
International Journal of Computer Applications (0975 – 8887) 

Volume 93 – No.7, May 2014 

13 

Automated Dynamic Slicing based UML Modeling 

for Phylogenetic Classification 

 
Divanshi Priyadarshni Wangoo 

CSE & IT Department 
ITM University, Gurgaon 

Haryana, India 

 

ABSTRACT 
This paper presents an efficient classification algorithm for 

categorizing evolutionary organisms using slicing techniques. 

Dynamic slicing excels in tracing out dependencies between 

executable statements. The nature of these dependencies aids 

in the determination of control statements in a program. 

Dynamic slicing technique imbibes the run time execution 

trace based on a slicing criterion. Dynamic slicing algorithms 

can trace both the backward and forward dependencies. The 

UML model is automatically generated from the source code 

to validate the forward and backward dynamic slicing 

algorithm. This paper shows the algorithmic implementation 

in NetBeans IDE 7.4. It provides a new platform for 

automated software engineering. The algorithm efficiently 

discovers the evolutionary relationship between organisms 

.Forward dynamic slicing algorithm helps in identifying the 

successors of the organisms and the backward dynamic slicing 

algorithm finds out the predecessors of the evolutionary 

organisms. Both the algorithms are based on dynamic slicing 

criterion at the run time execution trace. The integration of 

these phylogenetic algorithms deciphers the building 

complexity of the evolutionary organisms. It proves to have 

an advantageous classification encasement for jeopardized 

species. 

General Terms 
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Keywords 
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1. INTRODUCTION 
Slicing techniques and its applications have evolved over 

years through the ongoing researches in different domain. 

Program slicing has varied with all new technological 

programming relevant fields. The new forms of slicing 

techniques have emerged from the profound dependencies as 

a result of executable commands. Slicing was basically 

practiced for programming languages that admitted the 

interactions among objects. Object interactions involve the 

message passing scheme with which one object can 

communicate with another object. All the object-oriented 

features like classes, objects, inheritance, abstraction, 

polymorphism, and encapsulation can be featured through 

various dependence graphs based on slicing methodology [1]. 

The programming statements of an object oriented language 

features versatile control flows that direct the implementation 

of the executable program file. By recognizing the dependent 

relations in the program code, the complex inheritance 

constructs can be verified with ease. Also, other programming 

jobs are simplified which becomes difficult with the intent of 

increasing Lines of Code (LOC). Slicing proficiencies can 

develop phyletic taxonomy of species by tracing the historical 

hierarchy of evolutionary organisms. It is necessary for the 

species requiring categorization to have their morphed 

mutable features inheritable form their predecessors. Historic 

integrality has an immense hereditary patterned system that 

recognizes the development of succeeding genesis. Thus, to 

make the taxonomical evolution traceable to a greater extent, 

slicing has been incorporated to discover the next future 

generation species. A taxonomic group is any organism 

bearing natural relations. These relations by law of nature are 

governed by dependent relationships between the organisms 

in the hierarchy. The organism’s existence comes from either 

the immediate predecessors or the older predecessors from 

which the immediate predecessor derives. The inheritance 

derivation is the framework for the ontogenetic species.  

This paper presents an efficacious dynamic slicing algorithm 

for the classification of birds. The advantage of classification 

algorithm amounts to precise knowledge of predecessors and 

successors of a particular species.  The dynamic slicing 

technique is preferred as the implementation of the algorithm 

can be tested at the execution run time. This verifies the 

validity of the algorithms for large data sets involving 

numerous inheritance hierarchies. The species of birds have 

evolved over time from different predecessors that all have 

the same ontogenetic base of aves species.  The evolution 

bases its ground on the dependence of features that one 

species develop from their immediate predecessors. The 

immediate predecessors may inherit different characteristics 

from any number of predecessors. This governs the 

hierarchical dependence that exists with the visible or 

behavioral characteristics shown by the species. Keeping in 

view the dependencies among the taxonomical community of 

species, the slicing methodology can be employed for the 

given group. The main criteria used for categorizing the 

species by slicing is by tracing the inheritance hierarchy of a 

given organism and applying the slicing algorithms for its 

predecessor or successor determination. This paper presents 

two algorithms based on dynamic slicing that yields the 

successors or predecessors of an organism. The algorithms are 

called Forward Dynamic Slicing Algorithm (FDSA) for 

computing the successors and Backward Dynamic Slicing 

Algorithm (BDSA) for the computation of the predecessors of 

a given species. The execution trace upshots are given which 

show the validation of the FDSA and BDSA algorithms for 

different inputs. Thus, the application of dynamic slicing 

algorithms aid in the production of more effective 

classification scheme and reduces the LOC’s of the 

programming code to an estimable track.  
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2. EVOLUTION IN ORGANISMS 
Evolution is ontogenetic operation that relates one species 

nascence with time. It is an automatic process and is governed 

by various environmental ingredients. It gives a clear 

historical in-depth into genesis of organisms. The 

evolutionary relationships between organisms can be worked 

out with the implementation of the slicing algorithm. Slicing 

is an excellent procedural technique which channels the 

discovery of hidden out relationships. These shrouded 

relationships determine the dependable characteristics that one 

species at the hierarchical layer share with the predecessor 

species. The dependable features also reveal the future 

genetics that would imbibe in the progeny of the species. With 

these knowledge base structures, the immediate or super 

predecessors who have lead to the organic evolution of 

successors can be determined with the backward tracing of the 

evolutionary tree. Similarly the future genesis of the species is 

discovered by forward tracing of the organic tree. The species 

coexistence is driven by the predecessor foundation stack that 

related the species with their taxonomical group. 

2.1 Phylogenesis- The Organic Evolution 
The process of organic evolution is driven by mutable species 

which best adapt themselves to the inhospitable 

environmental surroundings. Darwin’s theory explains the 

survival of the fittest species that have fought for the 

accommodation of their future genesis. From this comes the 

need for the phylogenetic tree construction that would govern 

the strongest features still existing and that have evolved over 

time with the mutation of species in progress. A phylogenetic 

tree is a visual representation of the relatedness of species by 

descent from a common ancestor. Evolutionary tree for 

flamingo birds is given in “Figure 1” below. 

 

 

Fig. 1. Aves Classification 

The classification tree of the above figure depicts the 

evolution of flamingo species from their ancestors. All the 

species of the birds derive from their grand ancestral Aves. 

The aves species through time and with mutation procedure 

gave birth to Phoenicopteriformes. Phoenicopteriformes is the 

immediate successor of  Phoenicopteridae which are further 

classified as  Phoenicopterus, Phoeniconaias and 

Phoenicoparrus. Phoenicopterus has three successor 

flamingoes named Great Flamingo, Carribean Flamingo and 

Chilean Flamingo. The Phoeniconaias species has only one 

successor as Lesser Flamingo and the Phoenicoparrus has two 

successor flamingoes named Andean Flamingo and Jame’s 

Flamingo. The phylogenetic tree has five hierarchical levels 

and species at each level have either superior qualities than 

predecessors or lesser qualities than successors. This proves 

the evolution growth evolved at each stage with the 

development of the strongest features for the fittest survival. 

The flamingo species are jeopardized and their classification 

through slicing techniques will discover those features that 

govern the survival of the fittest strategy so that their 

endangered existence is protected.  

2.2 Retracing Slicing technique   
The concept of dependence graphs construction has evolved 

with current researches going on in distinguishable fields. The 

dynamic dependence relation that exists in the program is 

based on the slicing criterion supplied dynamically. The   

methods of dynamic slicing range from basic algorithm 

construction involving the dynamic flow concepts, 

dependence graphs to procedures for slicing [2]. Slicing 

techniques fundamentally covers the program debugging, 

understanding, maintenance, re-engineering and testing. 

Dynamic slicing is the best technique for localizing faults in 

the program when debugging is involved. Debugging process 

aims at finding, localizing, modifying and correcting errors by 

setting breakpoints [3].  

Retracing slicing technique is a novel approach to slicing 

which will induce complacent existence of evolutionary 

relationship between organisms.  It involves tracing the 

phylogenetic tree for a particular species in forward-moving 

and backward-moving mode to cognize the future and 

historical genesis. The retracing slicing technique is 

specifically designed to find out the dependable features that 

species share with their group. These dependable features are 

the decidability factor points governing the inheritable 

strength of the species. With the help of retracing dynamic 

slicing technique the possible predecessors and successors can 

be predicted at all the inheritance level. The technique is 

based on a dynamic slicing criterion at execution run time 

trace and results in the precise slice points which determine 

the exact number of successors and predecessors that a 

species consists of at the evolutionary hierarchy tree. 

2.3 Evolutionary Data Sets for Flamingo 

Species 
The data set for determining the historical evolution is taken 

for flamingo species. The data sets consist of the phylogenetic 

tree for flamingo species which is shown is Fig.1. The 

classification tree for aves (birds) trace the evolution in both 

the directions i.e., forward and backward way. The forward 

way of classification is used for finding successors and the 

backward way is used for the predecessor’s calculation.  

3. DYNAMIC SLICING TECHNIQUES 

AND ALGORITHMS 
Slicing techniques work by building the dependence graphs to 

locate the dependent statements in a program. Various forms 

of slicing graphs have come into existence for dependencies 

occurring in different programming languages. Originally the 

dependence graphs for programs were constructed to 

determine the flow of controls in a program. Dependence 

graphs have been built for interprocedural programs that are 

generic in nature [4].  
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3.1 Phylogenetic System Dependence 

Graphs (PSDG) 
Phylogenetic System Dependence Graph (PSDG) is a directed 

System Dependence Graph (SDG) whichaims at tracing the 

evolutionary dependencies between hierarchical statements in 

a program. The PSDG is a novel approach to the construction 

of dependence graphs in the phyletic sphere of species. The 

graph consists of nodes symbolizing the statements in the 

program and arcs represent the dependencies between the 

nodes. The directed solid lines represent program control 

dependencies, directed dashed lines represent the program 

data dependencies and the directed dashed dotted lines 

represent the parameter & procedural bindings occurring 

between the nodes of the PSDG.  The shaded areas in the 

graph represent the procedural binding points which are 

represented through directed dashed dotted lines form the 

function calling nodes to the function definition nodes. The 

dashed lines connect the nodes which are dependent on the 

data for execution to the data dependent nodes in the program. 

The directed solid lines represent the normal control execution 

flow of the program. The PSDG’s for successors and 

predecessors are shown in “Figure 2” and “Figure 3” 

respectively.  

The conventions used in the PSDG’s are same for successors 

and predecessors discovery. The node PS in the graph of 

Fig.3, represents the PSDG of “ Figure 2,” with the only 

difference in tracing execution lines for predecessors. The 

PSDG works by tracing the dependable flows in the program 

statements. The control flow determines the execution flow of 

the program at run time. The data dependent flows show those 

statements that depend on the data entered by the programmer 

for execution. The parameter and procedural bindings 

determine the binding of the procedure or function calling 

with the function definition and declaration. Thus, all the 

parametric variables in the statements build the PSDG’s for 

the discovery of successors and predecessors. The PSDG is 

used as an input to the FDSA and BDSA algorithms for 

finding successors and predecessors respectively and are 

described next. The successors and predecessors PSDG’s for 

aves classification program are shown in “Figure 2” and 

“Figure 3” respectively as below.  

 

 

Fig. 2 PSDG for Successors program 
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Fig.3 PSDG for Predecessors program 

The above PSDG’s are used as an input to the FDSA and 

BDSA algorithms for finding successors and predecessors 

respectively and are described in the following section. 

3.2 Forward Dynamic Slicing Algorithm 

(FDSA) 
The Forward Dynamic Slicing Algorithm (FDSA) is 

constructed for finding out the successors of the flamingo 

species. The algorithm takes as input the PSDG of “Fig. 2,” 

and a dynamic slicing criterion. The output of the algorithm is 

the required successor of the species by tracing the forward 

dependencies in the program. 

FDSA Algorithm: 

 

Input: PSDG of “Figure 2,” dynamic slicing criterion <N, v, 

f, e>, where N= Statement number in the program, v= the 

affected variable, f=flamingo species, e= dynamic execution 

trace. Su represents the successors of the flamingo species. C=  

Flamingo category. 

Output: Successors of the flamingo species Su. 

 

Procedure: getSuccessors() 

 

Step1- Construct the PSDG for successors program. 

Step 2- Repeat the following for the given phyletic tree 

Step 3- For all f=0; f<=n ; f ++where n= total no of flamingo 

evolutionary species 

{ 

Step 4- if (C==f) 

{ 

Step 5- Track the forward dependencies form f  

Step 6- Compute the forward slices with <N, v, f, e> at run 

time 

Step 7- call getSuccessors(); method 

Step 8- Print “Successors: + Su” if condition contained in if 

statement is true  

} 

Step 9- else { Print “No Successors” } 

} 

Step 10- Continue; 

 } 

Step 11- Break; 

            } 

Step 12- Stop 

 

3.3 Backward Dynamic Slicing Algorithm 

(BDSA) 
The Backward Dynamic Slicing Algorithm (FDSA) is 

constructed for finding out the predecessors of the flamingo 

species. The algorithm takes as input the PSDG of “Figure 3,” 

and a dynamic slicing criterion. The output of the algorithm is 

the required predecessor of the species by tracing the 

backward dependencies in the program. 

BDSA Algorithm: 

 

Input: PSDG of  “Figure 3,” dynamic slicing criterion<N, v, 

f, e>, where N= Statement number in the program, v= the 

affected variable, f=flamingo species, e= dynamic execution 

trace. Pr represents the predecessors of the flamingo species. 
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Output: Predecessors of the flamingo species Pr. 

 

Procedure: getPredecessors() 

 

Step1- Construct the PSDG for predecessors program. 

Step 2- Repeat the following for the given phyletic tree 

Step 3- For all f=0 ;f<=n; f ++ where n=total no of flamingo 

evolutionary species 

            {  

Step 4- if (C==f) 

            { 

Step 5- Track the backward dependencies form f  

Step 6- Compute the backward slices with <N, v, f, e> at run 

time 

Step 7- call getPredecessors(); method 

Step 8- Print “Predecessors + Pr” if condition contained in if 

statement is true  

            } 

Step 9- else { Print “No Predecessors” } 

            } 

Step 10- Continue; 

            } 

Step 11- Break; 

            } 

Step 12- Stop 

 

4. TRACING THE ORGANISATIONAL 

TREE 
Tracing the phylogenetic tree of flamingo species requires the 

computation of the forward and backward dynamic slicing 

criterion for successors and predecessors respectively. The 

slicing criterion is the decision breakpoint which will search 

the whole evolutionary tree in order to produce the output for 

the particular species in the hierarchy. 

4.1 Thoroughbred of the Species 
The flamingo species hierarchical inheritance exemplifies the 

throughbreding of the species in order to find the historical 

evolution. For this the Aves classification graph of “Figure 1,” 

specifies the layers into the evolutionary inheritance. With 

this the immediate successors and predecessor of a particular 

species at a specific layer in the tree is noted and the 

algorithm is run keeping in view the result. For knowing the 

immediate successors of the species the FSDG is run on the 

specific node in the PSDG for successors. Similarly for 

calculation of immediate predecessors the BSDG is executed 

on the particular node in the PSDG for predecessors.   

4.2 Code Implementation in Java 
Java Source code for Successors & Predecessors is shown is 

and respectively. The Phylogenetic System Dependence 

Graph (PSDG) is constructed separately for forward tracing of 

successors and backward tracing of the predecessors. All the 

nodes in the PSDG of “Figure 2,” and “Figure 3,”  correspond 

to the statement numbers in the programs in java respectively. 

The control flow, data flow and parameter or procedure 

binding dependencies can be traced from the statement 

numbers in the program and the nodes with their respective 

arcs of the PSDG.  

4.3 PSDG Execution Flow for Successors 

and Predecessors 
Automatic software development aims at improving the 

software quality and reducing the cost of production and 

maintenance of the software. Model transformations have 

been applied to slicing techniques particularly dynamic slicing 

for data accessing and slicing applications in various domains 

[5]. Integral UML models for class diagrams has been 

developed and used for the static structural and behavioral 

features of the architectural design of the software [6]. UML 

architectural designing constructs have been extended to 

defining dependencies that occur in a UML communication 

diagram [7].  

The execution flow for the program and its PSDG is depicted 

in “Figure 4” below which shows the flow of control through 

the flamingo species class hierarchy and track’s the species 

successors or predecessors according to the FDSA and BDSA 

algorithm respectively. The main() method is the  starting 

execution run point for the programs. The classes are build in 

the hierarchical manner according to the inheritance 

relationships that they share with each other. For example, 

Class BirdsAves has only one successor- 

Phoenicopteriformes. The Phoenicopteriformes      species has 

one successor as Phoenicopteridae and one predecessor i.e., 

BirdsAves. The Phoenicopteridae species has three successors 

as Phoenicopterus, Phoeniconaias and Phoenicoparrus, and 

two predecessors- one immediate and one indirect as 

Phoenicopteriformes and BirdsAves respectively. Moving 

further in the inheritance graph execution flow, the species 

Phoenicopterus has three successors as Great Flamingo, 

Carribean Flamingo and Chilean Flamingo with three 

predecessors- one immediate and two indirect as 

Phoenicopteridae, Phoenicopteriformes and BirdsAves 

repectively. Phoeniconaias has one successor as Lesser 

Flamingo and three predecessors- one immediate and two 

indirect as Phoenicopteridae, Phoenicopteriformes and 

BirdsAves repectively. Phoenicoparrus has two successors as 

Andean Flamingo and Jame’s Flamingo and  three 

predecessors- one immediate and two indirect as 

Phoenicopteridae, Phoenicopteriformes and BirdsAves 

respectiely. The Great, Carribean and Chilean Flamingo’s 

have no successors but have common four predecessors- one 

immediate and three indirect as Phoenicopterus, 

Phoenicopteridae, Phoenicopteriformes and BirdsAves 

respectively. Similarly the Lesser, Andean and Jame’s 

Flamingo’s have no successor but Lesser Flamingo has four 

predecessors- one immediate and three indirect as 

Phoeniconaias, Phoenicopteridae, Phoenicopteriformes and 

BirdsAves respectively, and Andean and Jame’s flamingo 

have four predecessors- one immediate and three indirect as 

Phoenicoparrus, Phoenicopteridae, Phoenicopteriformes and 

BirdsAves respectively. 
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Fig. 4. Inheritance execution flow of evolutionary flamingo 

species 

5. PROTOTYPE EXECUTION UPSHOTS 
The seamless integration of UML into NetBeans ensures the 

maximization of the quality of source code and software 

system. It also minimizes the execution time and efforts 

involved in coding. The parallel compounding of the UML  

diagram with java source code enables automatic generation 

of source code from UML modeling diagram and vice versa. 

This makes software programming complacent with the 

modeling of the software. As  the Software Development 

Lifecycle (SDLC) model requires coding of the software in 

accordance with the software model build, there remains gaps 

in the phases implementation of the SDLC. The solution to 

the above problem is the integration of the UML model 

construction with the programming IDE’s (Integrated 

Development Environment). For the prototype execution of 

our FDSA and BDSA algorithm the execution has been 

performed in NetBean’s IDE and the upshots are represented 

in “Figure 4” below. The first screenshot depicts the 

automatic generation of the UML class diagram from the 

source code and vice versa. The second and third screenshots 

represent the dependency matrix diagram showing the various 

dependencies existing between the flamingo birds species. 

This diagram also depicts the class hierarchy which is 

important for the inheritance track record. 
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Fig. 5. Automatic generation of UML Diagram from Java 

Source Code and Dependency matrix between various 

classes in NetBeans IDE 

 

6. EXECUTION RUN FOR FORWARD 

AND BACKWARD DYNAMIC SLIICING 
The execution trace is implemented for both forward and 

backward dependencies. The LOC (FDSA) is calculated using 

the FDSA algorithm and the PSDG of “Figure 2”. The LOC 

(BDSA) is calculated using the BDSA and the PSDG of 

“Figure 3”. Both the dynamic execution trace results in 

precise slice with the reduction in statements of source code. 

Dynamic slicing has vast range of applications from 

debugging, cohesion measurement, testing and re-engineering 

[8]. These are an added advantage for the program 

comprehensions, debugging, and maintenance & reusability 

purposes. 

The execution runs for the PSDG’s of “Figure 2” and “Figure 

3” is shown in “Table 1” below. The first column is for the 

species name tracing code which assigns the species with the 

tracing codes to be used in the slicing criterion.  

The slicing criterion used is same for both the FDSA and 

BDSA algorithm as - dynamic slicing criterion<N, v, f, e>, 

where N= Statement number in the program, v= the affected 

variable, f=flamingo species, e= dynamic execution trace and 

are shown in column 3 and column 5 respectively.. With this 

dynamic slicing criterion the LOC’s affected before and after 

FDSA and BDSA algorithmic implementation are shown in 

column 2, column 4 and column 6 respectively. The 

implementation results for LOC’s that are calculated by 

applying FDSA and BDSA are almost half of the LOC’s 

before the algorithm’s execution which shows tremendous 

reduction in the program code. This would help in better 

program maintenance, debugging, computability and re-

engineering. The dash in the rows represents those species 

that do not have ether a successor or predecessor. Thus, the 

FDSA and BDSA dynamic slicing algorithm helps in better 

traceability of the evolutionary species in the inheritance 

hierarchy. 

Table 1. Execution Run Traces of FDSA and BDSA Algorithms in Java 

 

Species name tracing 

code 

 

No of 

dependent 

lines of 

code (LOC) 

Forward 

dynamic slicing 

criterion for 

successors 

LOC 

(FDSA) 

Backward dynamic 

slicing criterion for 

predecessors 

  

 

LOC 

(FDSA) 

Dynamic 

Precision 

attained 

BirdsAves                       

(F1) 

 

19 <11,C1, F1,  Av> 8                     - - Yes 

Phoenicopteriformes       

(F2) 

 

18 <25,C2,F2,S1> 8 <25,C2,F2,S1> 8 Yes 

Phoenicopteridae             

(F3)  

 

18 <39,C3,F3,S2> 8 <39,C3,F3,S2>  

8 

Yes 

Phoenicopterus               

(F4) 

 

18 <53, C4,F4,S3> 8 <53, C4,F4,S3>  

8 

Yes 

Phoeniconaias                  

(F5) 

 

18 <67,C5,F5,S4> 8 <67,C5,F5,S4>  

8 

Yes 

Phoenicoparrus                

(F6) 

 

18 <81,C6,F6,S5> 8 <81,C6,F6,S5>  

8 

Yes 

Greatflamingo                 

(F7) 

 

18                  -  - <95,C7,F7,S6>  

8 

Yes 
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7. CONCLUSION 
The forward and backward dynamic slicing algorithm 

ascertains the dependencies between evolutionary organisms. 

This aids in figuring out the successor and predecessor 

relationship state existing by nature. The automated UML 

models are build from source code and vice-versa for 

validating the application development. The forward dynamic 

slicing algorithm traces the successors and backward dynamic 

slicing algorithm tracks the predecessors. Both algorithms are 

grounded on a dynamic slicing criterion which determines the 

dependencies between the hierarchical inheritances. The 

immediate & indirect successors and predecessors can be 

calculated with the execution run of the algorithm. Thus, the 

algorithm succeeds in ramifying phyletic flamingo species by 

retracing the phylogenetic ground. The efficiency of the 

algorithm is examined with varying inputs. This results in 

computation of precise dynamic slices in reduced LOC’s and 

execution time. The algorithm is substantial for evolutionary 

species having complex phylogenetic ground. Thus, the 

taxonomic categorization can be channeled by incorporating 

the dynamic slicing algorithms at all the inheritance levels.     
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Carribeanflamingo           

(F8) 

 

18                  -  -    <109C8,F8,S7>  

8 

Yes 

Chileanflamingo              

(F9) 

 

18                  -  - <123,C9,F9,S8>  

8 

Yes 

Lesserflamingo              

(F10) 

18                  -  - < 137,C10,F10,S9>  

 

8 

Yes 

Andeanflamingo            

(F11)   

 

18                  -  - <151,C11,F11,S10>  

8 

Yes 

Jamesflamingo               

(F12) 

 

18                  -  - <  165,C12,F12,S11>  

8 

Yes 
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