
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

13

Automated Dynamic Slicing based UML Modeling

for Phylogenetic Classification

Divanshi Priyadarshni Wangoo

CSE & IT Department
ITM University, Gurgaon

Haryana, India

ABSTRACT
This paper presents an efficient classification algorithm for

categorizing evolutionary organisms using slicing techniques.

Dynamic slicing excels in tracing out dependencies between

executable statements. The nature of these dependencies aids

in the determination of control statements in a program.

Dynamic slicing technique imbibes the run time execution

trace based on a slicing criterion. Dynamic slicing algorithms

can trace both the backward and forward dependencies. The

UML model is automatically generated from the source code

to validate the forward and backward dynamic slicing

algorithm. This paper shows the algorithmic implementation

in NetBeans IDE 7.4. It provides a new platform for

automated software engineering. The algorithm efficiently

discovers the evolutionary relationship between organisms

.Forward dynamic slicing algorithm helps in identifying the

successors of the organisms and the backward dynamic slicing

algorithm finds out the predecessors of the evolutionary

organisms. Both the algorithms are based on dynamic slicing

criterion at the run time execution trace. The integration of

these phylogenetic algorithms deciphers the building

complexity of the evolutionary organisms. It proves to have

an advantageous classification encasement for jeopardized

species.

General Terms
Dynamic slicing, Object-oriented.

Keywords
Forward Dynamic Slicing Algorithm (FDSA); Backward

Dynamic Slicing Algorithm (BDSA); Phylogenetic System

Dependence Graphs (PSDG); System Dependence Graph

(SDG); Lines of Code (LOC); Software Development

Lifecycle (SDLC).

1. INTRODUCTION
Slicing techniques and its applications have evolved over

years through the ongoing researches in different domain.

Program slicing has varied with all new technological

programming relevant fields. The new forms of slicing

techniques have emerged from the profound dependencies as

a result of executable commands. Slicing was basically

practiced for programming languages that admitted the

interactions among objects. Object interactions involve the

message passing scheme with which one object can

communicate with another object. All the object-oriented

features like classes, objects, inheritance, abstraction,

polymorphism, and encapsulation can be featured through

various dependence graphs based on slicing methodology [1].

The programming statements of an object oriented language

features versatile control flows that direct the implementation

of the executable program file. By recognizing the dependent

relations in the program code, the complex inheritance

constructs can be verified with ease. Also, other programming

jobs are simplified which becomes difficult with the intent of

increasing Lines of Code (LOC). Slicing proficiencies can

develop phyletic taxonomy of species by tracing the historical

hierarchy of evolutionary organisms. It is necessary for the

species requiring categorization to have their morphed

mutable features inheritable form their predecessors. Historic

integrality has an immense hereditary patterned system that

recognizes the development of succeeding genesis. Thus, to

make the taxonomical evolution traceable to a greater extent,

slicing has been incorporated to discover the next future

generation species. A taxonomic group is any organism

bearing natural relations. These relations by law of nature are

governed by dependent relationships between the organisms

in the hierarchy. The organism’s existence comes from either

the immediate predecessors or the older predecessors from

which the immediate predecessor derives. The inheritance

derivation is the framework for the ontogenetic species.

This paper presents an efficacious dynamic slicing algorithm

for the classification of birds. The advantage of classification

algorithm amounts to precise knowledge of predecessors and

successors of a particular species. The dynamic slicing

technique is preferred as the implementation of the algorithm

can be tested at the execution run time. This verifies the

validity of the algorithms for large data sets involving

numerous inheritance hierarchies. The species of birds have

evolved over time from different predecessors that all have

the same ontogenetic base of aves species. The evolution

bases its ground on the dependence of features that one

species develop from their immediate predecessors. The

immediate predecessors may inherit different characteristics

from any number of predecessors. This governs the

hierarchical dependence that exists with the visible or

behavioral characteristics shown by the species. Keeping in

view the dependencies among the taxonomical community of

species, the slicing methodology can be employed for the

given group. The main criteria used for categorizing the

species by slicing is by tracing the inheritance hierarchy of a

given organism and applying the slicing algorithms for its

predecessor or successor determination. This paper presents

two algorithms based on dynamic slicing that yields the

successors or predecessors of an organism. The algorithms are

called Forward Dynamic Slicing Algorithm (FDSA) for

computing the successors and Backward Dynamic Slicing

Algorithm (BDSA) for the computation of the predecessors of

a given species. The execution trace upshots are given which

show the validation of the FDSA and BDSA algorithms for

different inputs. Thus, the application of dynamic slicing

algorithms aid in the production of more effective

classification scheme and reduces the LOC’s of the

programming code to an estimable track.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

14

2. EVOLUTION IN ORGANISMS
Evolution is ontogenetic operation that relates one species

nascence with time. It is an automatic process and is governed

by various environmental ingredients. It gives a clear

historical in-depth into genesis of organisms. The

evolutionary relationships between organisms can be worked

out with the implementation of the slicing algorithm. Slicing

is an excellent procedural technique which channels the

discovery of hidden out relationships. These shrouded

relationships determine the dependable characteristics that one

species at the hierarchical layer share with the predecessor

species. The dependable features also reveal the future

genetics that would imbibe in the progeny of the species. With

these knowledge base structures, the immediate or super

predecessors who have lead to the organic evolution of

successors can be determined with the backward tracing of the

evolutionary tree. Similarly the future genesis of the species is

discovered by forward tracing of the organic tree. The species

coexistence is driven by the predecessor foundation stack that

related the species with their taxonomical group.

2.1 Phylogenesis- The Organic Evolution
The process of organic evolution is driven by mutable species

which best adapt themselves to the inhospitable

environmental surroundings. Darwin’s theory explains the

survival of the fittest species that have fought for the

accommodation of their future genesis. From this comes the

need for the phylogenetic tree construction that would govern

the strongest features still existing and that have evolved over

time with the mutation of species in progress. A phylogenetic

tree is a visual representation of the relatedness of species by

descent from a common ancestor. Evolutionary tree for

flamingo birds is given in “Figure 1” below.

Fig. 1. Aves Classification

The classification tree of the above figure depicts the

evolution of flamingo species from their ancestors. All the

species of the birds derive from their grand ancestral Aves.

The aves species through time and with mutation procedure

gave birth to Phoenicopteriformes. Phoenicopteriformes is the

immediate successor of Phoenicopteridae which are further

classified as Phoenicopterus, Phoeniconaias and

Phoenicoparrus. Phoenicopterus has three successor

flamingoes named Great Flamingo, Carribean Flamingo and

Chilean Flamingo. The Phoeniconaias species has only one

successor as Lesser Flamingo and the Phoenicoparrus has two

successor flamingoes named Andean Flamingo and Jame’s

Flamingo. The phylogenetic tree has five hierarchical levels

and species at each level have either superior qualities than

predecessors or lesser qualities than successors. This proves

the evolution growth evolved at each stage with the

development of the strongest features for the fittest survival.

The flamingo species are jeopardized and their classification

through slicing techniques will discover those features that

govern the survival of the fittest strategy so that their

endangered existence is protected.

2.2 Retracing Slicing technique
The concept of dependence graphs construction has evolved

with current researches going on in distinguishable fields. The

dynamic dependence relation that exists in the program is

based on the slicing criterion supplied dynamically. The

methods of dynamic slicing range from basic algorithm

construction involving the dynamic flow concepts,

dependence graphs to procedures for slicing [2]. Slicing

techniques fundamentally covers the program debugging,

understanding, maintenance, re-engineering and testing.

Dynamic slicing is the best technique for localizing faults in

the program when debugging is involved. Debugging process

aims at finding, localizing, modifying and correcting errors by

setting breakpoints [3].

Retracing slicing technique is a novel approach to slicing

which will induce complacent existence of evolutionary

relationship between organisms. It involves tracing the

phylogenetic tree for a particular species in forward-moving

and backward-moving mode to cognize the future and

historical genesis. The retracing slicing technique is

specifically designed to find out the dependable features that

species share with their group. These dependable features are

the decidability factor points governing the inheritable

strength of the species. With the help of retracing dynamic

slicing technique the possible predecessors and successors can

be predicted at all the inheritance level. The technique is

based on a dynamic slicing criterion at execution run time

trace and results in the precise slice points which determine

the exact number of successors and predecessors that a

species consists of at the evolutionary hierarchy tree.

2.3 Evolutionary Data Sets for Flamingo

Species
The data set for determining the historical evolution is taken

for flamingo species. The data sets consist of the phylogenetic

tree for flamingo species which is shown is Fig.1. The

classification tree for aves (birds) trace the evolution in both

the directions i.e., forward and backward way. The forward

way of classification is used for finding successors and the

backward way is used for the predecessor’s calculation.

3. DYNAMIC SLICING TECHNIQUES

AND ALGORITHMS
Slicing techniques work by building the dependence graphs to

locate the dependent statements in a program. Various forms

of slicing graphs have come into existence for dependencies

occurring in different programming languages. Originally the

dependence graphs for programs were constructed to

determine the flow of controls in a program. Dependence

graphs have been built for interprocedural programs that are

generic in nature [4].

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

15

3.1 Phylogenetic System Dependence

Graphs (PSDG)
Phylogenetic System Dependence Graph (PSDG) is a directed

System Dependence Graph (SDG) whichaims at tracing the

evolutionary dependencies between hierarchical statements in

a program. The PSDG is a novel approach to the construction

of dependence graphs in the phyletic sphere of species. The

graph consists of nodes symbolizing the statements in the

program and arcs represent the dependencies between the

nodes. The directed solid lines represent program control

dependencies, directed dashed lines represent the program

data dependencies and the directed dashed dotted lines

represent the parameter & procedural bindings occurring

between the nodes of the PSDG. The shaded areas in the

graph represent the procedural binding points which are

represented through directed dashed dotted lines form the

function calling nodes to the function definition nodes. The

dashed lines connect the nodes which are dependent on the

data for execution to the data dependent nodes in the program.

The directed solid lines represent the normal control execution

flow of the program. The PSDG’s for successors and

predecessors are shown in “Figure 2” and “Figure 3”

respectively.

The conventions used in the PSDG’s are same for successors

and predecessors discovery. The node PS in the graph of

Fig.3, represents the PSDG of “ Figure 2,” with the only

difference in tracing execution lines for predecessors. The

PSDG works by tracing the dependable flows in the program

statements. The control flow determines the execution flow of

the program at run time. The data dependent flows show those

statements that depend on the data entered by the programmer

for execution. The parameter and procedural bindings

determine the binding of the procedure or function calling

with the function definition and declaration. Thus, all the

parametric variables in the statements build the PSDG’s for

the discovery of successors and predecessors. The PSDG is

used as an input to the FDSA and BDSA algorithms for

finding successors and predecessors respectively and are

described next. The successors and predecessors PSDG’s for

aves classification program are shown in “Figure 2” and

“Figure 3” respectively as below.

Fig. 2 PSDG for Successors program

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

16

Fig.3 PSDG for Predecessors program

The above PSDG’s are used as an input to the FDSA and

BDSA algorithms for finding successors and predecessors

respectively and are described in the following section.

3.2 Forward Dynamic Slicing Algorithm

(FDSA)
The Forward Dynamic Slicing Algorithm (FDSA) is

constructed for finding out the successors of the flamingo

species. The algorithm takes as input the PSDG of “Fig. 2,”

and a dynamic slicing criterion. The output of the algorithm is

the required successor of the species by tracing the forward

dependencies in the program.

FDSA Algorithm:

Input: PSDG of “Figure 2,” dynamic slicing criterion <N, v,

f, e>, where N= Statement number in the program, v= the

affected variable, f=flamingo species, e= dynamic execution

trace. Su represents the successors of the flamingo species. C=

Flamingo category.

Output: Successors of the flamingo species Su.

Procedure: getSuccessors()

Step1- Construct the PSDG for successors program.

Step 2- Repeat the following for the given phyletic tree

Step 3- For all f=0; f<=n ; f ++where n= total no of flamingo

evolutionary species

{

Step 4- if (C==f)

{

Step 5- Track the forward dependencies form f

Step 6- Compute the forward slices with <N, v, f, e> at run

time

Step 7- call getSuccessors(); method

Step 8- Print “Successors: + Su” if condition contained in if

statement is true

}

Step 9- else { Print “No Successors” }

}

Step 10- Continue;

 }

Step 11- Break;

 }

Step 12- Stop

3.3 Backward Dynamic Slicing Algorithm

(BDSA)
The Backward Dynamic Slicing Algorithm (FDSA) is

constructed for finding out the predecessors of the flamingo

species. The algorithm takes as input the PSDG of “Figure 3,”

and a dynamic slicing criterion. The output of the algorithm is

the required predecessor of the species by tracing the

backward dependencies in the program.

BDSA Algorithm:

Input: PSDG of “Figure 3,” dynamic slicing criterion<N, v,

f, e>, where N= Statement number in the program, v= the

affected variable, f=flamingo species, e= dynamic execution

trace. Pr represents the predecessors of the flamingo species.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

17

Output: Predecessors of the flamingo species Pr.

Procedure: getPredecessors()

Step1- Construct the PSDG for predecessors program.

Step 2- Repeat the following for the given phyletic tree

Step 3- For all f=0 ;f<=n; f ++ where n=total no of flamingo

evolutionary species

 {

Step 4- if (C==f)

 {

Step 5- Track the backward dependencies form f

Step 6- Compute the backward slices with <N, v, f, e> at run

time

Step 7- call getPredecessors(); method

Step 8- Print “Predecessors + Pr” if condition contained in if

statement is true

 }

Step 9- else { Print “No Predecessors” }

 }

Step 10- Continue;

 }

Step 11- Break;

 }

Step 12- Stop

4. TRACING THE ORGANISATIONAL

TREE
Tracing the phylogenetic tree of flamingo species requires the

computation of the forward and backward dynamic slicing

criterion for successors and predecessors respectively. The

slicing criterion is the decision breakpoint which will search

the whole evolutionary tree in order to produce the output for

the particular species in the hierarchy.

4.1 Thoroughbred of the Species
The flamingo species hierarchical inheritance exemplifies the

throughbreding of the species in order to find the historical

evolution. For this the Aves classification graph of “Figure 1,”

specifies the layers into the evolutionary inheritance. With

this the immediate successors and predecessor of a particular

species at a specific layer in the tree is noted and the

algorithm is run keeping in view the result. For knowing the

immediate successors of the species the FSDG is run on the

specific node in the PSDG for successors. Similarly for

calculation of immediate predecessors the BSDG is executed

on the particular node in the PSDG for predecessors.

4.2 Code Implementation in Java
Java Source code for Successors & Predecessors is shown is

and respectively. The Phylogenetic System Dependence

Graph (PSDG) is constructed separately for forward tracing of

successors and backward tracing of the predecessors. All the

nodes in the PSDG of “Figure 2,” and “Figure 3,” correspond

to the statement numbers in the programs in java respectively.

The control flow, data flow and parameter or procedure

binding dependencies can be traced from the statement

numbers in the program and the nodes with their respective

arcs of the PSDG.

4.3 PSDG Execution Flow for Successors

and Predecessors
Automatic software development aims at improving the

software quality and reducing the cost of production and

maintenance of the software. Model transformations have

been applied to slicing techniques particularly dynamic slicing

for data accessing and slicing applications in various domains

[5]. Integral UML models for class diagrams has been

developed and used for the static structural and behavioral

features of the architectural design of the software [6]. UML

architectural designing constructs have been extended to

defining dependencies that occur in a UML communication

diagram [7].

The execution flow for the program and its PSDG is depicted

in “Figure 4” below which shows the flow of control through

the flamingo species class hierarchy and track’s the species

successors or predecessors according to the FDSA and BDSA

algorithm respectively. The main() method is the starting

execution run point for the programs. The classes are build in

the hierarchical manner according to the inheritance

relationships that they share with each other. For example,

Class BirdsAves has only one successor-

Phoenicopteriformes. The Phoenicopteriformes species has

one successor as Phoenicopteridae and one predecessor i.e.,

BirdsAves. The Phoenicopteridae species has three successors

as Phoenicopterus, Phoeniconaias and Phoenicoparrus, and

two predecessors- one immediate and one indirect as

Phoenicopteriformes and BirdsAves respectively. Moving

further in the inheritance graph execution flow, the species

Phoenicopterus has three successors as Great Flamingo,

Carribean Flamingo and Chilean Flamingo with three

predecessors- one immediate and two indirect as

Phoenicopteridae, Phoenicopteriformes and BirdsAves

repectively. Phoeniconaias has one successor as Lesser

Flamingo and three predecessors- one immediate and two

indirect as Phoenicopteridae, Phoenicopteriformes and

BirdsAves repectively. Phoenicoparrus has two successors as

Andean Flamingo and Jame’s Flamingo and three

predecessors- one immediate and two indirect as

Phoenicopteridae, Phoenicopteriformes and BirdsAves

respectiely. The Great, Carribean and Chilean Flamingo’s

have no successors but have common four predecessors- one

immediate and three indirect as Phoenicopterus,

Phoenicopteridae, Phoenicopteriformes and BirdsAves

respectively. Similarly the Lesser, Andean and Jame’s

Flamingo’s have no successor but Lesser Flamingo has four

predecessors- one immediate and three indirect as

Phoeniconaias, Phoenicopteridae, Phoenicopteriformes and

BirdsAves respectively, and Andean and Jame’s flamingo

have four predecessors- one immediate and three indirect as

Phoenicoparrus, Phoenicopteridae, Phoenicopteriformes and

BirdsAves respectively.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

18

Fig. 4. Inheritance execution flow of evolutionary flamingo

species

5. PROTOTYPE EXECUTION UPSHOTS
The seamless integration of UML into NetBeans ensures the

maximization of the quality of source code and software

system. It also minimizes the execution time and efforts

involved in coding. The parallel compounding of the UML

diagram with java source code enables automatic generation

of source code from UML modeling diagram and vice versa.

This makes software programming complacent with the

modeling of the software. As the Software Development

Lifecycle (SDLC) model requires coding of the software in

accordance with the software model build, there remains gaps

in the phases implementation of the SDLC. The solution to

the above problem is the integration of the UML model

construction with the programming IDE’s (Integrated

Development Environment). For the prototype execution of

our FDSA and BDSA algorithm the execution has been

performed in NetBean’s IDE and the upshots are represented

in “Figure 4” below. The first screenshot depicts the

automatic generation of the UML class diagram from the

source code and vice versa. The second and third screenshots

represent the dependency matrix diagram showing the various

dependencies existing between the flamingo birds species.

This diagram also depicts the class hierarchy which is

important for the inheritance track record.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

19

Fig. 5. Automatic generation of UML Diagram from Java

Source Code and Dependency matrix between various

classes in NetBeans IDE

6. EXECUTION RUN FOR FORWARD

AND BACKWARD DYNAMIC SLIICING
The execution trace is implemented for both forward and

backward dependencies. The LOC (FDSA) is calculated using

the FDSA algorithm and the PSDG of “Figure 2”. The LOC

(BDSA) is calculated using the BDSA and the PSDG of

“Figure 3”. Both the dynamic execution trace results in

precise slice with the reduction in statements of source code.

Dynamic slicing has vast range of applications from

debugging, cohesion measurement, testing and re-engineering

[8]. These are an added advantage for the program

comprehensions, debugging, and maintenance & reusability

purposes.

The execution runs for the PSDG’s of “Figure 2” and “Figure

3” is shown in “Table 1” below. The first column is for the

species name tracing code which assigns the species with the

tracing codes to be used in the slicing criterion.

The slicing criterion used is same for both the FDSA and

BDSA algorithm as - dynamic slicing criterion<N, v, f, e>,

where N= Statement number in the program, v= the affected

variable, f=flamingo species, e= dynamic execution trace and

are shown in column 3 and column 5 respectively.. With this

dynamic slicing criterion the LOC’s affected before and after

FDSA and BDSA algorithmic implementation are shown in

column 2, column 4 and column 6 respectively. The

implementation results for LOC’s that are calculated by

applying FDSA and BDSA are almost half of the LOC’s

before the algorithm’s execution which shows tremendous

reduction in the program code. This would help in better

program maintenance, debugging, computability and re-

engineering. The dash in the rows represents those species

that do not have ether a successor or predecessor. Thus, the

FDSA and BDSA dynamic slicing algorithm helps in better

traceability of the evolutionary species in the inheritance

hierarchy.

Table 1. Execution Run Traces of FDSA and BDSA Algorithms in Java

Species name tracing

code

No of

dependent

lines of

code (LOC)

Forward

dynamic slicing

criterion for

successors

LOC

(FDSA)

Backward dynamic

slicing criterion for

predecessors

LOC

(FDSA)

Dynamic

Precision

attained

BirdsAves

(F1)

19 <11,C1, F1, Av> 8 - - Yes

Phoenicopteriformes

(F2)

18 <25,C2,F2,S1> 8 <25,C2,F2,S1> 8 Yes

Phoenicopteridae

(F3)

18 <39,C3,F3,S2> 8 <39,C3,F3,S2>

8

Yes

Phoenicopterus

(F4)

18 <53, C4,F4,S3> 8 <53, C4,F4,S3>

8

Yes

Phoeniconaias

(F5)

18 <67,C5,F5,S4> 8 <67,C5,F5,S4>

8

Yes

Phoenicoparrus

(F6)

18 <81,C6,F6,S5> 8 <81,C6,F6,S5>

8

Yes

Greatflamingo

(F7)

18 - - <95,C7,F7,S6>

8

Yes

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.7, May 2014

20

7. CONCLUSION
The forward and backward dynamic slicing algorithm

ascertains the dependencies between evolutionary organisms.

This aids in figuring out the successor and predecessor

relationship state existing by nature. The automated UML

models are build from source code and vice-versa for

validating the application development. The forward dynamic

slicing algorithm traces the successors and backward dynamic

slicing algorithm tracks the predecessors. Both algorithms are

grounded on a dynamic slicing criterion which determines the

dependencies between the hierarchical inheritances. The

immediate & indirect successors and predecessors can be

calculated with the execution run of the algorithm. Thus, the

algorithm succeeds in ramifying phyletic flamingo species by

retracing the phylogenetic ground. The efficiency of the

algorithm is examined with varying inputs. This results in

computation of precise dynamic slices in reduced LOC’s and

execution time. The algorithm is substantial for evolutionary

species having complex phylogenetic ground. Thus, the

taxonomic categorization can be channeled by incorporating

the dynamic slicing algorithms at all the inheritance levels.

8. REFERENCES
[1] Donglin Liang and Mary Jean Harrold , “Slicing Objects

using System Dependence Graphs,”International

Conference on Software Maintenance, Washington, D.C,

pp.358-67, November 1998.

[2] F. Tip. A Survey of Program Slicing Techniques, J

ProgramrningL3nguages, 1995, 3(3):121-189.

[3] Baowen Xu Zhenqiang Chen, Dynamic Slicing Object-

Oriented Programs for Debugging, Proceedings of the

Second IEEE International Workshop on Source Code

Analysis and Manipulation (SCAM’02), pp.115-122,

2002.

[4] Soubhagya Sankar Barpanda, Baikuntha Narayan Biswal,

Sasmita Rani Behera, Mitrabinda Ray, Durga Prasad

Mohapatra, Interprocedural Slicing of Generic Programs,

IEEE International Conference on Signal Processing

Systems, pp. 570-573, 2009.

[5] Zoltán Ujhelyi, Ákos Horváth, Dániel Varró, Towards

Dynamic Backward Slicing of Model Transformations,

IEEE ASE, pp. 404-407, Lawrence, KS, USALawrence,

KS, USA, 2011.

[6] Jaiprakash T. Lallchandani R. Mall, Static Slicing of UML

Architectural Models, Journal of Object Technology,

Vol.8, No. 1, January-February, pp.159-188, 2009

[7] Alina Mishra, Subhrakanta Panda, Dishant Munjal,

Dynamic Slicing of Aspect-Oriented UML

Communication Diagram, International Journal of

Computer Science and Informatics, Volume‐ 3, Issue‐ 2,

pp. 58-63, 2013.

[8] N.Sasirekha, A.Edwin Robert and Dr.M.Hemalatha,

Program Slicing Techniques and its Applications,

International Journal of Software Engineering &

Applications (IJSEA), Vol.2, No.3, pp.50-64, July 2011.

Carribeanflamingo

(F8)

18 - - <109C8,F8,S7>

8

Yes

Chileanflamingo

(F9)

18 - - <123,C9,F9,S8>

8

Yes

Lesserflamingo

(F10)

18 - - < 137,C10,F10,S9>

8

Yes

Andeanflamingo

(F11)

18 - - <151,C11,F11,S10>

8

Yes

Jamesflamingo

(F12)

18 - - < 165,C12,F12,S11>

8

Yes

IJCATM : www.ijcaonline.org

