
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

5

Implication of Clone Detection and Refactoring

Techniques using Delayed Duplicate Detection

Refactoring

M. Deepika
Research Scholar

Department of Information Technology
Bharathiar University

Coimbatore, India

S. Sarala, Ph. D

Assistant Professor
Research Scholar

Department of Information Technology
Bharathiar University

ABSTRACT
Code maintenance has been increased when the similar code

fragments is reduced in the software systems. Refactoring is a

change made to the internal structure of software to make it

easier to understand and cheaper to modify without changing

its observable behavior based on code, the refactoring

mechanism is used to discover the clone detection. The

proposed algorithm insists semantic relevance between files,

classes and methods towards c# applications. The delayed

duplicate detection refactoring technique uses the code analyzer

and semantic graph for quickly detect the duplicate files in the

application. The implemented clone refactoring technique

enhances the Semantic Relevance Entity Detection algorithm

which provides better performance and accurate result for

unifying the process of clone detection and refactoring.

Keywords
Refactoring; Code clones; Clone detection; Parsing; Source

code fragments; Delayed duplicate detection; Abstract Syntax

Tree (AST).

1. INTRODUCTION
Besides the existing work refactoring and clone detection

enhanced with graph based technology that liberates a new

probability of production. Duplicate code is a sequence of

source code that occurs more than once within a program or

across different programs owned by the identical entity called

code clones. Clones are creating the various critical problems

in industrial systems. The software system may not be affected

on the reason of clones; it seems to be very difficult in future

developments. Refactoring has several methods which plays

vital role in code clone areas. The refactoring process improves

the existing code by changing its internal structure without

affects its external behavior [27] [28]. Thus the refactored code

is easier to recognize in view of less modification in real time

systems. Copying code fragments is reuse by pasting with or

without minor modifications are called code cloning and hybrid

combination of metric-based approach used for textual

comparison of source code [22]. According to the survey four

types of clones have been identified [17] and structural,

functional, model based clones in codes [7].

Detect the clones is not only fulfill of software development

and maintenance. Then fix the clones used the refactoring

technique is one of the efficient mechanism for code clones. In

this research initially detect the clones in software system and

then used refactoring technique to fix the clones. Refactoring

result is produced in code with enhanced maintainability and it

is regard as a preventive maintenance activity. The refactoring

technique have five steps of processes, these are required to

perform before applying refactoring in software system [14].

The strategy design pattern technique uses for method is

automatically identified the refactoring opportunities towards

the Strategy design pattern and gives the quality assessment in

experimental evaluation [10]. The technique based on metrics

can be used to large process model repositories of

automatically identifying refactoring opportunities and it can

be conclude automatically detect a number of anti-patterns that

can be corrected by refactoring [11].

This work explores the concept of code cloning, types of clones

and detection of clones and clones are copied by another one

software with or without minor modifications [3]. The Work

introduced a language independent method level clone

detection using the Rabin-Karp fingerprint representation that

is string matching algorithm for identifying duplicated codes.

The exception handling refactoring differs from a normal

refactoring and it is used for object oriented applications and

eliminates the exception handling smells [18]. The relevance

measuring algorithm works based on a graph structure between

resources within the information retrieval system [20].

C# programming has uncountable defects in compiler process.

The interface anomaly has vital significance to destroy the

similarity of code. Therefore, the experiments in refactoring

uses C# source code fragments to detect the clones which are

experimented in the research [4]. This proposed approach also

belongs to object oriented refactoring in c# applications. Some

techniques have been used for detect and fix the clones in

single class. But this proposed method used to detect and fixes

the clones in multiple class of software files towards c#

applications via semantic graph, Semantic Relevance Entity

Detection algorithm and refactoring methods using delayed

duplicate detection refactoring technique.

2. RELATED WORK
Several literatures exist in the area of clone detection and

refactorings which includes AspectJ Development Tool,

CMC, CloneTracker tools that have been used for identifying

clones in the software systems [23] [30] and [21]. The research

compares the various clone detection techniques and tools

based on hypothetical evaluation of clone types scenarios [17].

SHINOBI is a code clone detection modification tool for

automatically detects code clones in implicitly and integrated

with Microsoft visual studio [18].

CCFinder has found clones by comparing token-by-token and

also used metrics on the code clones [29]. CReN tracks the

code clones when copy and paste operations occurs in the

http://en.wikipedia.org/wiki/Source_code

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

6

Eclipse IDE [24]. The work describes a token and AST based

hybrid approach to automatically detecting code clones in

Erlang/OTP programs. Clone detector and the refactoring

integrate within Wrangler thereby refactoring tool has been

developed at Kent for Erlang/OTP [31]. The method CeDAR

has proposed with integrated development environment in

single class of file towards an Eclipse in the unifying process of

clone detection and refactoring [5]. The CP-Miner uses the data

mining techniques to identify copy-pasted code and copy-paste

related bugs in operating systems [25].

The approach categorizes the Extract Method refactoring

opportunities which are interrelated with variable and object of

an object-oriented system [12]. The refactoring tool is used to

discover the good quality trade-offs in the usage of storage,

computation resources of signal processing applications [13].

The graph based relevance measure is used to find the various

relations and rules between information resources [32].

Description Graphs explore a general approach to assess the

existence of semantic entities in multimedia content [33]. Thus

the research examines, clone graphs insist the relevance entities

in the source code of C# application.

The Asta method explores code clones by using abstraction

syntax trees [26], then compares the greedy and manual

approaches and finally refactoring effort model is very useful

to software systems [15]. The Refactoring Recommender agent

is developed for object oriented system into aspect oriented

system in refactorization. The agent uses a Markovian

algorithm to detect the types of restructurings is needed to the

source code [9].

The empirical study of decision making describes refactoring

decisions in the system architecture of embedded software.

Technical management and requirements have the less

importance on humans [8]. The Adaptive K – Nearest

neighbor clustering algorithm is used to perform the clustering

in ill- structured software entities refactoring at function level

[16]. The pull up method refactoring is used to eliminate the

duplicate codes in subclasses. Pre and post conditions produce

the guarantee to detect the source code behaviors by refactoring

techniques [6].

3. METHODOLOGY
The proposed system uses the semantic graph technique that

has been coupled with delayed duplicate detection at memory

level.

Figure 1: Delayed Duplicate Detection Refactoring

Code refactoring is performed to improve the efficiency of the

refactoring technique and to cover more refactoring factors as

much as possible.

The figure 1 indicates the refactoring method using semantic

graph and delayed duplicate detection technique at memory

level. Initially c# code has been loaded and then selects the file

for parse to identify the object oriented entities in source code

fragments which are namespaces, classes, methods and

parameters using the code analyzer. The code clones are

identified using the parsed information and syntax tree and

semantic graph generation. Besides the semantic graph has

been plotted the all methods and parameters for identify the

semantic relevance entities.

The delayed duplicate detection refactoring used for reduces

the time and memory level in cache performance after the

detection of code clones process using the breadth first search

technique. It is used for discovers the graph coordinates to store

in a hash table. The items of hash table list have been sorted in

the ordered list.

It is useful even when all nodes fit in memory, resulting in

reduced running time due to improved cache performance. In

the standard implementation of breadth-first search in memory,

the Open list is stored in a hash table. The DDDR

implementation uses a hash table with FIFO queue in memory,

reading nodes off the head of the queue, and appending them to

the tail.

The new node is generated; it is looked up in the hash table,

which often results in a cache miss, since the hash function is

designed to randomly scatter the nodes. Once a level of the

Relevancy Detection

User C# source code files

Select the file

Code Analyzer

Parsing, Code Transformation, Abstract

Syntax Tree

Semantic Graph

Generation

Delayed Duplicate Detection

Refactoring Method

Refactoring Patterns

Extract the Source Code

Fragments

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

7

search is completed, the queue is sorted in memory using an

algorithm such as quicksort, and the sorted queue is scanned,

merging duplicate nodes.

The advantage of this approach is that the queue is only

accessed at the head and tail or at two points in between during

quicksort, and hence most memory references will reside in

cache, reducing the running time. The quick sort technique

applied for time consuming refactoring by considering

refactoring techniques.

3.1 Semantic Graph
Initially formed the syntax tree, next objective is measuring the

semantic relevance between nodes of the tree structure to detect

clones. To discover the node relevance the proposed system

intercepts the class wise nodes into a graph structure where the

relevance can be calculated as a numerical value and the clone

graph is formed.

Figure 2: Semantic Relevance of Clones

To estimate the semantic relevance between classes use a

semantic graph based relevance measure to exploit various

relations and node roles between resources. The figure 2 shows

the classes C1 and C2 contains methods which are called as

nodes. C1, C2 are denoted as classes and m1, m2, m3, m4,…

are denoted as methods.

TABLE 1: Attestation for Semantic Relevance

Clone graph is drawn with nodes of both the classes. Nodes are

7 and the relevancy node is m1 and m3. Table 1 explains the

how to conclude that methods are cloned in software systems.

3.2 Relevance Entities of Code Clones
The research work involves the following relationships are

used between the software entities constrained by the object

oriented context to detect the different code clones.

Figure 3: Semantic Relevance Entity Detection

Algorithm

Each relationships are determines a set of source code and

clone graph constructs. The entities are following below:

A Relevance Entity (RE) represents the programming

constructs such as class, methods, expressions, statements and

so on. In the given C# class code, RE values are represented in

the semantic graph as vertex.

A Relation (R) is a feature that requires two or more REs to

achieve its same representation or meaning in semantic terms.

A Relation lacks any information when it is not associated to

any RE.

A Clone Graph (CG) assigns REs and Rs to its vertices in

order to describe a higher-level RE. REs are linked by Rs using

directed edges, in such a way that the neighborhood of the REs

is always Rs, and vice versa. The vertices are divided into

necessary or meanwhile optional. Necessary vertices must be

present in any instance of a RE model. The presence of

optional vertices is not mandatory to have an evaluable

instance of a RE model.

The figure 3 delayed duplicate detection refactoring algorithm

have been indicated the clone graph from AST and then build

hast table for all methods of source code fragments.

Sequentially the cloned methods of list are refactored using

refactoring patterns/methods appropriately. The details of

specific refactoring pattern chooses to clones will also be

explained in further.

Hash tables are used to store the CG’s that can be used as a

reference for the detection of REs in C# codes. A confidence

value C (RE) expresses the performance of RE which is

Method Name Number of Occurrence(s)

M1 2

M2 1

M3 2

M4 1

M5 1

C1

Void m1

{…}

Void m2

{…}

Void m3

{…}

Void m5

{…}

……

 Clone Graph

C2

Void m1

{…}

Void m3

{…}

Void m4

{…}

…..

Nodes: 7

Relevant

Nodes: 2

Input: Clone Graph CGr

Output: OL of refactorable methods

1. Get the Clone Graph CGr

2. Construct the Hash Table HT with the CGr

Vertex.

3. Arrange the resultant vertices and optional

vertices in CGr.

4. To get the relevance of REs.

5. Obtain the Ordered List (OL) of clones

6. Scan the OL until reaching a vertex with a c

smaller than the current C(RE).

7. Return the OL.

8. Detect refactoring patterns to clones.

9. Apply the appropriate pattern in

automatically.

10. Extract the results of input fragments.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

8

represented into the code. The confidence values of CG’s

instances are calculated using the vertex belongs to CG.

Relevance of the vertex (r) denotes the relation of the CG

instances. Semantic relevance entity detection (SRED)

algorithm uses the model instance architecture. Hash tables are

used to store the CG’s that can be used as a reference for the

detection of REs in C# Codes.

The relevancy values are expressed in 0 and 1. The confidence

value of CG produces the relevancy values of 0 and 1. The list

is first sorted in decreasing order according to their associated c

in to an Ordered List (OL). The ordered list is scanned adding

optional vertices to the expression until reaching a vertex with

a c smaller than the current C(RE). The output list is stored as

hash table.

3.3 Refactoring Methods
The entities are loaded and sorted in the hash table. Each

relevant methods class names are identified to get the class

name. The refactoring technique is decided based on the class.

The research work focuses the various methods of refactoring

which are pull up method, push down method, extract class

method and rename method.

 Pull Up: This refactoring is especially useful when

subclasses of a certain class share some functionality

but each implements it separately. It pulls methods

from sub classes to super class.

 Push Down: Push down refactoring involves moving

a method from a superclass into a subclass.

 Extract Class: The Extract Class refactoring is

useful once classes happen to overweight with too

many methods and its purpose becomes unclear and

efficiency high-level. Extract Class refactoring

employs creating a new class and moving methods

and/or data to the new class.

 Rename Method Rename Method is a refactoring

that changes a name of a method into a new one that

better reveals its purpose.

4. EXPERIMENTAL RESULTS
As a result, the clone analysis and detection performed in c#

applications, construct the graph plots using the semantic

relevance entity detection algorithm and delayed duplicate

detection refactoring technique for reduces the running time.

The following table 2 lists the execution id, object oriented

programming code of c# applications and class counts.

5. METRICS IN CLONE DETECTION

STATES
After the elimination of the all noise, all applications are

analyzed for compute the each object oriented metrics in

quantitatively. The metrics are computed for following

scenarios from that quantitatively analysis: single class, sibling,

super class, same method and unrelated class. The figure 4

explains the percentage of clones occurred in object oriented

entities.

TABLE 2: Results of Clone Detection

Figure 4: Percentage of Duplications

6. CONCLUSION
Refactoring is a planned and disciplined process of code

transformation. In this research work, refactoring mechanism

with the technique of delayed duplicate detection refactoring

for detect and fixes the clones in multiple classes of c# files

towards C# applications and among the help of clone graph,

Semantic Relevance Entity Detection algorithm and Delayed

Detection Duplication Refactoring technique. This technique

is used for reduces the running time due to improved cache

performance in the memory level of application. The work has

been limited to object oriented source code, because each

programming languages have different semantics for applying

refactoring methods and fixing the clones. The method

introduces automation to identification of namespaces; classes

and methods of object oriented source code find out clones

using graph plots and eliminate the clones using refactoring

opportunities.

39%

34%

15%

7% 5%

Duplications in Object Orineted

Entities

Single Class Sibling
Super Class Same Method
Unrelated Class

Id Source Code
No of

Classes

No of

Methods

No of Same

Name

Method

Clones

No of

Clones

Refactorin

g Method

E1 AllLink.cs 3 3 4 Two Rename

E2 Kmeans.cs 5 14 5 Five Pull Up

E3 Class3.cs 1 3 2 Nil Rename

E4 ROI.cs 1 19 3 One Extract

E5 C45.cs 2 4 0 Nil Pull Down

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

9

The results are identified as analyses and detect the clones in
source code. In addition, the nature of the evaluation tasks,
metrics made a number of predefined changes to the
parameters, perhaps this work been limited to object oriented
source code.

7. REFERENCES
[1] S. Sarala, M. Deepika, “Unifying Clone Analysis and

Refactoring Activity towards C# Applications”,

Proceedings of the IEEE 4th International Conference on

Computing, Communication and Methodologies, ISBN:

978-1-4799-3925-1, pp. 1-5, 2013.

[2] S. Sarala, S.Mythili, “A Language Independent

Approach for Method Level Clone Detection Using

Fingerprinting”, International Journal of Advanced

Research in Computer Science, Vol. 3, No. 2, pp. 368-

371, 2012.

[3] S. Sarala, S. Mythili, “Experimental Approach of Clone

Detection Techniques”, Proceedings of the International

Conference on Systems, Methodologies, Automation and

Research Trends, pp. 1-6, 2012.

[4] S. Sarala, “Defects Detection in Imperative Language

and C# Applications – Towards Evaluation Approach”,

Proceedings of the International MultiConference of

Engineers and Computer Scientists, Vol. I, pp. 940-944,

2008.

[5] Robert Tairas, Jeff Gray, “Increasing clone maintenance

support by unifying clone detection and refactoring

activities”, Journal of Information and Software

Technology, Elsevier Publications, Vol. 54, pp. 1297-

1307, 2012.

[6] Wafa Basit, Fakhar Lodhi, “Preservation of Externally

Observable Behavior after Pull Up Method Refactoring”,

15th International Conference on Computer and

Information Technology, pp. 309-313, 2012.

[7] Dhavleesh Rattan, Rajesh Bhatia, Maninder Singh,

“Software clone detection: A systematic review”, Journal

of Information and Software Technology, Elsevier

Publications, Vol. 55, pp. 1165-1199, 2013.

[8] Sara Dersten, Jakob Axelsson, Joakim Froberg, “An

empirical study of refactoring decisions in embedded

software and systems”, Journal of Procedia Computer

Science, Elsevier Publications, Vol. 8, pp. 279-284,

2012.

[9] Santiago A.Vidal, Claudia A.Marcos, “Building an

expert system to assist system refactorization”, Journal of

Expert Systems with Applications, Elsevier Publications,

Vol. 39, pp. 3810-3816, 2012.

[10] Aikaterini Christopoulou, E.A. Giakoumakis, Vassilis E.

Zafeiris, Vasiliki Soukara, “Automated refactoring to the

Strategy design pattern”, Journal of Information and

Software Technology, Elsevier Publications, Vol. 54, pp.

1202-1214,2012.

[11] Remco Dijkman, Beat Gfeller, Jochen Küster, Hagen

Völzer, “Identifying refactoring opportunities in process

model repositories”, Journal of Information and Software

Technology, Elsevier Publications, Vol. 53, pp. 937-948,

2011.

[12] Nikolaos Tsantalis, Alexander Chatzigeorgiou,

“Identification of extract method refactoring

opportunities for the decomposition of methods”, The

Journal of Systems and Software, Elsevier Publications,

Vol. 84, pp. 1757-1782, 2011.

[13] Calin Glitia, Pierre Boulet, Eric Lenormand, Michel

Barreteau, “Repetitive model refactoring strategy for the

design space exploration of intensive signal processing

applications”, Journal of Systems Architecture, Elsevier

Publications, Vol. 57, pp. 815-829, 2011.

[14] Liming Zhao, Jane Huffman Hayes, “Rank-based

refactoring decision support: two studies”, Journal of

Innovations Syst Softw Eng, Springer Publications, Vol.

7, pp. 171-189, 2011.

[15] Minhaz F. Zibran, Chanchal K. Roy, “A Constraint

Programming Approach to Conflict-aware Optimal

Scheduling of Prioritized Code Clone Refactoring”, 11th

IEEE International Working Conference on Source Code

Analysis and Manipulation, pp. 105 – 114, 2011.

[16] Abdulaziz Alkhalid, Mohammad Alshayeb, Sabri

Mahmoud, “Software refactoring at the function level

using new adaptive K-Nearest Neighbor algorithm”,

Journal of Advances in Engineering Software, Elsevier

Publications, Vol. 41, pp. 1160-1178, 2010.

[17] Chanchal K. Roy, James R. Cordy, Rainer Koschke,

“Comparison and evaluation of code clone detection

techniques and tools: A qualitative approach”, Science of

Computer Programming, Elsevier Publications, Vol. 74,

pp. 470-495, 2009.

[18] Shinji Kawaguchi, Takanobu Yamashinay, Hidetake

Uwano, “SHINOBI: A Tool for Automatic Code Clone

Detection in the IDE”, Proceedings of the 16th Working

Conference on Reverse Engineering, pp. 313-314, 2009.

[19] Chien-Tsun Chen, Yu Chin Cheng, Chin-Yun Hsieh, I-

Lang Wu, “Exception handling refactorings: Directed by

goals and driven by bug fixing”, Journal of Systems and

Software, Elsevier Publications, Vol. 82, pp. 333-345 ,

2009.

[20] Sang Keun Rhee, Jihye Lee, Myon-Woong Park,

“Semantic relevance measure between resources based

on a graph structure”, Proceedings of the International

Multiconference on Computer Science and Information

Technology, pp. 229–236, 2008.

[21] Ekwa Duala-Ekoko, Martin P. Robillard, “CloneTracker:

Tool Support for Code Clone Management”, 30th

International Conference on Software Engineering, pp. 1-

4, 2008.

[22] G. Anil kumar, Dr. C.R.K.Reddy, Dr. A. Govardhan,

Gousiya Begum, “Code Clone Detection with

Refactoring support Through Textual analysis”,

International Journal of Computer Trends and

Technology, Vol. 2, No. 2, pp. 147-150, 2011.

[23] R. Tairas, J. Gray, I. D. Baxter, “Visualizing clone

detection results”, Proceedings of the 22nd IEEE/ACM

international conference on Automated software

engineering, pp. 549–550, 2007.

[24] P. Jablonski and D. Hou, “CReN: a tool for tracking

copy-and paste code clones and renaming identifiers

consistently in the ide”, Proceedings of the OOPSLA

workshop on eclipse technology eXchange, pp. 16–20,

2007.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 6, May 2014

10

[25] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner: A

Tool for Finding Copy-paste and Related Bugs in

Operating System Code”, Proceedings of the Sixth

Symposium on Operating Systems Design and

Implementation, Vol. 6, pp. 289-302, 2004.

[26] William S. Evans, Christopher W. Fraser, Fei Ma,

“Clone detection via structural abstraction”, Journal of

Software Qual J, Springer Science+ Business Media

Publications, pp. 309-330, 2009.

[27] M. Fowler, K. Beck, J. Brant, W. Opdyke, D. Roberts,

“Refactoring: Improving the Design of Existing Code”,

Addison Wesley, 1999.

[28] W.C. Wake, “Refactoring Workbook”, Addison Wesley,

2003.

[29] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder: A

Multi- Linguistic Token-based Code Clone Detection

System for Large Scale Source Code”, IEEE

Transactions on Software Engineering, Vol. 28, No. 7,

pp. 654–670, 2002.

[30] M. Musuvathi, D. Park, A. Chou, D. R. Engler, and D. L.

Dill, “CMC: A pragmatic approach to model checking

real code”, Proceedings of the Fifth Symposium on

Operating Systems Design and Implementation, Vol. 36,

pp. 75-88, 2002.

[31] Huiqing Li, Simon Thompson, “Clone Detection and

Removal for Erlang/OTP within a Refactoring

Environment”, Proceedings of the ACM SIGPLAN

workshop on Partial Evaluation and Program

Manipulation, pp. 169-178, 2009.

[32] Sang Keun Rhee , Jihye Lee , Myon-woong Park,

“Ontology Based Semantic Relevance Measure”,

Proceedings of the First International Workshop on

Semantic Web and Web 2.0 in Architectural, Product and

Engineering Design, pp. 1-6, 2007.

[33] X Giro, F Marques, “Semantic Entity Detection Using

Description Graphs”, Proceedings of the Workshop on

Image Analysis for Multimedia Application Services, pp.

1-4, 2003.

IJCATM : www.ijcaonline.org

