      day, the intervention of an optimal treatment 

process becomes more imperative. Thereafter, a continuous 

growth in the treatment amount administered to the patient is 

observed acting for limiting the significant increase in the 

tumor concentration level. However from the  00   day of 

the treatment period, the number of tumor cells begins to 

decline very rapidly and the tumor disappears completely 

from the       day but the therapeutic process continues to 

operate until the end of the treatment period for coping with 

any sudden reappearance of the tumor.  

Finally, even when the optimal dose administered to the 

patient is reduced swiftly during the last 10 days of the 

treatment period (Fig 5), the tumor does not reappear and the 

system remains stable. Early findings graphs (Fig 1 and Fig 3) 

lead to note with interest that the active immune response 

reacts perfectly to the dynamics of tumor cells following the 

same growth process. 

In the second biological case, the patient’s level of acceptance 

of the treatment is improved by increasing the weight factor’s 

value (W = 1000). In figure 2, it is noticed that the tumor cells 

begin to proliferate sharply from the      day to reach a 

maximum value of 9.75 ×  0  cell units in the      day. 

However, from the 96th day, the tumor decreases rapidly and 

the tumor cells disappear completely from the       day. 

Note with interest in figure 2 that the maximum number of 

tumor cells is much lower (9.75 ×  0  cell units) compared to 

the first case identified in this study (12.26 ×  0  cell units) 

even with a lower number of effector cells deployed in the 

treatment process (Fig 6). 

The therapeutic process begins early and the level of the 

treatment amount (Fig 5) increases rapidly from the  0   day 

to limit the growth of the tumor, eventually it stabilizes at a 

maximum value   =843 units and finally decreases gradually 

after the disappearance of the tumor from       day. Finally, 

it is observed that the optimal control takes into account the 

evolution of the tumor cells level and therefore adopts the 

convenient therapeutic strategy to reach the objectives set in 

the optimal control problem. 

Early findings graphs (Fig 6) lead to note with interest that the 

total number of the deployed immune cells during the 

treatment period is around 1.975 ×  0  cells and the active 

immune response including both effector cells and 

Interleukin-2 cells reacts positively to the tumor growth’s 

evolution (Fig 1 and Fig 3). Note that after improving the 

patient’s level of acceptance of the treatment, the total number 

of immune cells has decreased compared to the number 

recorded in the first biological case, limiting by the way side 

effects of a prolonged maximization of the immune response 

after complete tumor eradication.  

Comparing results of this work with those established in [9], it 

is clear that the introduction of an isoperimetric constraint has 

allowed controlling and optimizing the treatment amount that 

can be administered to the patient during the therapy period in 

order to further minimize side effects and damages caused by 

the drugs. 

In addition, the homogeneity of the objective function helped 

to achieve all goals set in the optimal control problem 

allowing to eradicate even some types of tumor cells that 

present a weak antigen (c=0.015) and which are not easily 

recognized by the immune response cells.  

However, the use of the secant method for the numerical 

resolution of the optimality system has proved very useful in 

term of time and calculations accuracy since θ is chosen to be 

precisely the zero of the function f(θ) limiting thereby the 

multiple manual tests on the variable θ as was the case in [17]. 

Mathematical analysis of the stability of the model performed 

by Kirschner and Panetta in [7] involves that taking into 

account values set for the parameters ’c’ (c=0.015), ’W’ (W 

=1 and W =1000) and the maximum constant values taken by 

the active optimal control throughout the majority of 

treatment period (Fig 5), the problem is now located in a 

region where the equilibrium    is stable and where the states 

x(t), y(t) and z(t) converge toward their respective equilibrium 

points, which clearly explains that the immune system 

succeeds in clearing the tumor confirming by the way the 

effectiveness of the therapeutic strategy followed and 

justifying the results of the numerical simulations. 

4 CONCLUSION 
In order to find an optimal treatment for cancer, a therapeutic 

strategy is established using the Adoptive Cellular 

Immunotherapy (ACI) that aims to transfer ’TIL’ cells in the 

tumor site for strengthening the immune response to eliminate 

tumor cells. Firstly, a control characterizing this therapy is 

introduced to the basic model. Then, it is supposed that the 

exact treatment amount that can be administered to the cancer 

patient is precisely known. Thus, an isoperimetric constraint is 

set and the basic model is modified by adding a new state 

characterizing the evolution of the treatment dose while 

choosing an appropriate and homogeneous problem of 

optimal control to use properly the Pontryagin’s maximum 

principle to finally formulate the optimal control. However, 

was essential to adapt the iterative FSBM method to the new 

problem for simulating numerically the optimality system. 

Taking account of all these techniques and theoretical 

measurements, satisfying and beneficial numerical results 

were obtained and especially compatible with the model’s 

stability analysis. The immune response has totally eliminated 

the tumor and established an active immune system thereby 

limiting the excessive use of treatment by reducing both the 

drug concentration and the therapy cost. One of the prospects 

of the future work is trying to find the optimal terminal time 

of treatment   
  in which the treatment cost can be further 

minimized while achieving all the objectives set in the 

optimal control problem. 
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