
International Journal of Computer Applications (0975 – 8887)  

Volume 93 – No 9, May 2014 

7 

Performance Improvement through Parallelization of 

Graph Clustering algorithm 

 
Yogendra Kumar Dehariya Ravi Shankar Singh 

Indian Institute of Technology (BHU), Varanasi 221005 India 

 

ABSTRACT 

Clustering is the task of Grouping of elements or nodes (in the 

case of graph) in to clusters or subgroup based on some 

similarity metrics. In general Clustering is unsupervised 

learning task requires very little or prior knowledge except the 

data set. However Clustering Task are computationally 

expensive as most of the algorithms require recursion or 

iterations and most of  the time we have to deal with real life 

data set which are generally very huge in size. This paper 

deals with a well-known clustering algorithm MCL (Markov 

Clustering Algorithm) and proposes a parallel version of it 

using OPENMP. 
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1. INTRODUCTION 
Clustering is defined as dividing elements in to groups called 

Clusters[1][5]. Clustering task have been used in many fields 

including Image/Video Processing, Machine Learning, Data 

Mining, biochemistry, bioinformatics etc. Different Types of 

Clustering Algorithms have been developed like partitional, 

hierarchical, graph-based clustering etc. according to the 

properties of the data to be clustered. Most of the Clustering 

algorithm involves iterative or recursive function calls to find 

locally and globally optimal solution from a high dimensional 

Data Set [6]. Also the data sets are real life data sets which 

involve high computation for interpretation of clusters. Hence 

they are computationally expensive and saving computational 

complexity is a significant issue for the clustering algorithm. 

Therefore parallelization of clustering algorithm is very 

practical approach. This paper proposes a parallel 

implementation of MCL with OPEN-MP. The Improvement 

in its run Time is analyzed with real Bloggers Data and also 

with random Graph generated by using four different types of 

stochastic graph generation algorithm. MCL is based on the 

random walk it works by iteratively strengthening the strong 

currents and weakening the weak currents until convergence 

using expansion and inflation defined later in this paper.  

2. ALGORITHM DESCRIPTION 
For the analysis of MCL (Markov Clustering 

Algorithm)[2][3][4] graph was generated by using bloggers 

data and two stochastic graph generator i.e. Erdos Renyi and 

Barabasi-Albert algorithm. The next subsections describes 

MCL and theses algorithm in details. 

2.1 MCL (Markov Clustering Algorithm) 
The key idea behind Markov Clustering algorithm is that if a 

random walker start random walk from a dense cluster than 

he/she would likely to remain in that cluster until most of its 

nodes have been visited. MCL simulates this by iteratively 

modifying the transition probability matrix M by following to 

operations [3]:  

 Expansion: it is defined as follows  

 

M = M*M  

 

If the expansion parameter is e than M is raised to M to the 

power e. which corresponds to taking e steps in random walk.  

 Inflation: it is defined with respect to inflation 

parameter r in which each entry of M is raised to 

power r and then it is normalized.  

 

These steps are repeated until convergence. 

2.2 Algorithm used for Graph Generation  

2.2.1Using Bloggers Data (Author Proposed 

algorithm) 

As our input data, a real time blog data has been adopted from 

[7]. The blog data contains different tags for each blog. The 

graph constructed by considering each blog as a node and 

edge strength between them has been calculated on the basis 

of similarity between their tags. Let maximum number of tags 

can be given for a blog is ‘n’ then edge strength between two 

nodes can be given as ‘s/n' where s is the number of similar 

tags. 

Pseudo code for generating the graph is given below: 

Let n = number of maximum tags that a 

author can have.  

nst(B[1],B[2]) = function returning the 

number of similar tags between blog B1 

and blog B2  

for I = 1 to n  

for j = 1 to n  

{  

  s = nst(B[i],B[j]);  

  M[i][j] = s/n;  

 } 

 

The above algorithm defines how the graph is generated 
from the blog data. It can further be optimized. The final 
graph generated is in the form of adjacency matrix M. 

2.2.2 Using a Stochastic Graph generator 

The following Two Different stochastic Graph Generator is 

used for performance analysis of MCL : 

Barabási–Albert algorithm: It begins with a initially 

connected nodes of m0 nodes. New nodes are added one at a 
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time and is connected to m existing nodes (m < m0) with a 

probability that is proportional to the number of links that the 

existing nodes already have. Formally it can be written as :- 

Pi = ( Ki / ∑i Kj ) 

Where Pi = the probability that the new node is connected to 

node i 

Ki = Degree of the node i 

Erdős–Rényi Algorithm: 

In this is a graph is constructed on the basis of connecting nodes 

randomly. An edge is included with probability p which is 0.10 

in our implementation.  

3. PROPOSED PARALLEL VERSION 

OF MCL ALGORITHM 
As the two main steps involved in MCL i.e. Expansion and 

Inflation involves iteration which can be computed 

independently from each hence they can be parallelized .The 

parallelization is done at both the expansion and inflation 

steps as follows:- 

Expansion: 
Since expansion steps involves multiplication of transition 

matrix and hence the multiplication can be performed parallel 

as shown:- 

 For all i = 0 to n  

   For all j =0 to n 

     For k = 0 to n 

       M*[i][j] +=  M[i][k]*M[k][j]; 

  M = M*; 

 
Inflation: 
Inflation step is nothing but each element raised to inflation 

parameter hence each element can be computed in parallel as 

follows:- 

 For all i=0 to n  

     M[i][j] = M[i][J]^n; 

 

Where M = transition matrix 

N = Number of nodes 

4. EXPERIMENTAL SETUP 
The MCL algorithm was implemented in c++ using OPEN-

MP as given in the above pseudo code and the improvement 

in its run time is observed using the graph generated from 

Bloggers Data and random Graph Generated using Stochastic 

Graph Generator. 

5. EXPERIMENTAL RESULT 

5.1 Using Graph Generated From Bloggers 

Data 
The observation for bloggers data graph is summarized in 

Table 1 and graph for the same is shown in graph 1. It can be 

easily evident from the Table 1 that a speed up of 

approximately 0.5 can be easily obtained through 

parallelization of MCL. 

Table 1 : Observations for Bloggers Data 

Serial 

no. 

Number 

of nodes  

Number 

of 

Clusters 

Run Time 

(Sequential ) 

Run Time 

(Parallel ) 

1 100 15 1.47 0.7 

2 200 21 1.84 1.2 

3 300 27 2.84 1.57 

4 400 38 4.89 2.57 

5 500 31 8.57 4.08 

6 600 30 13.14 5.9 

7 700 33 21.31 9.6 

8 800 37 31.17 12.98 

9 900 40 43.46 22.80 

10 1000 30 59.20 26.90 

11 1100 37 79.45 37.83 

12 1200 36 102.55 68.36 

13 1300 34 127.87 60.84 

14 1400 38 158.66 88.14 

15 1500 68 194.56 102.4 

16 1600 53 236.02 96.721 

17 1700 47 287.34 156.15 

18 1800 40 340.46 165.19 

19 1900 50 398.91 198.15 

20 2000 193 461.12 211.12 
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Graph 1: Run Time vs no. of nodes for series and parallel 

version for graph generated by Bloggers Data 

5.2 Using Erdos Renyi 
The observation for Erdos Renyi graph is shown in table no. 2 

and corresponding graph is shown in graph no.2. here also it 

can be easily observed that the algorithm is showing a speed 

up of about 0.5. The probability for an edge to be present was 

taken as 0.10 in generating the Erdos-Renyi graph.  

Table 2 : Observations for Erdos Renyi 

Serial 

no. 

Number of 

nodes 

Number of 

clusters  

Run time 

(sequential) 

Run time(in 

parallel) 

1 100 21 0.18 0.16  

2 200 31 0.49 0.32 

3 300 33 1.42 0.81 

4 400 37 3.87 1.89 

5 500 39 7.29 3.64 

6 600 40 12.89 6.05 

7 700 39 20.09 10.00 

8 800 42 30.16 19.41 

9 900 43 44.19 26.15 

10 1000 43 58.89 29.64 

11 1100 49 78.12 39.42 

12 1200 51 99.81 51.66 

13 1300 50 130.85 64.45 

14 1400 53 146.77 78.81 

15 1500 60 185.16 97.19 

16 1600 55 214.15 117.19 

17 1700 70 277.15 156.19 

18 1800 75 339.15 195.59 

19 1900 101 392.15 211.19 

20 2000 155 402.12 245.19 

 

          Graph 2:  Graph for Erdos-Renyi Graph  

 

5.3 Using Barabási–Albert algorithm  
The observations for Barabasi-Albert Graph are shown in 

Table no.3 and its corresponding graph is shown in graph 3. 

Here also it is evident that it is showing a speed up close to 

0.50.  
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Table 3: Observations For Barabasi-Albert algorithm 

Serial 

no. 

Number 

of nodes 

Number of 

clusters  

Run 

time(sequential) 

Run time(in 

parallel) 

1 100 16 0.19 0.11  

2 200 27 0.37 .17 

3 300 36 1.39 0.71 

4 400 33 3.07 1.07 

5 500 31 7.31 3.51 

6 600 41 11.79 5.95 

7 700 37 19.09 9.51 

8 800 44 28.11 17.71 

9 900 46 39.18 18.91 

10 1000 49 55.16 25.61 

11 1100 47 67.12 36.16 

12 1200 53 81.91 31.76 

13 1300 51 89.15 43.19 

14 1400 59 137.15 51.57 

15 1500 77 149.15 64.11 

16 1600 64 167.19 77.91 

17 1700 81 189.91 101.2 

18 1800 85 190.11 118.17 

19 1900 95 211.15 121.21 

20 2000 132 227.16 138.81 

Graph 3: graph for observations from Barabasi-Albert 

Graph 

 

6. RESULT, CONCLUSION AND 

FUTURE WORK 
It can be easily observed from the results we are getting for 

different graphs i.e. the graph generated by using bloggers 

data also the one generated by using stochastic graph 

generator that MCL is showing a speed up of 

0.50(approximately) and hence the analyses of large graphs 

can be done easily with in optimal time limits through 

parallelization. Most of the times community detection is 

performed in big social networks hence parallelization of 

clustering or community detection algorithm is practical 

approach to get computational efficiency in real world. 

Clustering can be extended to create recommendation systems 

such as blog recommendation as in our case blogs appearing 

in the same clusters are more relevant with the blogs that are 

in the same cluster than the blogs that appear in other cluster. 
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