
International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

12 

Compressing the Data Densely by New Geflochtener to 

Accelerate Web  

 
Hemant Kumar Saini 

Research Scholar 
Department of CSE 

RTU, Kota, India 

 

Satpal Singh Kushwaha 
Associate Professor 
Department of CSE 
MITRC, Alwar, India 

 

C. Rama Krishna, Ph.D 
Associate Professor 
Department of CSE 

NITTTR, Chandigarh, India 

 

 

ABSTRACT 

At the present scenario of the internet, there exist many 

optimization techniques to improve the Web speed but almost 

expensive in terms of bandwidth. So after a long investigation 

on different techniques to compress the data without any loss, 

a new algorithm is proposed based on LZ77 family which 

selectively models the references with backward movement 

and encodes the longest matches through greedy parsing with 

the shortest path technique to compresses the data with high 

density. This idea seems to be useful since the single Web 

Page contains many repetitive words which create havoc in 

consuming space, so let it removes such unnecessary 

redundancies with 70% efficiency and compress the pages 

with 23.75 - 35% compression ratio. This also helps in 

reducing the latencies over Web while transmitting the large 

data of MB’s in seconds over the 10 MBps connection. The 

proposed method has also been compared with other gzip 

compatible compressors on the three different compression 

corpora such as Calgary, Canterbury and enwik8 that proves 

the success of the work. 

General Terms 

Data Compression, Geflochtener Algorithm, Iterative 

Compression, Lempel-Ziv Variants. 

Keywords 

Shortest path technique, iterative compression longest 

matching, greedy parsing, backward references, Web 

compression, HTTP 

1. INTRODUCTION 
Compression is the diminution of the physical size of 

information block to save space and transmission time. 

Compression can be done on just the data or the entire packet 

including the header. Data compression is a technique of 

elimination of all extra spaces, inserting a single repeater to 

indicate the repeated bytes or characters and replace smaller 

bits for frequent characters. 

Compression is of two types: lossless compression and lossy 

compression [1] [2]. Lossless compression reforms a 

compressed file similar to its original form. On the other, hand 

lossy compression removes the unnecessary data but can’t be 

reproduced exactly. There exist many old and new algorithms 

for lossless compression which are to be studied e.g., LZ77 

[3], LZSS [3], Zopfli [4]. 

2. SOME EXISTING METHODS FOR 

LOSSLESS DATA COMPRESSION 
In this section, some of the existing LZ77 variants and 

compression algorithms are studied and analyzed their 

limitations.  

2.1 LZ77 Sliding Window Algorithm 
LZ77 compresses the data by replacing the repeated 

occurrences with the reference to single copy in the 

uncompressed input stream. A match is found in 

lookaheadBuffer which is to be encoded by the length-

distance pairs. To stop such matches, the compressor keeps 

the track of most recent data in a structure called a window. 

With this window starts to slide at the end and proceeds 

backwards as the compression is predominated and the 

window will terminate its sliding, if a sufficient length is 

matched or it may correlate better with next input. 

While (! empty lookaheadBuffer) 

{  

get a remission (position, length) to longer match 

from search buffer; 

if (length>0) 

{ 

Output (position, length, nextsymbol); 

transpose the window length+1 position 

along; 

} 

else 

{  

Output (0, 0, first symbol in 

lookaheadBuffer); 

transpose the window 1 position along;   

} 

} 

Search Buffer is the storage which has recently matched 

encoded characters [3]. LookAheadBuffer is also the storage 

which contains remaining part of characters that would be 

matched with SearchBuffer [5]. Tuple is the combination of 

(o, l, c) where o represent the offset i.e. the bytes from 

LookAheadBuffer which match in Search buffer, l is the 

length of the match and c is the next byte to be matched. But 

the problem occurs, if the sequences of character repeated are 

larger than the size of search buffer this will decline its 

performance as the text goes out of the entry even found in the 

LookAheadBuffer and it won’t be considered in matching. 

2.2 LZSS 
This is an alternative of LZ77 which is based on the 

dictionary encoding technique. It replaces a string of symbols 

with the remission to a dictionary position for the similar 

string. In comparing to LZ77 where the dictionary references 

may be longer than the search buffer, LZSS omits such 

references. Furthermore, LZSS adds a one-bit flag which 

represents whether the succeeding lump of data is a literal 

(byte) or a referral to an offset/length pair. 



International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

13 

While (! empty lookaheadBuffer) 

{ 

get a pointer (position, match) to the longest match; 

if (length > MINIMUM_MATCH_LENGTH) 

{ 

output (POINTER_FLAG, position, 

length); 

transpose the window length characters 

along; 

}  

else 

 { 

output (SYMBOL_FLAG, first symbol of 

lookaheadBuffer); 

transpose the window 1 character along; 

} 

} 

LZSS removes the inclusion of next non-matching byte into 

each word. This algorithm needs offset and length as 

references. It also includes an extra flag at each step to find 

the output tuple which indicates matched length or a single 

symbol. It yields a better performance over the LZ77 

Compression algorithm. 

2.3 Iterative Compression 
After analyzing many compression techniques, the main 

difficult task in all those would be the choosing of good set of 

representative rows. Recurring with one iteration to the next, 

new representative rows may be selected, and old ones are to 

be discarded [6]. Even though the representative rows may 

keep changing, each iteration monotonically improves the 

global quality. In fact, for many cases, even a small number of 

iterations may be sufficient to deliver significant compression 

performance. Furthermore, each iteration of the algorithm 

requires only a single scan over the data, leading to a fast 

compression scheme. 

Input: A table T, a user specified value k and an error 

tolerance vector e. 

Output: A compressed table Tc and a set of representative 

rows P = {P1,……..,Pk} 

       Pick a random set of representative rows P 

        While totalcov (P, T) is increasing do 

{  

For each row R in T, find Pmax (R) 

 Recomputed each Pi in P as follow: 

{  

For each attribute XJ 

Pi [XJ] = f v (XJ  ,G(Pi) ) 

} 

} 

In this each row R in T is assigned to a representative row 

Pmax(R) that gives the most coverage to among the members 

of P. On the next step a new set of representative rows is 

computed. Here the sliding window of size 2*ej is then moved 

along these sorted micro-intervals to find the range that is 

most frequently matched. In this all discussion it is found that 

by varying the representative rows the compression ratio 

betters but there is still a limitation of variation because with 

the increment of rows there is a situation where it could 

reduces the CPU cycles. Hence, after experimenting 

variations it is considered that it should be limited to 100 for 

the best as it should  not either increase the time slices as well 

as nor decreasing the compression. 

2.4 Limitation 
As seen in LZ77, all the characters are encoded into length 

and match even the non-matched characters. Search buffer is 

taken much longer than LookAheadBuffer. And the non-

matched pairs waste the space by encoding them as length and 

offset. So the new LZSS was published to modify the LZ77 

which encodes only a pointer when the string is longer than 

the pointer itself. Hence it sends the bit before each symbol to 

find whether it is a pointer to a character. Again with all the 

above considerations Google gives a new heuristic by finding 

all the possible backward configurations including the non-

backward references also and takes the shortest one. But it 

still uses the previous length in its output and appends every 

time the length and distance to the LZ77 arrays even when the 

length is less than the shortest matched string. This consumes 

the space by again fetching the array for the process. So the 

modifications are proposed that it will output the tuple like in 

original LZ77 to save the space and use recent length for 

better compression, which will be described in the next 

section. 

3. EMPIRICAL APPROACH 
HTTP compression is the capability of the Apache server for 

the better bandwidth and greater transmission speeds over the 

web [7]. Any data which is sent from the server in compressed 

form is called as HTTP data. And the browsers that support 

compression use mostly two schemes: gzip and deflate [8]. 

Both the schemes try to encode the content using LZ77 

algorithm. Next in the new researches of Google, adds a new 

lossless Zopfli compression technique developed by Jyrki 

Alakuijala and Lode Vandevenne [9, 10]. 

Unlike the LZ-77 and Zopfli, the proposed system does not 

concern about the emptiness in the dictionary when the 

window slides over the data until it fills lookaheadBuffer. 

Hence use < 0, 0, store > to encode the characters in store that 

does not match in dictionary [11]. 

On the other hand, lengthscore is introduced in the output 

tuple which is a couple of length and distance. This leads to 

search the best sequence from the longest match for the better 

efficiency compresses small characters before the large ones. 

This compresses the data with high density saving the space 

on web server. 

. 



International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

14 

 

Fig 1: Scenario of the Proposed System 

 

4. PROPOSED SYSTEM 
The proposed system is quite effective than the earlier 

mentioned techniques. The method is based on iterative 

entropy based model and a shortest path search to find a low 

bit cost through all possible representations. Hence to 

overcome such issues over length in Zopfli as mentioned in 

section 2.4, it is proposed to compare the lengthscore itself in 

place of the previous lengths in tuple. Also, for the large 

unmatched characters it considers only the single context of 

LZ77Store to append the length and distance to an array. 

The system consists of a compressor whose algorithm is 

discussed in section 4.1 and a Cleaner to flush off the 

compressed streams. As and when the user searches for 

his/her query, the server tries to search in pages and respond 

with those, but the proposed system is being implemented in 

between this process only without any extra setup. Whenever 

the fetched pages are ready to send they first pass through the 

proposed system where the data being compressed in a format 

compatible to the browser and then send over the Internet. 

This like when the Internet responds with the HTTP “O.K” 

message for complete transfer, the system decides to clean the 

storage of the compressed files with the cleaner so that they 

do not waste the space by having the copies of original data. 

The complete scenario is illustrated in Fig.1. 

4.1 Proposed Geflochtener Algorithm 
for (i = instart; i < inend; i++)  

{  

        Maximum amount of blocks to split into 100; 

           Update the sliding hash value; 

           Find the longest matched cache; 

           Gets a score of the length given the distance; 

            if (lengthscore >= MIN_MATCH) 

 { 

Verifies if length and dist are indeed valid, 

assert; 

          output StoreLitLenDist(lengthscore, dist, store); 

                shift the window length characters along; 

 }  

else 

 { 

                     output StoreLitLenDist(0, 0, store); 

                     shift the window 1 character along; 

     } 

} 

In this algorithm, instart is the starting position of the 

window, inend is the end position of the window size, Litlen 

contains the literal symbols or length values i.e. literal per 

length, lengthscore is the length itself, dist indicates the 

distance and MIN_MATCH is the shortest distance in length. 

Literal symbols and the distance both are about the same size. 

4.2 Compression Process 
The page content (leaving images) passes through a 

litlendistance generator where page data converted into 

literals with the details of their length and distance. Next these 

literals and lengths pass through scorer where each literal get 

the score on the basis of the distance. Now these would be 

verified before the matching of the literals. As these are 

validated then they get transfer to the iterator where the bytes 

are compared to get the longest match from the backward 

references. As and when it gets longest match they put into a 

Longest Matched Cache (LMC) and decides on the shortest 

paths with the best length first. Then as the best lengths are 

firstly scanned the greedy heuristic verifies the lengthscore 

and clears the length now shifts the window slider for the next 

matches. Likewise, the matched pairs after traversing all the 

paths transmits the matched phrases to the entropy encoder 

which resembles the Huffman tree bits to value of symbols 

and get down to compressed stream which will be transmitted 

over Internet with the header bits set to content encoding gzip. 

4.3 Compression Strength 
For detailed analysis, let us assume the input stream as 

“ABCDEFGHIJ” at very start so it has not found any 

backward references. When the window slides the next stream 

strikes “ABCDEFGHIJ” then it evaporates the distance and 

length as -10 where ‘-‘shows the back movement. Likewise 

when it strikes with “AAAAAFGHIJ” as shown in Table 1, it 

has multiple choice for the references to encode A’s with 

distance and length as – (1) -1 and 4 (2) -10 and 5 

respectively. Next when “AAADEFGHIJ” comes into track 



International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

15 

then to encode ‘AAA’ it gets back matched with distance -8 

and length 3; distance -9 and length 3 and distance -10 and 

length 3 each with different possible tuple. Likewise, the 

largest of distances are being considered which is more 

probable statistically and leads to smaller entropy. 

 

Table 1. Selection of backward references 

 Line  Input Stream 
Distance (d) Length (l) 

1 ABCDEFGHIJ not available not available 

2 ABCDEFGHIJ -10 10 

3 AAAAAFGHIJ -1 4 

 AAAAAFGHIJ -10 5 

4 

AAADEFGHIJ 

-8 3 

 -9 3 

 -10 3 

 

4.4 Algorithm Analysis 
With the proposed Geflochtener algorithm, it is tried to 

compress the data by encoding phrases from lookahead buffer 

as references in sliding window so that the lookahead buffer is 

loaded with the symbols. Compression takes place inside the 

loop that that iterates until symbols finish. Here the instart is 

used to keep track of the present bytes being processed in 

original content and inend is used to keep track of the current 

byte writing to buffer of the compressed data. During each 

iteration loop, longest matched cache (LMC) is called to 

determine the longest match and return the length of it. As the 

match found, LMC sets the offset to the position of the match 

in the sliding window and next to the symbol in the look-

ahead buffer immediately after the match. In this case, the size 

of window is 32 KB which determines how far back in the 

data is searched for matching phrases and limit the length to 

258 which allows to find the shorter distances. Hence the 

smallest distance to reach this length uses only 256 out of 259 

for the convenience of array which would make 3 longer. 

Generally it is good idea to search far back for matchings but 

it must be balanced against search time through sliding 

window. Also, balance it against the space penalty by using 

more bits for offsets. The size chosen for the look-ahead 

buffer determines the maximum length of phrases that can 

match. If the data has many long phrases that are duplicated, 

choosing a buffer size that are too small results in multiple 

phrase tokens where it might otherwise get just one. The 

network function htonl is also called to ensure the token in 

big-endian format. This is the format required to store the 

compressed data as well as to uncompress it.    

5. IMPLEMENTATION 
The proposed algorithm does not need any new inflator that 

means there is no requirement for new updates at the client- 

 

 

Fig 2: Deep running of Proposed Algorithm 

side applications. It is a good approach and viable tool for 

cutting the cost from heavy traffic websites. The proposed 

system is implemented in C with the considerations for its 

easiness and compatibility over the different platforms. Here 

for the sake of inbuilt libraries, run it on Red Hat Enterprise 

Linux operating system with kernel 2.6.18-128 (x86_64) on 

Intel Pentium Dual core CPU E2160 at 1.80 GHz. Also the 

complete source code has been compiled on GCC version 

4.6.3 with a single walled output for the portability, so that it 

can be directly used anywhere without any pre-configuration. 

And the benchmarks are selected on the basis of their content 

features as such Calgary composed of collection of small text 

with some binary files and Enwik8 which stores 100 million 

bytes of English Wikipedia large content which are the best 

for our testing purposes as they have all the necessary content 

that are always seen in websites while transferring on the 

HTTP.  The only compression libraries are mentioned in it, 

existing software can be used for their decompression. This 

provides better functionality with gzip, deflate and compatible 

with all browsers. 

6. EXPERMINETAL RESULTS 
Geflochtener tracks all the backward offsets including even 

those where no backward references are found and then 

choose among them that produces the shortest amount of bits. 

This stores all the lengths and best sequence is found by 

reverse traversal of the buffer.  Some of the corpora has been 

used for running the compressors: Calgary Corpus [12], 

Canterbury Corpus [13] and enwik8 [14] which are shown in 

Table 2.  

 

 
Input data 

data 

Lookahead buffer  Search buffer 

Longest match < 258 

Window slider  

Encoder  

Compressed 

output 



International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

16 

Table 2. Comparison of Proposed Geflochtener with 

existing Compressor 

B
en

ch
m

a
rk

s 

C
o

rp
u

s 

S
iz

e 

G
zi

p
-9

 

7
Z

ip
 

K
zi

p
 

P
ro

p
o

se
d

 

G
ef

lo
ch

te
n

er
 

C
a
lg

a
r
y

 

3141622 1017624 980674 978993 974067 

C
a
n

te
r
b

u
r
y

 

2818976 730732 675163 674321 668456 

E
n

w
ik

8
 

100000000 36445248 35102976 35025767 34986660 

*All sizes in Kilo Bytes. 

The compression percentage will be found as per the 

formulae: 

     
     

  
     

where C P is the compression percentage, LO stands for the 

length of original file and LC stands for length of compressed 

file. On the contrary, it is also approximated the redundancy 

rates by 100 – CR%. As from the Table 1, it is depicted that 

the proposed Geflochtener has removed about 69% 

redundancy in Calgary which is 1.6% greater than that of 

gzip-9; similarly for Canterbury it removes 76.22% which is 

2.2% better and for English Wikipedia 65% which is 1.5 % 

greater than that of gzip-9. This yields a remarkable change in 

compression by removing the redundancies of data about an 

average of 70%. 

Based on the above formulae the performance calculated is 

shown by graphically in Fig.3 in which the lowest violet line 

of Geflochtener proves the highest compressibility among the 

existing compressors. 

 

 
 

Fig.3. Comparison of Proposed system with existing 

compressors 

  As discussed, after compressing the data it is need to send 

over Internet so time recorded while transmitting the 

compressed Web data over 10 MBps speed connection is 

depicted in Table 3. whose graph is seen in Fig. 4. 

 

Table 3. Comparison of Throughput by Proposed 

Geflochtener over existing Compressor 

Benchmarks 
Gzip-9 7Zip 

Kzip 

Proposed 

Geflochtener 

Calgary 99.4 95.8 95.6 95.2 

Canterbury 71.4 65.9 65.9 65.3 

Enwik8 3559.1 3428 3420.5 3417.6 

*All timings in milliseconds 

 

 
 

Fig.4 Comparison of Throughput by Proposed System 

Compressor 

7. CONCLUSION 
The proposed system track all the references and takes the 

best ones based on the greedy implementation with limited 

iteration to hundred. It does not take the recurring previous 

lengths while it takes the lengthscore itself for comparison 

which removes the problem of deciding the length from where 

we start our next comparison. And the output produced is 4.0-

8.52% smaller than that of gzip-9 and save the space on server 

with the degradation of 514 to 9086 bytes. After performing it 

on 10 Mbps speed connection, the proposed Geflochtener 

(with the improvement) transmit Enwik8 content over web in  

3 second, Calgary content in 95 milliseconds, and Canterbury 

content in 65milliseconds which is much significant in 

accelerating our web traffic. This proves that with the 

proposed system large data streams of hundreds of MB can 

be transmitted within seconds over the Internet with the 

help of compression.  

The proposed system’s strength for binary blobs that change 

infrequently, if ever, or are downloaded with enough 

frequency to increase download speed. This also helps in the 

mobile world where the denser compression results in reduced 

battery use and less strain on subscriber’s data plan. Not only 

20 
22 
24 
26 
28 
30 
32 
34 
36 
38 
40 

C
o
m

p
re

ss
io

n
 r

a
ti

o
 i

n
 %

 

Benchmarks 

Performace  in terms of CR by Proposed  

System 

gzip-9 

7zip 

kzip 

gefloch
tener 

60 

560 

1060 

1560 

2060 

2560 

3060 

3560 
Ti

m
e

 in
 m

ill
is

e
co

n
d

s 

Compressed files 

Throughput  over Transmission  

kzip 

7-zip 

gzip-9 

geflochte
ner 



International Journal of Computer Applications (0975 – 8887)  

Volume 94 – No 10, May 2014 

17 

had this it also proved its worth by implementing a stand-in in 

IDE to create a compact distributable APK files for the users. 

As the redundancy brings the vulnerability for cryptanalysis, 

our Geflochtener compression makes such cryptanalysis 

harder by reducing the redundancies densely which would be 

a great benefit while transmitting the encrypted confidential 

contents after compression over Internet like in Email 

services.  

With all these, it is better phenomenon for a little more 

compression in not only wired network but also in common 

wireless spectrum where the mobile data transfers lead to 

raising the cost to implementation levels. This can further be 

improved by implementing threading in program to run 

concurrently [15] [16]. Also it needs to decide when the 

cleaner should run which will still remains the question of 

discussion. 

8. REFERENCES 
[1] M. Burrows & D.J. Wheeler (1994), A Block – Sorting 

Lossless Data compression Algorithm, SRC Research 

Report 124, Digital Research Systems Research Centre 

[2] F.S. Awan & A. Mukherjee (2001), LIPT: A Lossless 

Text Transform to Improve Compression, Proceedings of 

International Conference on Information Technology: 

Coding and Computing, Pp. 452–460. 

[3] Senthil Shanmugasundaram, Robert Lourdusamy A 

comparative Study of Text compression Algorithms 

International Journal of Wisdom Based Computing, Vol. 

1 (3), December 2011. 

[4] Jyrki Alakuijala Lode Vandevenne Data compression 

using Zopfli. 

https://zopfli.googlecode.com/files/Data_compression_us

ing_Zopfli.pdf‎ 

[5] Gopal Prasad Arya, Arvind Singh, Rahul 

Painuly,shashank Bhadri and Sunakshi maurya.LZ 

squeezer A Compression Technique based on LZ77 and 

LZ78. The SIJ Transactions on Computer Science 

Engineering & its Applications (CSEA), Vol. 1, March-

April 2013 

[6] Jagadish, H.V., Ng, R.T.; Beng-Chin Ooi, Tung, A.,” 

ItCompress: an iterative semantic compression 

algorithm, Data Engineering”, Proceedings. 20th 

International Conference on, pp. 646-657, 2004. 

doi: 10.1109/ICDE.2004.1320034. 

[7] Using HTTP Compression (IIS 6.0), 

http://www.microsoft.com/technet/prodtechnol/Windows

Server2003/Library/IIS/d52ff289-94d3-4085-bc4e-

24eb4f312e0e.mspx?mfr=true.Microsoft 

Corporation.Retrieved2013-09-15. 

[8] R. Fielding, J. Gettys, J. Mogul, H. Frystyk Nielsen, L. 

Masinter, P. Leach and T. Berners-Lee,RFC2616-

Hypertext Transfer Protocol—HTTP/1.1, 

http://www.ietf.org/rfc/rfc2616.txt 

[9] Compress data more densely with Zopfli - Google 

Developers Blog 

http://googledevelopers.blogspot.in/2013/02/compress-

data-more-densely-with-zopfli.html 

Googledevelopers.blogspot.com. 2013-02-28. 

Retrieved 2013-09-15. 

[10] zopfli - Zopfli Compression Algorithm - Google Project 

Hosting https://code.google.com/p/zopfli/ 

Code.google.com. Retrieved 2013-09-15. 

[11] Data Compression the Dictionary Way, http://www.i-

programmer.info/babbages-bag/515-data-compression-

the-dictionary-way.html?start=1 

[12] Calgary corpus: http://www.data-

compression.info/Corpora/CalgaryCorpus/index.htm 

[13] Canterbury corpus: 

http://corpus.canterbury.ac.nz/resources/cantrbry.zip 

[14] Enwik8 corpus: http://mattmahoney.net/dc/enwik8.zip 

[15] Jeff Gilchrist, Aysegul Cuhadar, Parallel Lossless Data 

Compression using on the Burrows-Wheeler 

Transform, International Journal of Web and Grid 

Services (IJWGS), vol. 4:1, pp. 117-135, 2008. 

[16] Gilchrist, J.; Cuhadar, A., "Parallel Lossless Data 

Compression Based on the Burrows-Wheeler 

Transform," Advanced Information Networking and 

Applications, 2007. AINA '07. 21st International 

Conference on, vol., no., pp.877-884, 21-23 May 2007. 

9. AUTHOR’S PROFILE 
Mr. Hemant Kumar Saini is a Red hat Certified Engineer. 

He is pursuing M. Tech. in Computer Science & Engineering 

from Rajasthan Technical University, Kota. He has completed 

his B. Tech in Information Technology from MLV 

Government Textile & Engineering College. He is having 2 

years of industrial experience and one year of academic 

experience. He has published articles in CSI and Springer. His 

research interests are Computer Network, Web Technology 

and Network Security. 

Mr. Satpal Singh Kushwaha is an Associate Professor, at 

MITRC, Alwar (Rajasthan). He has done his M.Tech. from 

RTU, Kota, B.E. from University of Rajasthan, Jaipur. He has 

8 years of teaching and research experience. He has more than 

20 papers to his credit, in many international and national 

journals and conferences. His research interests are 

Information Security, Network Security and Big Data. 

Dr. Rama Krishna Challa is an Associate Professor, at 

NITTTR, Chandigarh. He has done his Ph.D. from IIT 

Kharagpur, M.Tech. from CUSAT, Cochin and B. Tech from 

JNTU, Hyderabad. He has 18 years of teaching and research 

experience. He has more than 75 papers to his credit, in many 

international and national journals and conferences. His 

research interests are Wireless Networks, Distributed 

Computing, Cryptography, and Network Security. 

 

 

 

IJCATM : www.ijcaonline.org 

http://www.inderscience.com/search/index.php?action=record&rec_id=18498&prevQuery=&ps=10&m=or
http://www.inderscience.com/search/index.php?action=record&rec_id=18498&prevQuery=&ps=10&m=or
http://www.inderscience.com/search/index.php?action=record&rec_id=18498&prevQuery=&ps=10&m=or

