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ABSTRACT 

The dynamics of transcendental function is one of emerging 

and interesting field of research nowadays. We introduce in 

this paper the complex dynamics of sine function of the type 

{sin (zn ) – z + c = 0} and applied Jungck Ishikawa iteration to 

generate Relative Superior Mandelbrot set and Relative 

Superior Julia set. In order to solve this function by Jungck –

type iterative schemes, we write it in the form of Sz = Tz, 

where the function T, S are defined as Tz = sin ( zn ) +c and  

Sz= z. Only mathematical explanations are derived by 

applying Jungck Ishikawa Iteration for transcendental 

function in the literature but in this paper we have generated                   

relative Mandelbrot sets and Relative Julia sets. 
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1. INTRODUCTION 
The study of dynamical behavior of the transcendental 

functions was initiated by Fatou [12]. For transcendental 

function, points with unbounded orbits are not in Fatou sets 

but they must lie in Julia sets. Attractive points of a function 

have a basin of attraction, which may be disconnected. 

 A point z in Julia for sine function has an orbit that satisfies    

| Imz |>=50. 

The iteration of complex analytic function (f) decompose the 

complex plane into two disjoint sets 

1. Stable Fatou sets on which the iterations are well behaved. 

2. Julia sets on which the map is chaotic. 

In this past literature the sine function was considered of the 

following forms: 

(i) sin (zn) + c = 0   

(ii)(sin z + c)n = 0 

We are using in our paper sine function of the type          

sin(zn) – z + c = 0 where n 2 and applied Jungck Ishikawa 

iterates to develop fractal images of this transcendental 

function. Escape criteria of polynomials are used to generate 

Relative Superior Mandelbrot Sets and Relative Superior Julia 

Sets. Our results are different from existing results in 

literature. 

 

2. PRELIMINARIES 
The process of generating fractal images from                        

z sin (zn ) – z + c is similar to the one employed for the self-

squared function [17]. Briefly, this process consists of 

iterating this function up to N times. 

Starting from a value z0 we obtain z1, z2, z3 , z4 ... by applying 

the transformation    z sin (zn ) – z + c  

2.1 Ishikawa Iteration [2]  
Let X is a subset of real or complex numbers and T:  X→ X 

for x0 ∈ X, we have the sequences {xn} and {yn} in X in the 

following manner: 

x n+1 =   αn T y n + (1- α n ) x n 

 

y n      =  βn  T x n + (1- β n ) x n 

 

where 0 ≤ βn ≥ 1 and 0 ≤ αn ≥ 1 and αn & βn  both convergent 

to non zero number.            

2.2 Definition [1]  
The sequences {xn} and {yn} constructed above is called 

Ishikawa sequences of iteration or relative superior sequences 

of iterates. We denote it by (x0, α n , β n ,t) .Notice that RSO 

(x0, α n , β n ,t) with β n = 1 is RSO(x0, α n ,t) i.e. Mann’s orbit 

and if we place α n = β n =1  then  RSO (x0, α n , β n ,t) reduces 

to O (x0, t ) .We remark that Ishikawa orbit RSO(x0, α n , β n ,t) 

with  β n = 1/2      is Relative superior orbit. Now we define 

Julia set for function with respect to Ishikawa iterates.   We 

call them as Relative Superior Julia sets. 

2.3   Definition [1]  
The set of points SK whose orbits are bounded under Relative 

superior iteration of function Q (z) is called Relative Superior 

Julia sets. Relative Superior Julia set of Q is a boundary of 

Julia set RSK. 

2.4 Jungck Ishikawa Iteration [2] 
Let

 
(X, ║.║) be a Banach space and Y an arbitrary set. Let S, 

T: Y→X be two non self-mappings such that T(Y)  S(Y), 

S(Y) is a complete subspace of X and S is injective. Then for 

xo ∈Y, define the sequence {S x n }
 
iteratively by   

 

S x n+1   =   α n T y n + (1- α n )  S x n 

 

S y n       =   β n T x n + (1- β n ) S x n 

   

where 0 ≤ βn ≥ 1 and 0 ≤ αn ≥ 1 and αn & βn  both convergent 

to non zero number.            
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3. FIXED POINTS 

3.1 Fixed points of quadratic function 
Table 1: Orbit of F (z) for (zo=0.1625+0.8125i) at  =0.5, 

 =0.5, c=0.1 

No. of 

iterations |Sz| |Tz| 

1 0.31249 0.43321 

2 0.04783 0.01441 

3 0.01464 0.07266 

4 0.05462 0.09546 

5 0.07897 0.10403 

6 0.09330 0.10803 

7 0.10160 0.11011 

8 0.10636 0.11125 

9 0.10909 0.11188 

10 0.11064 0.11224 

11 0.11153 0.11244 

12 0.11203 0.11255 

13 0.11232 0.11262 

14 0.11249 0.11265 

15 0.11258 0.11267 

16 0.11263 0.11269 

17 0.11266 0.11269 

18 0.11268 0.11270 

19 0.11269 0.11270 

20 0.11269 0.11270 

21 0.11270 0.11270 

22 0.11270 0.11270 

23 0.11270 0.11270 

24 0.11270 0.11270 

 

Here we observe that the value converges to a fixed point 

after 21 iterations. 
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Figure 1: Orbit of F(x) for (zo   = 0.1625+0.8125i) at  =0.5, 

 =0.5, c=0.1 

Table 2: Orbit of F (z) for (z0=-2.55+0.375i) at  =0.3, 

 =0.7, c=0.1 

No. of 

iterations |Sz| |Tz| 

1 0.27560 2.46585 

2 0.74621 1.37485 

3 0.72702 0.55117 

4 0.48395 0.17341 

5 0.15496 0.02913 

6 0.07996 0.09661 

7 0.09854 0.10888 

8 0.10783 0.11155 

9 0.1111 0.11233 

10 0.11218 0.11258 

11 0.11253 0.11266 

12 0.11265 0.11269 

13 0.11268 0.11270 

14 0.11270 0.11270 

15 0.11270 0.11270 

16 0.11270 0.11270 

17 0.11270 0.11270 

18 0.11270 0.11270 

19 0.11270 0.11270 

20 0.11270 0.11270 

Here we observe that the value converges to a fixed point 

after 14 iterations 
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Figure 2. Orbit of F(x) for (zo=-2.55+0.375i) at  =0.3, 

 =0.7, c=0.1 

Table 3: Orbit of F (z) for (zo=-0.1375-0.0625i) at  =0.5, 

 =0.8, c=0.1 

No. of 

iterations |Sz| |Tz| 

140 0.11269 0.1127 

141 0.11269 0.1127 

142 0.11269 0.1127 

143 0.11269 0.1127 

144 0.11269 0.1127 

145 0.11269 0.1127 

146 0.11270 0.1127 

147 0.11270 0.1127 

148 0.11270 0.1127 

149 0.11270 0.1127 

150 0.11270 0.1127 

 

Here we skipped 139 iterations and observed that the value 

converges to a fixed point after 146 iterations. 
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Figure 3: Orbit of F (z) for (zo=-0.1375-0.0625i) at  =0.5, 

 =0.8, c=0.1 

3.2 Fixed points of cubic function 

Table 1: Orbit of F (z) for (zo=-0.6125+0i) at  =0.5, 

 =0.5, c=0.1 

 

No. of 

iterations |Sz| |Tz| 

1 0.09375 0.08144 

2 0.09884 0.10013 

3 0.10053 0.10098 

4 0.10093 0.10103 

5 0.10101 0.10103 

6 0.10103 0.10103 

7 0.10103 0.10103 

8 0.10103 0.10103 

9 0.10103 0.10103 

10 0.10103 0.10103 

 

    Here we observe that the value converges to a fixed point     

after 6 iterations. 
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Figure 1 Orbit of F (z) for (zo=-0.6125+0i) at  =0.5, 

 =0.5, c=0.1 

 

Table 2: Orbit of F (z) for (zo=-0.2625+1.10625i) at 

 =0.3,  =0.7, c=0.1 

Here we observe that the value converges to a fixed point 

after 16 iterations. 
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Figure 2: Orbit of F (z) for (zo=-0.2625+1.10625i) at 

 =0.3,  =0.7, c=0.1 

 

 

No. of 

iterations |Sz| |Tz| 

1 0.02500 0.04437 

2 0.06846 0.03949 

3 0.08382 0.05806 

4 0.08882 0.08958 

5 0.09342 0.09785 

6 0.09676 0.10012 

7 0.09875 0.10076 

8 0.09984 0.10094 

9 0.10042 0.10100 

10 0.10072 0.10102 

11 0.10087 0.10103 

12 0.10095 0.10103 

13 0.10099 0.10103 

14 0.10101 0.10103 

15 0.10102 0.10103 

16 0.10103 0.10103 

17 0.10103 0.10103 

18 0.10103 0.10103 

19 0.10103 0.10103 

20 0.10103 0.10103 
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Table 3: Orbit of F (z) for (zo = 0.1875+0.175i) at  =0.5, 

 =0.8, c=0.1 

No. of 

iterations |Sz| |Tz| 

1 1.10625 -0.73928 

2 0.13639 -0.1472 

3 0.12193 0.02143 

4 0.11184 0.07494 

5 0.1062 0.09209 

6 0.10355 0.09787 

7 0.10232 0.0999 

8 0.10172 0.10063 

9 0.10142 0.10089 

10 0.10125 0.10098 

11 0.10116 0.10101 

12 0.10111 0.10103 

13 0.10108 0.10103 

14 0.10106 0.10103 

15 0.10105 0.10103 

16 0.10104 0.10103 

17 0.10104 0.10103 

18 0.10103 0.10103 

19 0.10103 0.10103 

20 0.10103 0.10103 

 

Here we observe that the value converges to a fixed point 

after 18 iterations. 
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Figure 3: Orbit of F (z) for (zo = 0.1875+0.175i) at  =0.5, 

 =0.8, c=0.1 

 

 

 

 

 

3.3 Fixed points of biquadratic function 
Table 1: Orbit of F (z) for (zo= 0.0375+0.625i) at  =0.5, 

 =0.5, c=0.1 

 

No. of 

iterations |Sz| |Tz| 

1 0.00625 0.29254 

2 0.07642 0.09973 

3 0.09532 0.10004 

4 0.09914 0.10009 

5 0.09991 0.1001 

6 0.10006 0.1001 

7 0.10009 0.1001 

8 0.1001 0.1001 

9 0.1001 0.1001 

10 0.1001 0.1001 

 

Here we observe that the value converges to a fixed point 

after 8 iterations. 
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Figure 1: Orbit of F (z) for (zo= 0.0375+0.625i) at  =0.5, 

 =0.5, c=0.1 

Table 2: Orbit of F (z) for (zo= 0.1-0.3i) at  =0.3,  =0.7, 

c=0.1 

 

No. of 

iterations |Sz| |Tz| 

1 0.06875 1.46516 

2 0.48917 0.15118 

3 0.20888 0.08937 

4 0.05448 0.09998 

5 0.02276 0.10000 

6 0.06138 0.09999 

7 0.08071 0.10003 

8 0.09038 0.10006 

9 0.09523 0.10008 

10 0.09766 0.10009 

11 0.09888 0.10010 

12 0.09949 0.10010 
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13 0.09979 0.10010 

14 0.09995 0.10010 

15 0.10002 0.10010 

16 0.10006 0.10010 

17 0.10008 0.10010 

18 0.10009 0.10010 

19 0.10010 0.10010 

20 0.10010 0.10010 

 

Here we observe that the value converges to a fixed point 

after 19 iterations. 
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Figure 2: Orbit of F (z) for (zo= 0.1-0.3i) at  =0.3, 

 =0.7, c=0.1 

Table 3: Orbit of F (z) for (zo = 0.2375+0i) at  =0.5, 

 =0.8, c=0.1 

 

No. of 

iterations |Sz| |Tz| 

1 0.26875 0.81993 

2 0.04699 0.09997 

3 0.06819 0.09994 

4 0.08093 0.10000 

5 0.08858 0.10004 

6 0.09318 0.10007 

7 0.09594 0.10008 

8 0.09760 0.10009 

9 0.09860 0.10009 

10 0.09920 0.10010 

11 0.09956 0.10010 

12 0.09978 0.10010 

13 0.09991 0.10010 

14 0.09998 0.10010 

15 0.10003 0.10010 

16 0.10006 0.10010 

17 0.10007 0.10010 

18 0.10009 0.10010 

19 0.10009 0.10010 

20 0.10009 0.10010 

21 0.10010 0.10010 

22 0.10010 0.10010 

23 0.10010 0.10010 

24 0.10010 0.10010 

25 0.10010 0.10010 

 

Here we observe that the value converges to a fixed point 

after 21 iterations. 
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Figure 3: Orbit of F (z) for (zo= 0.2375+0i) at  =0.5, 

 =0.8, c=0.1 

4. GEOMETRY OF RELATIVE 

SUPERIOR MANDELBROT SETS AND 

RELATIVE SUPERIOR JULIA SETS 

Relative Superior Mandelbrot Sets 
 In case of quadratic function, the central body is divided 

into two parts. It is seen that the body is symmetric along 

the real axis only. Secondary lobes are very small 

initially for 

    = 1,   =1. As the value is changed to   =0.3 

 =0.7, the central body is divided into four parts but the 

middle part     is quite larger in comparison to the head 

and tail. 

  Secondary lobes seem to appear larger than initial stage. 

 In case of cubic function, the central body is divided into 

two equal parts, each part have one major secondary lobe 

and many minor secondary lobes. It is seen that the body 

is symmetric along the both axes. For   =0.3,   =0.7, 

the size of the major secondary lobes start enlarging and 

also a tiny bulb seems to occur along the real axis. 

 In case of biquadratic function, the central body is 

divided into three parts, each part having one major 

secondary bulb along with large number of minor 

secondary bulbs. It is seen that the body is symmetric 

along the real axis only. For    =0.3,   =0.7, the two 

of the major secondary lobes are same in size but one of 

them grows larger in size and undergoes bifurcation 

along the real axis.  

Relative Superior Julia Sets 
 Relative Superior Julia Sets for the transcendental 

function sin (z) appears to follow law of having 2n 
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wings. These sets are symmetric along both the axes i.e. 

along real and imaginary axis. 

 The Relative Superior Julia Sets for quadratic function is 

divided into four wings having black central body. These 

sets are symmetric along both the axes. 

 The Relative Superior Julia Sets for Cubic function is 

divided into six wings having reflectional and rotational 

symmetry, along with a larger black region. 

 The Relative Superior Julia Sets for biquadratic function 

is divided into eight wings possessing the reflectional and 

rotational symmetry, along with a larger escape region as 

compared to quadratic and cubic function. 

 It is also observed from the graphical study of fixed 

points of Relative Superior Julia Sets that the 

convergence for  

   =0.3, 


=0.7 is quite fast for all polynomials in 

comparison to the convergence for   =0.5, 


 = 0.8. 

 

5. GENERATION OF RELATIVE 

SUPERIOR MANDELBROT SETS 
We generated the Relative Superior Mandelbrot sets. We 

present here some beautiful filled Relative Superior 

Mandelbrot sets for quadratic, cubic and biquadratic function. 

6.1 Relative Superior Mandelbrot sets for 

Quadratic function 

 
 

Figure 1: Relative Superior Mandelbrot Set for 

 =  =0.5 & c = -0.1625+0.8125i 

 

 
 

Figure 2: Relative Superior Mandelbrot Set for  =0.3, 

 =0.7, c=-2.55+0.375i 

 
 

Figure 3: Relative Superior Mandelbrot Set for  =0.5, 

 =0.8, c=-0.1375-0.0625i 

 

6.2 Relative Superior Mandelbrot Sets for 

Cubic function 
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Figure 1: Relative Superior Mandelbrot Set for 

 =  =0.5, c=-0.6125+0i 

 

 
 

Figure 2: Relative Superior Mandelbrot Set for   =0.3, 

 =0.7, c = -0.2625+1.10625i 

 

 

 

 

 

 
 

Figure 3: Relative Superior Mandelbrot Set for  =0.5, 

 =0.8, c = 0.1875+0.175i 

6.3 Relative Superior Mandelbrot sets for 

biquadratic function 

 
 

Figure 1: Relative Superior Mandelbrot Set for =0.5, 

 =0.5, c = 0.0375+0.625i 
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Figure 2: Relative Superior Mandelbrot Set for =0.3, 

 =0.7, c = 0.1-0.3i        

 
Figure 3: Relative Superior Mandelbrot Set for =0.5, 

 =0.8, c = 0.2375+0i 

6. GENERATION OF RELATIVE 

SUPERIOR JULIA SETS 
We generated the Relative Superior Julia sets. We have 

presented here some beautiful filled Relative Superior Julia 

sets for quadratic, cubic and biquadratic function. 

5.1 Relative Superior Julia sets for 

Quadratic function                                                                

 

Figure 1: Relative Superior Julia Set for  = =0.5, 

c=0.1625+0.8125i 

 
 

Figure 2: Relative Superior Julia Set for  =0.3,  =0.7, 

c=-2.55+0.375i 
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Figure 3: Relative Superior Julia Set for  =0.5,  =0.8, 

c=-0.1375-0.0625i 

5.2 Relative Superior Julia Sets for Cubic 

function 

 
 

Figure 1: Relative Superior Julia Set for  = =0.5,  

c=-0.612+0i 

 

 

 

 
 

Figure 2: Relative Superior Julia Set for  =0.3,  =0.7, 

c = -0.2625+1.10625i 

 

 
 

Figure 3: Relative Superior Julia Set for  =0.5,  =0.8, 

c = 0.1875+0.175i 

5.3 Relative Superior Julia sets for 

biquadratic function 
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Figure 1: Relative Superior Julia Set for  = 0.5,  = 0.5, 

c=0.0375+0.625i 

 

 
 

Figure 2: Relative Superior Julia Set for  = 0.3,  = 0.7, 

c=0.1-0.3i 

 

 

 

 

 

 

 

 
 

Figure 3: Relative Superior Julia Set for  = 0.5,  = 0.8, 

c=0.2375+0i 

 

7. CONCLUSION 
In this paper we studied the sine function which is one of the 

members of transcendental family. The fixed point 0 for         

S (z) = sin (zn ) – z + c = 0 also satisfies S’ (0) = 1. Orbits on 

the real axis tend to 0 while orbits on the imaginary axis tend 

to infinity. Relative Superior Julia Sets for the transcendental 

function sin (z) appears to follow law of having 2n wings. 

The surrounding region of the Mandelbrot set appears to be an 

invariant Cantor set in the form of curve or “hair” that extends 

to . The orbit of any point on hair tends to infinity under 

iteration. Here the geometry of hairs is quite similar to that of 

exponential family and hence showed the property of 

transcendental function. The region filled up with large 

number of escaping points represents Julia set plane. 
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