
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 9, May 2014

7

Performance Improvement through Parallelization of

Graph Clustering algorithm

Yogendra Kumar Dehariya Ravi Shankar Singh

Indian Institute of Technology (BHU), Varanasi 221005 India

ABSTRACT

Clustering is the task of Grouping of elements or nodes (in the

case of graph) in to clusters or subgroup based on some

similarity metrics. In general Clustering is unsupervised

learning task requires very little or prior knowledge except the

data set. However Clustering Task are computationally

expensive as most of the algorithms require recursion or

iterations and most of the time we have to deal with real life

data set which are generally very huge in size. This paper

deals with a well-known clustering algorithm MCL (Markov

Clustering Algorithm) and proposes a parallel version of it

using OPENMP.

Keywords

MCL (Markov Clustering Algorithm),OPEN-MP,

Parallelization.

.

1. INTRODUCTION
Clustering is defined as dividing elements in to groups called

Clusters[1][5]. Clustering task have been used in many fields

including Image/Video Processing, Machine Learning, Data

Mining, biochemistry, bioinformatics etc. Different Types of

Clustering Algorithms have been developed like partitional,

hierarchical, graph-based clustering etc. according to the

properties of the data to be clustered. Most of the Clustering

algorithm involves iterative or recursive function calls to find

locally and globally optimal solution from a high dimensional

Data Set [6]. Also the data sets are real life data sets which

involve high computation for interpretation of clusters. Hence

they are computationally expensive and saving computational

complexity is a significant issue for the clustering algorithm.

Therefore parallelization of clustering algorithm is very

practical approach. This paper proposes a parallel

implementation of MCL with OPEN-MP. The Improvement

in its run Time is analyzed with real Bloggers Data and also

with random Graph generated by using four different types of

stochastic graph generation algorithm. MCL is based on the

random walk it works by iteratively strengthening the strong

currents and weakening the weak currents until convergence

using expansion and inflation defined later in this paper.

2. ALGORITHM DESCRIPTION
For the analysis of MCL (Markov Clustering

Algorithm)[2][3][4] graph was generated by using bloggers

data and two stochastic graph generator i.e. Erdos Renyi and

Barabasi-Albert algorithm. The next subsections describes

MCL and theses algorithm in details.

2.1 MCL (Markov Clustering Algorithm)
The key idea behind Markov Clustering algorithm is that if a

random walker start random walk from a dense cluster than

he/she would likely to remain in that cluster until most of its

nodes have been visited. MCL simulates this by iteratively

modifying the transition probability matrix M by following to

operations [3]:

 Expansion: it is defined as follows

M = M*M

If the expansion parameter is e than M is raised to M to the

power e. which corresponds to taking e steps in random walk.

 Inflation: it is defined with respect to inflation

parameter r in which each entry of M is raised to

power r and then it is normalized.

These steps are repeated until convergence.

2.2 Algorithm used for Graph Generation

2.2.1Using Bloggers Data (Author Proposed

algorithm)

As our input data, a real time blog data has been adopted from

[7]. The blog data contains different tags for each blog. The

graph constructed by considering each blog as a node and

edge strength between them has been calculated on the basis

of similarity between their tags. Let maximum number of tags

can be given for a blog is ‘n’ then edge strength between two

nodes can be given as ‘s/n' where s is the number of similar

tags.

Pseudo code for generating the graph is given below:

Let n = number of maximum tags that a

author can have.

nst(B[1],B[2]) = function returning the

number of similar tags between blog B1

and blog B2

for I = 1 to n

for j = 1 to n

{

 s = nst(B[i],B[j]);

 M[i][j] = s/n;

 }

The above algorithm defines how the graph is generated
from the blog data. It can further be optimized. The final
graph generated is in the form of adjacency matrix M.

2.2.2 Using a Stochastic Graph generator

The following Two Different stochastic Graph Generator is

used for performance analysis of MCL :

Barabási–Albert algorithm: It begins with a initially

connected nodes of m0 nodes. New nodes are added one at a

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 9, May 2014

8

time and is connected to m existing nodes (m < m0) with a

probability that is proportional to the number of links that the

existing nodes already have. Formally it can be written as :-

Pi = (Ki / ∑i Kj)

Where Pi = the probability that the new node is connected to

node i

Ki = Degree of the node i

Erdős–Rényi Algorithm:

In this is a graph is constructed on the basis of connecting nodes

randomly. An edge is included with probability p which is 0.10

in our implementation.

3. PROPOSED PARALLEL VERSION

OF MCL ALGORITHM
As the two main steps involved in MCL i.e. Expansion and

Inflation involves iteration which can be computed

independently from each hence they can be parallelized .The

parallelization is done at both the expansion and inflation

steps as follows:-

Expansion:
Since expansion steps involves multiplication of transition

matrix and hence the multiplication can be performed parallel

as shown:-

 For all i = 0 to n

 For all j =0 to n

 For k = 0 to n

 M*[i][j] += M[i][k]*M[k][j];

 M = M*;

Inflation:
Inflation step is nothing but each element raised to inflation

parameter hence each element can be computed in parallel as

follows:-

 For all i=0 to n

 M[i][j] = M[i][J]^n;

Where M = transition matrix

N = Number of nodes

4. EXPERIMENTAL SETUP
The MCL algorithm was implemented in c++ using OPEN-

MP as given in the above pseudo code and the improvement

in its run time is observed using the graph generated from

Bloggers Data and random Graph Generated using Stochastic

Graph Generator.

5. EXPERIMENTAL RESULT

5.1 Using Graph Generated From Bloggers

Data
The observation for bloggers data graph is summarized in

Table 1 and graph for the same is shown in graph 1. It can be

easily evident from the Table 1 that a speed up of

approximately 0.5 can be easily obtained through

parallelization of MCL.

Table 1 : Observations for Bloggers Data

Serial

no.

Number

of nodes

Number

of

Clusters

Run Time

(Sequential)

Run Time

(Parallel)

1 100 15 1.47 0.7

2 200 21 1.84 1.2

3 300 27 2.84 1.57

4 400 38 4.89 2.57

5 500 31 8.57 4.08

6 600 30 13.14 5.9

7 700 33 21.31 9.6

8 800 37 31.17 12.98

9 900 40 43.46 22.80

10 1000 30 59.20 26.90

11 1100 37 79.45 37.83

12 1200 36 102.55 68.36

13 1300 34 127.87 60.84

14 1400 38 158.66 88.14

15 1500 68 194.56 102.4

16 1600 53 236.02 96.721

17 1700 47 287.34 156.15

18 1800 40 340.46 165.19

19 1900 50 398.91 198.15

20 2000 193 461.12 211.12

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 9, May 2014

9

Graph 1: Run Time vs no. of nodes for series and parallel

version for graph generated by Bloggers Data

5.2 Using Erdos Renyi
The observation for Erdos Renyi graph is shown in table no. 2

and corresponding graph is shown in graph no.2. here also it

can be easily observed that the algorithm is showing a speed

up of about 0.5. The probability for an edge to be present was

taken as 0.10 in generating the Erdos-Renyi graph.

Table 2 : Observations for Erdos Renyi

Serial

no.

Number of

nodes

Number of

clusters

Run time

(sequential)

Run time(in

parallel)

1 100 21 0.18 0.16

2 200 31 0.49 0.32

3 300 33 1.42 0.81

4 400 37 3.87 1.89

5 500 39 7.29 3.64

6 600 40 12.89 6.05

7 700 39 20.09 10.00

8 800 42 30.16 19.41

9 900 43 44.19 26.15

10 1000 43 58.89 29.64

11 1100 49 78.12 39.42

12 1200 51 99.81 51.66

13 1300 50 130.85 64.45

14 1400 53 146.77 78.81

15 1500 60 185.16 97.19

16 1600 55 214.15 117.19

17 1700 70 277.15 156.19

18 1800 75 339.15 195.59

19 1900 101 392.15 211.19

20 2000 155 402.12 245.19

 Graph 2: Graph for Erdos-Renyi Graph

5.3 Using Barabási–Albert algorithm
The observations for Barabasi-Albert Graph are shown in

Table no.3 and its corresponding graph is shown in graph 3.

Here also it is evident that it is showing a speed up close to

0.50.

0

50

100

150

200

250

300

350

400

450

500

0 500 1000 1500 2000 2500

serial parallel

0

50

100

150

200

250

300

350

400

450

0 500 1000 1500 2000 2500

serial parallel

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 9, May 2014

10

Table 3: Observations For Barabasi-Albert algorithm

Serial

no.

Number

of nodes

Number of

clusters

Run

time(sequential)

Run time(in

parallel)

1 100 16 0.19 0.11

2 200 27 0.37 .17

3 300 36 1.39 0.71

4 400 33 3.07 1.07

5 500 31 7.31 3.51

6 600 41 11.79 5.95

7 700 37 19.09 9.51

8 800 44 28.11 17.71

9 900 46 39.18 18.91

10 1000 49 55.16 25.61

11 1100 47 67.12 36.16

12 1200 53 81.91 31.76

13 1300 51 89.15 43.19

14 1400 59 137.15 51.57

15 1500 77 149.15 64.11

16 1600 64 167.19 77.91

17 1700 81 189.91 101.2

18 1800 85 190.11 118.17

19 1900 95 211.15 121.21

20 2000 132 227.16 138.81

Graph 3: graph for observations from Barabasi-Albert

Graph

6. RESULT, CONCLUSION AND

FUTURE WORK
It can be easily observed from the results we are getting for

different graphs i.e. the graph generated by using bloggers

data also the one generated by using stochastic graph

generator that MCL is showing a speed up of

0.50(approximately) and hence the analyses of large graphs

can be done easily with in optimal time limits through

parallelization. Most of the times community detection is

performed in big social networks hence parallelization of

clustering or community detection algorithm is practical

approach to get computational efficiency in real world.

Clustering can be extended to create recommendation systems

such as blog recommendation as in our case blogs appearing

in the same clusters are more relevant with the blogs that are

in the same cluster than the blogs that appear in other cluster.

7. REFERENCES
[1] Sauta Elisa Schaeffer, “Survey Graph clustering,”

Elsevier Computer Science Review, vol. I, pp. 27-64,

2007.

[2] Venu Satuluri, “Markov Clustering of Protein Interaction

Networks with Improved Balance and Scalability” ACM-

BCB 2010, Niagara Falls, NY, USA.

[3] ULRIK BRANDES, MARCO GAERTLER and

DOROTHEA WAGNER, “Engineering Graph

Clustering: Models and Experimental Evaluation” ACM

Journal of Experimental Algorithmic 12 (2007), Article

1.1.

[4] S. van Dongen. MCL - Graph Clustering by Flow

Simulation. Ph.D. Thesis, University of Utrecht, 2000.

[5] P. Upadhyaya. Clustering Techniques for Graph

Representations of Data. Technical report, Indian

Institute of Technology Bombay, 2008.

[6] V. Satuluri and S. Parthasarathy. Scalable Graph

Clustering Using Stochastic Flows: Applications to

Community Discovery. KDD, 2009.

[7] Nitin Agarwal and Huan Liu and Lei Tang and Philip S.

Yu}, Booktitle = {Proccedings of the First ACM

International Conference on Web Search and Data

Mining (Video available at:

http://videolectures.net/wsdm08_agarwal_iib/)},Title =

{Identifying the Influential Bloggers}, Pages = {207--

218}, Url

={http://videolectures.net/wsdm08_agarwal_iib/}, Year

= {2008},}

[8] Yogendra Kumar Dehariya,”Comparative Analysis of

graph Clustering algorithm using Bloggers Data”,ICICT

2014.

0

100

200

300

0 500 1000 1500 2000 2500

serial parallel

IJCATM : www.ijcaonline.org

