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ABSTRACT 

Satellite attitude dynamics, nonlinear systems with high 

dimension and are nonlinear and chaotic. In this paper, 

attitude control and synchronization two identical chaotic 

satellite with different initial conditions based on the control 

design is proposed. Using the Lyapunov theory stability 

controller has been demonstrated. Finally, according to the 

simulation results, the synchronization is complete, the 

control signal is low that changes are the ability to build and 

implement. 
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1. INTRODUCTION 
A chaotic system has complex dynamical behaviors, such as 

depending sensitively on tiny variations of initial conditions; 

having bounded trajectories in the phase space, etc. In recent 

years, there has been increasing interest in the study of 

synchronizing chaotic systems. Chaos synchronization has 

many potential applications in laser physics [1,2], secure 

communication [3,4], power electrical systems [5], aerospace 

[6,7] and gyro [8] and so on. Various control approaches were 

reported to realize the chaotic synchronization, such as 

Adaptive Control [9], Impulsive Control [10], Back Stepping 

[11], Fuzzy Control [12,13], Sliding Mode Control [14,15], 

Nonlinear Control [16], Active control [17,18]. After the 

pioneering work on chaos control by Ott et al [19] and 

synchronization of chaotic systems by Pecora and Carroll [1]. 

In this paper, attitude control and synchronization two 

identical chaotic satellites with different initial conditions 

based on the active control design is proposed. In 

synchronization theory, defined a Master system, which is the 

dominant system, and a bounded set of Slave systems. 

The synchronization problem consists of creating either 

physical interconnections or control feedback loops, which 

forces the outputs of the slave systems to conform with those 

of the Master. As space technology progresses, the need for 

improved satellite systems by better understanding of satellite 

dynamics has continuously kept attention [20].Recently, non-

linear dynamics, especially the chaotic attitude dynamics of a 

satellite have attracted the attention of many scientists 

[21,22].The control of the Slave satellite, on the other hand, is 

a synchronization problem. . A reference trajectory for the 

Slave satellite will therefore also depend on the states of the 

Master satellite. For many applications of formations of 

satellites the objective will be to point measuring instruments 

in the same direction. Let therefore the reference trajectory for 

the Slave satellite be the measured attitude of the Master 

satellite. In this paper, the synchronization of chaotic satellites 

systems is handled based on the active control approach. 

2. ACTIVE CONTROL DESIGN 
The active control method proposed in [23] is considered to 

synchronize two different chaotic systems. For this purpose, 

consider a master system: 

(1)     )(xgAxX  

Where 
nRx  is the state vector, 

nnRA  is a constant 

system matrix, and g(x) is a nonlinear sequence function. A 

slave system is defined as: 

(2)     )()( tyfByY  

Where 
nRy  is the state vector, 

nnRB  is a constant 

system matrix, and )(yf  is a nonlinear sequence function, 

and
nRt )(  is an active control function. A master-slave 

synchronization scheme is illustrated in Figure 1. The error 

state is defined as: 
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Therefore, the error dynamics are written as follows: 

(4)     )(),( tyxGCeXYe   

Where ABC ˆˆ  is the common part of the system matrices 

in the master and slave systems; the non-common parts and 

nonlinear functions are gathered in ),( yxG as:  

(5)     

xAAyBBxgyfyxG )()()()(),(  

and )(t is the controller matrix. Error vectors with an 

appropriate controller )(t satisfying
nRyx  ),(  and 

nRe converge to zero. Hence, an appropriate controller 

should eliminate nonlinear terms and non-common parts, and 

contain another part to achieve stability, such as:  

(6)     )(),()( tUyxGt  

Where KetU )( is a linear controller and 
nRK  is a 

linear gain matrix. Substitution of equation (6) into (4) leads 

to:  

(7)     )(tUCee  

With replacing KetU )( in the equation (7), error 

dynamic is defined by  

(8)     eKCKeCee )(  
Synchronization of chaos by using active control can be 

realized when master and slave systems are completely 

different. If the eigenvalues ),...,2,1( nii  of the matrix 
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KC   are negative 0i . Then the error state vectors 

exponentially converge to zero. That is, the master and slave 

systems exponentially synchronize. 

 
Figure 1: The master-slave synchronization scheme 

3. SYSTEM DESCRIPTION AND 

PROBLEM FORMULATION 

3.1 Satellite System with Chaotic Dynamic 
The orientation of the satellite at a given point can be locally 

described in terms of three angles , and  which are 

successive clockwise rotations about inertial axes I, J and K 

respectively. The kinematic equation of a satellite or 

spacecraft can be written as: 

(9)     
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And on collecting terms and inverting, the following form is 

resulted, which is more appropriate for solving by numerical 

integration [24]. 
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The rotational motion for general rigid spacecraft acting under 

the influence of external torques is given by [24].The 

dynamical equation of a satellite, similar to a rigid body can 

be expressed as:   

(11)     UHII   
Where I  is the moment of inertia tensor,   is the angular 

velocity vector, U  is the control torque, and h contains any 

external disturbance torques. The dynamical equations of a 

satellite are:  
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Where yx II , and zI are the principal moments of inertia, 

yx  , and z are the angular velocities of the satellite, 

yx UU , and zU are the three control torques; yx HH , and 

zH are perturbing torques. principal moments of inertia and 

perturbing torques such as:  

(13)     
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This torques is chosen so as to force the satellite into chaotic 

motion [24]. By changing the elements value of system 

matrices, many various dynamical behavior could be 

observed. For example, let H=0 and U=0, the attitude motion 

of a satellite has a twisted periodic trajectory, which is shown 

in Fig.2 and Fig.3. 

3.2 Synchronization Problem Formulation 
Consider the following two identical satellites attitudes 

systems, where the Master system and Slave system are 

denoted with m and s, respectively. Master system: 

(14)     
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Fig.2. Chaotic Attitude of Satellite 

 
Fig.3. Phase Portraits of Chaotic Satellite 

 And Slave system: 
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(15)     
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The aim is to design the controller 
nR   such that: 

(16)     
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Fig.4.Chaotic Attitude of Satellites (Master & Slave) 

 
Fig.5.Phase Portraits of Chaotic Satellite 

 

Then:  

(17)     
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Therefore vector control is: 

(18)     
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With replacing equation (18) to (17), The controlled system 

and According to equation (8): 
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(20)     
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Then let the Lyapunov error function be 
2

2

1
)( eeV  where 

V(e) is a positive definite function. Assuming that the 

parameters of the master and slave systems are known and the 

states of both systems are measurable, may achieve the 

synchronization by selecting the controller U to make the first 

derivative of )(eV , i.e., 0)( eV . Then the states of slave 

system and master system are synchronized asymptotically 

globally. 

(21)     )(
2

1
)( 222

zyx eeeeV  
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With Eq. (22), the time derivative of the Lyapunov function 

along the trajectories of system (21) is: 

(22)     
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This implies that 0lim 


e
t

which guarantees the global and 

exponential asymptotical stability of the origin of system (17). 

That is to say, systems (14) and (15) achieve global and 

exponential asymptotical synchronization. This completes the 

proof.  

 
Fig.6. Synchronization errors of the satellites systems 

4. SIMULATION RESULT 
In this section, the fourth-order Runge–Kutta integration 

method is used to solve the system of differential equations. 

In the simulation process the initial states of the Master and 

the slave system are: 
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The time responses of state variables of the satellite chaotic 

system are shown in Fig.4 and the phase Portraits of the 

satellite chaotic system are shown in Fig.5. Synchronization 

error is shown in Fig. 6. From the simulation results, it shows 

that the time responses of synchronization error under the 

proposed Active control converge quickly to zero; which 

means that perfect synchronization responses can be achieved. 

These results showed the efficiency of the control strategy. 

Signal control is shown Fig.7.  

 
Fig.7.Time response of the controller  

5. CONCLUSION 
Subject to control and synchronize the satellites in space 

science is very important. Hence, the need for a controller that 

can control the satellite with chaotic dynamics.In this paper, 

an Active control has been proposed to synchronize two 

chaotic satellites systems identical, with initial condition 

different Master/Slave. The controller is designed to ensure 

perfect synchronization of the two systems. The numerical 

simulations have verified the effectiveness of the proposed 

method. Asymptotic stability of the closed-loop system is 

guaranteed by means of Lyapunov stability theory. The 

controller because of not large fluctuations can be used in 

practice. 
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