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ABSTRACT 
Principal components analysis (PCA) is one of a family of 

techniques for taking high-dimensional data, and using the 

dependencies between the variables to represent it in a more 

tractable, lower-dimensional form, without losing too much 

information. PCA is one of the simplest and most robust ways 

of doing such dimensionality reduction. It is also one of the 

best, and has been rediscovered many times in many fields, so 

it is also known as the Karhunen-Lo_eve transformation, the 

Hotelling transformation, the method of empirical orthogonal 

functions, and singular value decomposition. 

General Terms 
variances, covariance, symmetric matrix, identity matrix, 

orthogonal matrix, diagonal matrix 

Keywords 
Principal Component Analysis (PCA), Singular Value 

decomposition (SVD) 

1. INTRODUCTION 
Assume the data set is represented in terms of m×n matrix. 

Let the data set is X where m is considered as columns of the 

samples i.e. observations and n is considered as the variables. 

To transform the matrix in linear form i.e. X to another matrix 

Y having same dimension i.e. m×n, so that for some m×m 

matrix P i.e.   

    XPY                     (1) 

If rows of P will be considered as row   vector i.e. 

p1,p2,p3,……,pm and columns of X will be considered as 

column vectors i.e. x1,x2,x3,…..xn , then PX can be interpreted 

as below : 
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As pi,xj ϵ Rm×n  and so pi.xj is the Euclidean inner (dot) 

product. This gives the original data set X, being projected to 

the columns of P i.e. (p1, p2,……,pm) which formulates the 

new basis for representing the columns of X. The rows of P 

will later become the Principal Components (PCs). Principal 

Component Analysis [1-3] defines independence by 

calculating the variances of data in original basis. It seeks to 

de-correlate the original data by finding the directions in 

which variance is maximized and then use these directions to 

define the new basis. The definition for the variance of a 

random variable, Z with mean, μ is as below: 

     22                 (3) 
Suppose consider a vector of n discrete measurements, i.e. ˜r 

= (˜r1, ˜r2. . . ˜rn), with mean μr. If the mean is subtracted from 

each of the measurements, then a translated set of 

measurements r = (r1, r2, . . . , rn), that has zero mean. Thus, 

the variance of these measurements is given by the relation  

   rr
n

r
12                    (4) 

If a second vector of n measurements, i.e. s = (s1, s2, . . . , sn), 

again with zero mean,  then idea comes to obtain the 

covariance of r and s. Covariance can be thought of as a 

measure of how much two variables change together. 

Variance is thus a special case of covariance, when the two 

variables are identical. It is in fact correct to divide through by 

a factor of (n – 1) rather than n. The original m×n data matrix 

i.e. X having m number of variables and n number of samples. 

Hence X can be considered m row vectors of each of length n. 
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       (5) 

 

Since there is a row vector of each variable where each of 

these vector consists of all samples of a particular variable. 

For example, xi is a vector of the ‘n’ samples for the ith 

variable. 
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(6)                   

This matrix is therefore known as the Covariance Matrix. 

Covariance is a measure of how well correlated two variables 

are. The PCA [4-6] method makes the fundamental 

assumption that the variables in the transformed x should be 

as uncorrelated as possible. It means covariances of different 

variables in the matrix i.e. CY, should be as close to zero as 

possible. It gives the idea i.e. covariance matrices are always 

positive definite or positive semi-definite. Therefore the 

following requirements for constructing the covariance 

matrix, Cy: 

(a) In order to maximize the diagonal entries gives the 

measurement as variance. 

(b) In order to minimize the off-diagonal entries gives 

the covariance between the variables. 

 

 Consider the formula for constructing the covariance matrix 

i.e. Cy where the previous interpretation of matrix Y against 

the original data set matrix X given in Eq. (1) as below: 
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   (7) 

 

As the matrix S is in order of m × m, the matrix can be square 

symmetric if  

        XXXXXX      (8) 

 

From linear algebraic theorem, it is well known that for a 

square symmetric matrix [11] which is orthogonally 

diagnosable. Hence the following matrix S can be written as 

below: 

 

        
 EDES                         (9) 

where E is the orthogonal matrix of m × m order whose 

columns are the eigenvectors of the matrix S and D is the 

diagonal matrix of having eigenvalues of matrix S. Let the 

transformation matrix P consists of rows as eigenvectors of 

the matrix S and columns as eigenvalues of matrix S. So P = 

ET.. Hence the covariance matrix Cy is reconsidered as  
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 where I is the identity matrix of order m×m. 

    

Hence for the special choice of P, we gain 
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D
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1

1   (11) 

Hence it is concluded that the largest variance goes to the first 

principal components, the second largest variance goes to the 

second principal components and so on. Therefore it gives us 

a method for organizing the data in the diagonalisation stage. 

Once it produces the eigenvalues and eigenvectors of S i.e. 

XXT , it is sorted with the eigenvalues in descending order and 

place them in this order on the diagonal of D. So the 

orthogonal matrix[13], E is created by placing the associated 

eigenvectors in the same order to form the columns of E (i.e. 

place the eigenvector that corresponds to the largest 

eigenvalue in the first column, the eigenvector corresponding 

to the second largest eigenvalue in the second column 

etc.).Therefore the objective of diagonalising the covariance 

matrix of the transformed data is achieved. The principal 

components (the rows of P) are the eigenvectors of the 

covariance matrix, XXT , and the rows are in order of 

’importance’, telling how ’principal’ each principal 

component is. 

2. SINGULAR VALUE 

DECOMPOSITION TECHNIQUE 

This section adds the benefit of Singular Value 

Decomposition algorithm[8] in linear algebra to the Principal 

Component Analysis[7]. Let Rn×n, Rn×m and Rm×m are three 

vector spaces where Rn×n is orthogonal, Rn×m is diagonal and 

Rm×m is again the orthogonal one. Let U be the orthogonal 

matrix belonging to the vector space Rn×n, ∑ be the diagonal 

matrix to the vector space Rn×m and the V be orthogonal 

matrix to the vector space Rm×m. 

Given the matrix A i.e. A ϵ Rn×m (diagonal), the singular value 

decomposition of A is as below: 

 VUA    (12) 

The diagonal entries i.e. σi ϵ ∑ is positive, then only the 

entries of the matrix A will be called the Singular Value 

Decomposition (SVD) [8]. The diagonal entries are ordered so 

that the largest diagonal entry i.e. σ1 is placed in (1, 1) 

position of the matrix A. Subsequently the second largest 

entries i.e. σ2 is placed in (2, 2) and so on till the end diagonal 

point. The reversed row and column indexes in defining the 

SVD from the way they were defined in the derivation of 

PCA [7] makes it become apparent. 

Since U ϵ Rn×n and V ϵ Rm×m are orthogonal matrices, their 

columns form bases for the vector spaces Rn and Rm. 

Therefore, any vector b ϵ Rn can be expanded in the basis 

formed by the columns of U (also known as the left singular 

vectors of A) and any vector x ϵ Rm can be expanded in the 

basis formed by the columns of V (also known as the right 

singular vectors of A). The vectors for these expansions ˆb 

and ˆx, are given by: 

XVxbUb   ~~
 (13) 

 

If the relation b = (A × x) then the conclusion is as below: 
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Thus, the SVD allows us to assert that every matrix is 

diagonal following the above rules. In a link to Principal 

Component Analysis, there is a theorem in linear algebra 

which says that every non-zero singular values of matrix A 

(U×∑×VT) is the square roots of the eigenvalues of AT×A so 

that former assertion becomes true. 
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Since the covariance matrix AT×A is a square symmetric, it 

presents the orthogonal diagonalization where the 

eigenvectors are columns of orthogonal matrix V. This is very 

important in making the practical connection between 

Singular value Decomposition (SVD) and Principal 

Component Analysis (PCA) of the original matrix A. Since 

there is the original m × n data matrix, i.e. X, let’s define a 

new (n × m) matrix, Z: 

i.e. 

  



 X

n
z

1

1
  (16) 

As the m rows of X contained the n data samples, let subtract 

the row average from each row entry to ensure zero mean 

across the rows. Thus, the new matrix, Z has the columns with 

zero mean. Then forming the m × m matrix,  

 

   

     

 






















































































XX
n

X
n

X
n

X
n

X
n

ZZ

1

1

1

1

1

1

1(

1

1

1

           

  (17) 

  

i.e. 
xCZZ    (18) 

 

as 
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It has been found that by defining Z in this way ensures that 

ZT × Z is equal to the covariance matrix of X, i.e.,  CX. So it 

has been identified that the principal components of X are the 

eigenvectors of CX. Therefore, by performing a singular value 

decomposition of the matrix ZT × Z, the principal components 

will be the columns of the orthogonal matrix, V. 

3. IMAGE COMPRESSION USING PCA 
As it has been developed that the method of singular value 

decomposition(SVD) in principal component analysis i.e. ZT 

× Z  which is equal to the covariance matrix Cx derived from 

the original data set matrix of m×n order i.e. X. By recalling 

the orthogonal matrix V where the relation says that Y = VT × 

X, but we need to truncate the orthogonal matrix V where we 

need to select the first ‘r’ rows out of ‘m’ rows so that one 

new matrix V1 can be considered as : 

 

V1 ϵ Rm×r (orthogonal vector space) 

Though the projection Y1 = V1 × X where V1 is of the order 

i.e. m × r and the original matrix X of order m × n, so that the 

projected matrix Y1 will have r × n order i.e. Y1 ϵ Rr×n. Hence 

the newly projected matrix i.e. Y1 is still dimensionally 

consistent. Suppose in order to transform the data to the 

original basis of the original data set X by computing i.e. 

 

11 VYX        (20) 

Hence the dimensions of the original data matrix X are 

recovered, i.e. we obtain X1 ϵ  Rm×n. The matrices X and X1 

are of the same dimensions, but they are not the same matrix, 

since it has been truncated the matrix of principal dimensions 

of the color image is 3216 × 2136 where width is 3216 pixels, 

height is 2136 pixels, and horizontal resolution is 300 dpi, 

vertical components V in order to obtain X1. It is therefore 

reasonable to conclude that the matrix, X1 has in some sense, 

’less information’ in it than the matrix X. Load the color 

image in Figure 1. into MATLAB. The resolution is 300 dpi, 

bit depth is 24 and the size is 3.32MB. 

The RGB source color image(JPEG format)  is stored in 

matrix of 2136 × 3216 × 3 order, where the third dimension 

stores three numbers in the range[0,1] corresponding to each 

pixel. The third dimension stores the numbers representing the 

intensity of Red, Green and Blue (RGB).  The RGB image is 

further converted to gray-scale image as in Figure 2 which 

produces the matrix of exact 2136 × 3216 × 3 order as the size 

got reduced to 93 KB as usual but the gray scale image is the 

image need to go compression through Principal Component 

Analysis approach where the third dimension represents the 

intensity need to undergo dimensionality reduction to certain 

compression ratio. The colourmap matrix of order 2136 × 

3216 × 3 with three identical columns with each of a scale 

representing intensity on the one dimensional gray scale. It 

means each element of the pixel or dot matrix contains a 

number representing a certain intensity of an individual pixel 

or dot of gray scale image. Let the data matrix i.e. X of order 

2136 × 3216 which will undergo a principal component 

analysis(PCA)[7] using Singular Value Decomposition(SVD) 

method[8]. The image size is calculated as row value of 2136 

pixels and column value of 3126 pixels. As the image is two-

dimensional, the row mean is computed giving one 

dimensional 2136 × 1 matrix. Row mean is subtracted from 

each row element giving the changed matrix X having the 

same order of 2136 × 3216. Further a temporary matrix Z is 

created by multiplying  

1/( )1( n × X’ where n = 3216. So the order of 

transformed matrix Z is 3216 × 2136. 

As the transformed or resulting matrix is two-dimensional 

where covariance matrix of Z is calculated as Z’× Z resulting 

matrix of order 2136 × 2136 pixels. Let say the covariance 

matrix as Cx. Computing the Singular Value Decomposition 

(SVD) [8] passing the covariance matrix i.e. Cx resulting 

three matrices as U, S and V. U is an orthogonal matrix of 

order 2136 × 2136 pixels, S is a diagonal matrix of order 2136 

× 2136 where the matrix S contains all zeroes except the 

diagonal entries. The third matrix V is same as of U both 

element wise and order wise. Hence the variances is computed 
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by taking only the diagonal values of S resulting one 

dimensional matrix of order 2136 × 1. So the cumulative 

variances got calculated in accordance with the above 

variances against the total sum of variances resulting 1 to 

2136 values. Consider the first twenty Eigen values out of 

2136 and calculate the Eigen vectors resulting the Eigen 

spectrum as in Figure 4.  Let consider to use first 40 Principal 

Components (PCs) out of 2136 PCs. In order to know the 

compression ratio of first 40 PCs, we need to compare two 

matrices i.e. the original matrix X of order 2136 × 3126 

without compression against the covariance matrix Cx of 

order 2136 × 2136.  Since we select the first 40 Principal 

Components, the resulting matrices are two i.e. the first one of 

2136 × 40 order and the other one is of 40 × 2136 order. 

There is also one more matrix which is must used in order to 

display the recovered image i.e. the vector of means in Figure 

3.   Therefore the image is reduced with the number of 

columns needed from 2136 to 40 + 40 + 1 = 41 and the 

compression ratio is then calculated in the following way:    

2136/2(40 + 1) = 26.3704 where the 40 is accountable for first 

40 Principal Components (PCs). So 2136: 81    = 26.3704: 1, a 

decent ratio it seems. The image for 40 principal components 

(26.3704: 1) is displayed in Figure 3. In Figure 5, a selection 

of images in increasing number of principal components 

corresponding to the compression ratio is displayed. 

4. CONCLUSION 
The loss in quality is evident, after all this lossy compression, 

as opposed to lossless compression considering the 

compression ratio seems quite very good. It has been observed 

that PCA’s Singular Value Decomposition method makes 

tremendous drop in compression ratio against the increasing 

number of principal components for example. as in Table1 

and Figure6. PCA is useful for finding new, more informative, 

uncorrelated features as it reduces dimensionality by rejecting 

low variances features. But in Independent Component 

Analysis, an independence condition is optimized which gives 

more meaning full components than optimization of only the 

variance as is done by PCA. 
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Figure2. Gray scale image of the temple   

converted from the RGB color format 

 

 

Figure1. Source Color Image of a temple 

in RGB color format 

Figure3. Recovered image of the temple 

after data and dimensionality reduction 
Figure6.  Comparing compression ratio against 0 to 

180 Principal Components 
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      Table 1 Compression Ratio in respect to the number of Principal Components 

SL NO. NO. OF PRINCIPAL COMPONENTS COMPRESSION   RATIO 

1 2    Principal Components 427.2:1 compression 

2 6    Principal Components 163.3:1  compression 

3 10  Principal Components 101.7:1  compression 

4 14  Principal Components 73.7:1 compression 

5 20  Principal Components 52.1:1 compression 

6 30  Principal Components 35:1  compression 

7 40  Principal Components 26.4:1  compression 

8 60  Principal Components 17.7:1  compression 

9 90  Principal Components 11.8:1 compression 

10 120  Principal Components 8.9:1 compression 

11 150 Principal Components 7.1:1 compression 

12                  180 Principal Components 5.9:1 compression 

 

 

Figure4. The first twenty Eigen Values out of 2136 and the Eigen Vectors 

resulting the Eigen Spectrum 
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Figure5. A selection of images in increasing number of principal 

components corresponding to the compression ratio is displayed. 

 

IJCATM : www.ijcaonline.org 


