
International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

Moodle Mobile Notifier

Hassan Sbeity and Ahmad Fadlallah
Arab Open University - Lebanon

ABSTRACT
E-learning management systems (eLMS) are increasingly used as
online communication platform between students and teachers in
traditional, distance and open learning educational institutions.
Moodle [10] is the most used open-source e-LMS platform with
around 68 million users being served worldwide [9]. This server-
side application can be accessed via a web browser, on any com-
puter or Internet-enabled hand-held device (smart phone, tablet,
etc.). However, this system has three limitations: first, the lack of
synchronization between client and server applications, in other
words between posting (server side) and viewing (client side) the
information. The second limitation is that students cannot easily
differentiate between newly and previously seen information. This
is because most of the Moodle posts are not tagged with dates
(except news and messages). The third limitation arises specifi-
cally when the Moodle server is accessed from a hand-held de-
vice using mobile telecommunication networks where bandwidth
is considered as a scarce resource (low data rates and limited down-
load/upload quotas). This limitation is caused by the ”useless” ex-
change of high amount of data to load all page contents even if no
new information has been posted. The above listed limitations have
negative impact on the tutor-student communication when eLMS
platforms are used.
This article proposes a system based on a three-tier architecture
named Mobile Moodle Notifier (MMN) to overcome these limi-
tations: the first tier is a mobile application (built on Google An-
droid operating system [3]) that communicates with Moodle using
low-level programming (socket programming) in order to reduce
the bandwidth and download data consumption. The second tier is
a server-side application that feeds the users (mobile application)
with newly posted information from the third tier, which is the -
extended - Moodle database. Performance tests show a 50 times
faster execution time and 300 times less download data consump-
tion on average using MMN compared to accessing Moodle via a
regular web browser.

1. INTRODUCTION
Moodle is an open source e-learning management system used in
many types of learning environments such as education, training
and development, and business settings. In education it is used as
a platform providing the interaction and collaboration between stu-
dents and tutors. This study focuses on its use in higher educa-
tion institutions (HEIs). Moodle includes varieties of tools (assign-
ment submission, online quiz, grading, forums, file sharing, instant
messaging, Wiki, etc.) which facilitate course management and
improve communication (tutor-student and student-student) in the

learning process. The second aspect (communication) and in par-
ticular tutor-student communication is one of the crucial additions
of the eLMS in general and Moodle in particular, which allows the
exchange of various type of information between tutors and stu-
dents (course material, announcements, instant messages, assign-
ments, feedbacks, etc.). Given their variety, flexibility and ease-to-
use, Moodle tools are the main means for tutor-student communi-
cation in many HEIs. An important factor for the success of this
communication is the synchronization 1 between posting and view-
ing the information. In order to ensure this, students are asked to
visit the Moodle website ”regularly” to check for any update that
may have been posted by their tutors (or their peers). The term ”reg-
ularly” in this context needs to be clearly defined in order to deter-
mine a minimum frequency of accessing the eLMS, which allows
the student to read any new post on time [12].
The widespread use of hand-held devices (smart phones, tablets,
etc.) in addition to the large deployment of wireless and mobile
technologies providing internet access, are seen as as a promising
solution to increase the frequency of students access to the eLMS
(thus helping to solve the synchronization issue); students can ac-
cess the Moodle website from their hand-held devices ”anywhere
and everywhere”. Furthermore, last years have witnessed the devel-
opment of several mobile applications [7] [11] [1] [6] that provide
Moodle ”mobile” users with many features of the Moodle web-
site with a user-friendly interface. Although this ubiquity of ac-
cess provided by mobile technologies increases the Moodle access
frequency of students, these applications still do not completely
solve the synchronization issue (will be further discussed in the
related work section). Moreover, the mobile internet data consump-
tion (bandwidth and download/upload quota) limits the use of these
applications (and the access to Moodle from mobile devices) in the
developing countries where mobile internet resources are consid-
ered as scare (limited and expensive). A survey2 that has been con-
ducted at the Arab Open University - Lebanon branch, shows that
more than 90% of students have smartphones, more than 60% of
them have internet access from their Mobile devices; however the
access logs collected from the Moodle server3 shows that less than
3% of accesses are from Mobile devices.
Finally, and based on students’ feedback (same survey), one reason
for missing certain information posted on Moodle is the inability
of students to differentiate between newly and previously posted

1the term synchronization is used in the context of reducing to the minimum
the time interval between two events
2The survey was conducted in April 2013 at the Information Technology
and Computing department
3for the time period of two months between February and March 2013

1



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

information (since their last access) given the amount and variety
of such information.
The main objective of this work is to solve the synchronization
problem in relation to its different aspects as mentioned above. The
proposed solution has a multi-tier architecture consisting of:

(1) Mobile application: notifies students about posted information
with the possibility to differentiate between newly and previ-
ously posted information, and with a minimum internet data
consumption.

(2) Server application: acts as mediator between the Mobile appli-
cation and the database.

(3) Database: Moodle database has been extended to support the
new features provided by the application.

The discussion is organized as follows: Section 2 presents the re-
lated work. Section 3 describes the general multi-tier architecture
of the proposed solution. Sections 4, 5 and 6 describe respectively
the data, the server and the client tiers of the architecture. Section 7
illustrates and discusses the performance of MMN. Finally, section
8 concludes the paper.

2. RELATED WORK
As outlined in section 1, users can access Moodle from their hand-
held devices in two ways:

(1) Opening Moodle website from their mobile web browser.
(2) Using native applications for their Mobile devices.

In order to compare this work with similar works, the most known
mobile applications listed on official Moodle website [8] have been
selected.

(1) Official Moodle Mobile Application [7]
(2) Unofficial Moodle Mobile Application [6]
(3) Moodle Touch (mTouch) [11]
(4) iActive Mobile Application [1]

Table 1 summarizes the supported operating system for each of the
listed applications.

Table 1. : Moodle Mobile Applications

Application Name Supported Mobile OS
Official Moodle Mobile App iOS (iPhone, iPad)

Unofficial Moodle Mobile App iOS, BlackBerry, Android
Moodle Touch (mTouch) iOS

iActive iOS

Although these applications have the same ”ubiquity access” fea-
ture of the proposed application, they differ in terms of their goals
and objectives and thus do not address the issues previously iden-
tified. They aim to provide users with the main Moodle web ap-
plication features through a user friendly interface that better suits
handheld devices (smaller screen, lower resolution, etc.).
A closer look at the features of each of these applications con-
firms that none of these applications is capable of solving the notifi-
cation/synchronization issue. Furthermore, concerning the internet
resource consumption, these apps rely - partially or completely -
on an embedded web browser to access the information. None of
them considers the optimization of internet resources consumption
as a matter to be addressed. Further analysis and comparison of this
aspect will be provided in section 7.

3. MMN ARCHITECTURE
As already mentioned, MMN is based on a three tier architecture:

—Mobile Application or presentation tier
—Middle-tier application (server or logic tier) that acts as a medi-

ator between the presentation tier and the data tier. 4

—Data tier which consists on the Moodle database that was ex-
tended to support the new features provided by the middle-tier
application.

Figure 1 illustrates the MMN data flow:

(1) The client tier initiates a request to the middle tier asking for
any updates in the extended Moodle database.

(2) The middle tier issues a query to the extended Moodle database
based on the client request.

(3) The middle tier forwards the result of the query to the client
tier.

It is important to mention that the extended Moodle database keeps
track of any updates (posting new grades, new announcements,..)
in the original Moodle database.

MySQL Server

Moodle Database

Moodle Notification Server

Android Smartphone

Request

Response

Store/Retrieve

Fig. 1: MMN architecture

4. DATA TIER
The Moodle database has been extended by adding a single table
”mdl updates” (referred to as ”mobile notification table”) (see fig-
ure 2). This table contains all the information needed to answer any
request issued from the client tier through the middle tier to the data
tier (through the MySQL server).
The mobile notification table is updated, regardless of the client
requests using multiple triggers which are executed whenever the
Moodle database is updated. Table 2 shows the inserted triggers
along with the corresponding Moodle tables. The outcomes of the
execution of these triggers update the mobile notification table.
Two categories of Moodle updates can be distinguished:

(1) Group Updates targeting a group of students who are enrolled
in a certain class (such as posts on forum, assignment, an-
nouncements, etc.)

4It is important to mention that this layer includes also the MySQL
Database server and the Moodle Web server applications which are part
of the Moodle architecture

2



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

mdl_updates

updateid BIGINT(20)PK

userid INT(10)

header VARCHAR(255)

details TEXT

status TINYINT(1)

Fig. 2: Mobile Notification Table

Table 2. : Triggers List

Trigger Database Table Target
assignment mdl assignment newly added assignments

chat mdl chat newly added chat rooms
forum mdl forum newly added forums info
forum mdf forum newly started discussions
grade mdl grade grades newly added grades

message mdl message newly added messages
news mdl course sections announcements and weeks summary
page mdl page newly added pages
post mdl forum posts newly added posts.

resource mdl recourse newly added recourses
url mdl url newly added URLs

(2) Simple updates targeting single students (such as messages or
grades).

Group updates cannot be done through the only use of triggers
since the mobile notification table needs to be updated for every
student within the group. Triggers are complemented in this case
with stored procedures; once a trigger (for a group update) is
executed (based on Moodle database updates), the corresponding
procedure is called in order to create a record for each student in
the mobile notification table.

5. SERVER TIER
The server (or middle-tier) is composed of two separate applica-
tions: a background service and a Graphical User Interface (GUI)
based application5. The GUI main role is to (1) start/stop the ser-
vice and to (2) determine the communication mode with the client
tier (whether text or serialized object). It can also be used to (3)
specify the port that the server is listening on.
The server application acts as a mediator between the client and the
data tiers. It communicates with the client through a specific pro-
tocol, while it communicates with the database tier through SQL
statements.
The communication between the server and the client is im-
plemented using two different modes: the first mode follows a
pre-defined protocol based on the exchange of text messages in a

5A command line interface has been developed in case that the server Op-
erating System (OS) doesn’t support GUI.

specified format, and the second mode is based on the exchange
of serialized JAVA objects. Both approaches uses sockets (API) to
exchange the data between the client and the server. The details of
the different communication modes will be explained in section 6.

Figure 3 illustrates the activity diagram of the server application.

Load System 

Parameters

Prepare Server Logger

Prepare Data 

Access Layer

Create Server 

Instance

[TEXT MODE]

Set Server to 

Text Mode

[OBJECT MODE]

Set Server to 

Object Mode

Listen to Requests

Fig. 3: Server Application - Activity Diagram

6. CLIENT TIER
The general behavior of the client application is illustrated in fig-
ure 4. This application supports - like the server application - two
modes of communications: text-based and serialized objects-based
modes.

[OBJECT MODE]
Run on Object 

Mode

[TEXT MODE]

Run on Text Mode
Establish 

Connection

Open IO Streams

Receive Request

Validate and 

Authenticate 

Request Sender

[VALID/AUTHENTICATED]Prepare Response [INVALID/NOT AUTHENTICATED]
Reply with 

respective error

Mark Updates As 

checked
Reply

Fig. 4: Client Handler Activity Diagram

3



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

6.1 Communication modes
6.1.1 Text-based communication mode. As mentioned above, the
client exchanges text messages with the server using sockets. The
message follows a certain format; it is composed of three words
separated by space. It starts with a command word (such as WHAT-
SUP”) followed by two arguments.
Example: WHATSUP wao002 liflife, where WHATSUP is the
command, wao002 is the username, and lifelife is the password.
The server working in text mode will respond to this request and
provide to the user the requested data after authenticating the re-
quest sender. The response data is a tab-limited formatted string.

6.1.2 Serialized object-based communication mode. Sockets in
this mode are also used to exchange serialized JAVA objects with
the server. The process starts when the client sends a Request
Object that contains the command, the username, and the password
to the server (working in object mode). If the server recognizes
and authenticates the request, it replies to the client by sending
a serialized Update object that contains two lists: one for update
headers, and the other for update bodies.

6.2 Client-tier specifications
The client application consists of four classes that extend the An-
droid activity classes: Startup, Configure, UpdatesLoader, and Up-
datesViewer. The text mode implementation contains the same
packages and classes like the serialized objects mode except the one
method (getUpdates) in the UpdatesLoader class which is responsi-
ble of the communication with the server. This section presents the
activity diagrams that illustrate the internal behavior of the client
application.

[Auto Login]

[Auto Update]

Start timer

[Not Auto Update]

[Not Auto Login] Go to Configure Activity

Go to UpdateLoader 

Activity

Get Settings

Fig. 5: Activity Diagram for Startup Activity

Figure 5 depicts the Startup activity, which is the starting point of
any Android application and from which it gets redirected to Up-
datesLoader activity as per the users recent configuration. If auto-
update option is set, it starts the timer before redirecting, otherwise
it moves to Configure activity.
Figure 6 illustrates the Configure activity used to set/modify user
preferences: Moodle website URL, username, password, and auto-
check option then redirects the user to UpdatesLoader activity.
Figure 7 presents the UpdatesLoader activity, which is the core of
the client application. It contains the getUpdates method that com-
municates with the server, gets the response and saves the received
updates if no error occurrs.

Get Settings
Initialize UI 

components

Adjust UI to 

Recent 

Settings

[OK Clicked]

[One of the fields is Empty]

Show Error Toast

[Cancel Clicked]

Go to 

UpdateLoader 

Activity

[Fields Not Empty] save Settings

Fig. 6: Activity Diagram for Configure Activity

Initialize UI 

Components
Set UI Layout Create Menu

Set Action 

Listeners
Get Updates

[History]

Go to 

UpdateViewer 

Activity 

(History Mode)

[Refresh]

GetUpdates

[FALSE]

Show Popup 

(No Updates)

[News]

Go to UpdateViewer 

Activity 

(News Mode)

[TRUE]

Fig. 7: Activity Diagram for UpdateLoader Activity

Figure 8 depicts the UpdatesViewer activity used to display the
saved updates. Two view modes are supported: news mode and
history mode.
If this method is called in news mode, it shows only unread updates
(fields in table mdl updates (figure 2) with status 0. When the user
reads a certain update, the UpdatesViewer changes its status to 1
in the database and adjusts the ListView after removing the viewed
item. In history mode, the user can view updates with status 1.

As mentioned in section 6.2, the ”getUpdates” method of the Up-
datesLoader is implemented differently depending on the commu-
nication mode. Figure 9 presents the activity diagram of the text-
based mode implementation of getUpdates. The process starts with

4



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

Set UI 

Layout

Initialize 

Data List

Open DB to 

read

Get Viewer 

Mode

[News Mode]

Read Server 

Updates

Read Server 

History

[History Mode]

Put Data in 

Array/

Adapter

Reverse List 

Order

Set Data to 

AdapterList

Set OnClick 

Listener

Wait User 

Action

[Back Clicked]

Go to 

UpdateLoader 

Ativity

Remove 

Item From 

List

Show Popup

[Item Clicked]

[News Mode] Mark as Read

Hide Popup

[OK clicked]

[History Mode]

Fig. 8: Activity Diagram for UpdateViewer Activity

establishing connection with the server, it opens IO streams over
sockets, sends request, receives update, parses the received data and
saves them to database. If anything goes wrong, it informs the user
with the appropriate error message.

Establish 

connection

[Connection Established]

Open IO Streams

GetParameters from 

SharedPreferences

Send Request

Receive 

Response (Text)

[Connection Failed]
Display 

Error

[NOT Authenticated]

[Authenticated]

[No Updates]

[New Updates]

Open SQLite 

Database to 

write 

Read Text

Save Header and 

Body to SQLite 

Database

[While NOT NULL]

Fig. 9: getUpdates in text-based communication mode

Figure 10 illustrates the activity diagram of getUpdates in serial-
ized object based communication mode. The difference is that the
IO streams in this diagram are object streams (and not text-based as
in the text-based communication mode). The client communicates
with the server by sending and receiving JAVA serialized objects.

Establish 

connection

[Connection Established]

Open IO Streams

GetParameters from 

SharedPreferences

Create Request 

Object

Receive Update 

Object

[Connection Failed]
Display 

Error

[NOT Authenticated]

[Authenticated]

[No Updates]

[New Updates]

Open SQLite 

Database to 

write 

Iterate Over 

Update Object 

List

Save Header and 

Body to SQLite 

Database

Send Request 

Object

Fig. 10: getUpdates in serialized object based communication mode

Figure 11 shows some screenshots of the client graphical user in-
terface. Simplicity, ease-of-use and user-friendliness were the main
guidelines for the design of this GUI.

Fig. 11: Client Application GUI

7. PERFORMANCE ANALYSIS
In section 1, two main limitations were identified: synchronization
and internet resource consumption. The first limitation is solved;

5



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

By design of the proposed solution, student is capable of differ-
entiating between old and new posts through the use of different
colors.
To evaluate the impact of this work on the internet resource con-
sumption (second limitation) and hence the power consumption of
the embedded system, the following experimental test procedure
has been performed.
Table 3 presents the experimental setup configuration for both soft-
ware and hardware specifications of the hosts where the client and
server applications were installed.
In addition, Colasoft Capsa 7 (Free edition - bundled with Win-
Pcap) [2] was used to monitor the network traffic.
In order to evaluate the performance of this work, it has been com-
pared against the HTTP protocol (used when Moodle is accessed
through regular or embedded web browser). In this work, two dif-
ferent data packaging methods, text and serialized object, are ap-
plied suing the Socket API. Hence, three different data exchange
methods are compared as follows:

(1) Classical web interface using the HTTP protocol (Web
browser) called HTTP mode.

(2) Serialized object based communication mode called serialized
object mode.

(3) Text-based communication mode called text mode.

When using HTTP mode, the browsing history of the browser is
cleared before starting each test in order to ensure that there are
no data used from cache. It is not possible to send and receive
exactly the required data in a single request (contrary to the pro-
posed solution), because through using the web version, one has to
go through many page requests, starting from requesting the main
Moodle page, then log-in, and browsing the course page. Moodle
regular website consumes 671.95 kilobytes as the total download
requesting all pages takes 11880 milliseconds data parsing time.
This is depicted in the first row of the table 4
When using the proposed solution, the benchmarking was done on
Android Virtual Device (AVD) [5] using LogCat tracer [4] inte-
grated in eclipse, sending the same amount of data in both case for
object serialized and text mode.
1500 requests were sent from client to server to test both methods
(text and serialized object) of this solution. The second row of ta-
ble 4 shows that the average download of the data consumption is
2.89 kilobytes and the data parsing time is 256.2 milliseconds on a
client-server working using serialized objects mode. The third row
of table 4 depicts that the average download of the data consump-
tion is 2.20 kilobytes and the data parsing is time 215.8 millisec-
onds using text mode.
Figure 12 depicts the data consumption and data parsing time of the
three compared methods (HTTP, serialized object and text mode).
It can be clearly seen that both text and serialized object methods of
the proposed solution are performing better than the HTTP mode.
The results can be summarized as follow:

—serialized objects mode consumes 232 times less bandwidth
compared to HTTP mode.

—text mode consumes 304 times less bandwidth compared to
HTTP mode.

—serialized objects mode is 46 times faster compared to HTTP
mode.

—text mode is 54 times faster compared to HTTP mode.

It is clear that text and serialized object modes (this work con-
tribution) are outperforming the HTTP mode in both bandwidth

consumption and execution time criteria.

Figure 13 depicts a comparison between the text and serialized ob-
ject for both criteria bandwidth consumptions and execution time.
It is clear that the text mode gives the better result.

8. CONCLUSION
This work proposes a Mobile Moodle Notifier system to overcome
some Moodle limitations (synchronization problem, lack of date
tagging, high download data consumption). The proposed system
has a three tier architecture: Android based mobile application
(Client tier), Server application (Server tier) and an extended
Moodle database (Data tier). The benchmark tests of the proposed
system shows that the data exchanged between the mobile phone
and the server application is reduced to 300 times and the response
time to 50 times in average, while achieving a real time synchro-
nization between posting new information (on the Moodle) and
viewing them on mobile phone.

Acknowledgment
The authors thank Vely Orneik for his valuable contribution in the
development of the different elements of the MMN architecture.

9. REFERENCES
[1] James Chan. iactive mobile application.

http://massmedia.hk/n2/mod/resource/view.php?id=36,
2013. Last accessed on April 8, 2014.

[2] Colasoft. Capsa free portable network analyzer(packet snif-
fer). http://www.colasoft.com/capsa-free/, 2013. Last ac-
cessed on April 8, 2014.

[3] Google. Google android website. http://www.android.com/,
2013. Last accessed on April 8, 2014.

[4] Google. Logcat. http://developer.android.com/tools/help/logcat.html,
2013. Last accessed on April 8, 2014.

[5] Google. Managing virtual devices. Android Virtual Device,
2013. Last accessed on April 8, 2014.

[6] Juan Leyva. Unofficial moodle mobile application.
http://docs.moodle.org/22/en/umm: Unofficial Moodle -
Mobile app, 2013. Last accessed on April 8, 2014.

[7] Moodle.org. Official moodle mobile application.
http://docs.moodle.org/22/en/Mobile app, July 2012. Last
accessed on April 8, 2014.

[8] Moodle.org. Moodle mobile - frequently asked questions.
http://docs.moodle.org/22/en/Mobile Moodle FAQ, April
2013. Last accessed on April 8, 2014.

[9] Moodle.org. Moodle statistics. https://moodle.org/stats/,
April 2013. Last accessed on April 8, 2014.

[10] Moodle.org. Moodle website. http://www.moodle.org, 2013.
Last Accessed on April 08, 2014.

[11] Ali OzGur. Moodle touch (mtouch) mobile appl.
http://www.pragmasql.com/moodletouch/home.aspx, 2013.
Last accessed on April 8, 2014.

[12] Hassan Sbeity. Optimizing the student lms access frequency
based on shannon-theorem in developing countries. In The
Cambridge International Conference on Open and Distance
Learning 2009, 2009.

6



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 7, May 2014

Table 3. : Software/Hardware Specifications

Client Server
CPU Core 2 duo 2.00 GHz Intel Core i3 2.83 GHz

Memory 2GB DDR2 10GB DDR3
Operating System windows XP professional SP3 Windows seven ultimate 64 bit

Java version 1.7.0 1.7.0
Java Run-Time environment build 1.7.0-b147 build 1.7.0-b147

Java HotSpot(TM) Client VM build 21.0-b17, mixed mode, sharing build 21.0-b17, mixed mode, sharing

Table 4. : Performance Analysis Results

Mode Download Data Consumption(Kbytes) Execution time (ms)
HTTP 671.9 11880

Serialized Objects 2.89 256.2
Text 2.21 215.8

0

100

200

300

400

500

600

700

800

http Serialized objects Text

Download Consumption (KB)

0

2000

4000

6000

8000

10000

12000

14000

http Serialized

objects

Text

Time
execution (ms)

Fig. 12: Performance Analysis Results

0

0.5

1

1.5

2

2.5

3

3.5

Serialized Objects Text

Download Consumption (KB)

190

200

210

220

230

240

250

260

Serialized Objects Text
Time

execution (ms)

Fig. 13: Performance Analysis Results (Text vs. Serialized Objects)

7


	Introduction
	Related work
	MMN Architecture
	Data tier
	Server tier
	Client tier
	Communication modes
	Text-based communication mode
	Serialized object-based communication mode

	Client-tier specifications

	Performance Analysis
	Conclusion
	References

