
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

29

Software Size Estimation in Incremental Software

Development based on Improved Pairwise Comparison

Matrices

Peter Ochieng
Jomo Kenyatta University of
Agriculture and Technology
P.O BOX 62000 NAIROBI

Waweru Mwangi
 Jomo Kenyatta University of

Agriculture and
Technology(JKUAT)

P.O BOX 62000 NAIROBI

 Solomon Mwanjele
Mwgha

Taita Taveta Unversity
P.O BOX 635 VOI

ABSTRACT
Software sizing is a crucial activity among the task of

software management. Work planning and subsequent

estimation of effort required is based on the estimate of the

software size required. Software developers are realizing the

need to speed up the development process to respond to

customers‟ needs .This has resulted in adoption of rapid

development methods and adoption of agile methodologies.

 Incremental method of software development has been

adopted as one of the methods to speed up software

development. Unfortunately there is little work that has been

done to develop a clear framework to estimate software size

and cost in incremental software development environment.

This research work proposes the use of Pairwise Comparison

matrices framework to estimate size and cost in incremental

software development and evaluate the pairwise comparison

framework against Putman‟s size estimation model to

determine if it produces more accurate results in terms of

estimation of size relative to actual size.

Keywords
Pairwise; judgment matrix; Incremental Estimation

1. INTRODUCTION

Before development of any software, it is vital for proper

planning to be conducted. Projected size of the software to be

developed is an important variable that is needed by software

project managers to estimate the cost of the software, number

of people to allocate to the development of the software and

the number of months or duration the development lifecycle

will take. Since software size estimate prior to development is

non-existence or abstract , it needs experienced human

judgment to estimate the size of the software prior to

development .The idea of using human experience and

judgment fits well in the field of Human-centered computing

(HCC) .In these stages most of the required information is not

available. To help them in this difficult task, prediction

models and the experience of past projects are fundamental.

Software size metrics play a significant role to the success of

this task. Unfortunately the existing software size estimation

models still produce size estimates which have been blamed

for software development failures. The popular computing

literature is awash with stories of software development

failures and their adverse impacts on individuals,

organizations, and societal infrastructure. Indeed,

contemporary software development practice is regularly

characterized by runaway projects, late delivery, exceeded

budgets and reduced functionality and questionable quality

that often translate to cancellations, reduced scope and

significant rework circles [1].

The net result is an accumulation of waste typically measured

in financial terms (always billions of dollars) [2]. The

Standish Group makes a distinction between failed projects

and challenged projects. Failed projects are cancelled before

completion, never implemented, or scrapped following

installation. Challenged projects are completed and approved

projects that are over budget, late, and with fewer features and

functions than initially specified. Most organizations are

constantly searching for ways to improve their project

management practice and reduce the likelihood of failures and

the degree to which their projects are challenged. Typical

projects entail a balancing act between the triple constraints of

budget, schedule, and scope. Tradeoffs and adjustments are

therefore made by restricting, adding to, or adjusting the cost,

time, and scope associated with a project. Indeed the

traditional triangle in project management is said to be

concerned with finding a balance between cost, time, and

scope as show in Figure1.

Figure 1: Traditional triangle in project management

For example, the more that is requested in terms of scope (or

arguably even the performance or the quality), the more it is

likely to cost and the longer the expected duration. If the

client needs to have a certain performance delivered very

rapidly, this will increase the cost due to the need to work

faster and have more people involved in the development. The

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

30

more features expected from a system, the higher the cost and

the longer the expected duration. Conversely, if the costs need

to be kept to a minimum, one may need to consider the

essential performance, or the overall scope, and compromise

there. Many managers quickly discover that the triangle is not

flexible. In order to address the challenge. In order to address

lack of clear framework of software size estimation this paper

proposes to develop software size estimation framework for

incremental development environment using pairwise

comparison matrix.

2. LITERATURE REVIEW
In general size estimates of an application is presented as lines

of codes (LOC) or function points (FP).There are techniques

that can be applied to convert function points to lines of code

for specific language, and vice versa. One of the best

techniques used to do this is called backfiring

technique[10].This paper will focus on the methods using

LOC since our new methodology also uses LOC ,this will

make comparison between the methods easy.

2. 1 Lawrence H. Putnam LOC Estimation
A SLOC estimate of a software system can be obtained from

breaking down the system into smaller pieces and estimating

the SLOC of each piece. [9] Putnam suggests that for each

piece, three distinct estimates should be made:

Smallest possible SLOC – a

Most likely SLOC – m

Largest possible SLOC – b

Putnam suggested that three to four experts make estimate of

a, b, c for each function. Then the expected SLOC for piece

𝐸𝑖can be computed by applying beta distribution as shown in

equation (1)

𝐸𝑖=
𝑎+4𝑚+𝑏

6
 (1)

The expected SLOC for the entire software system E is simply

the sum of the expected SLOC of each function as shown in

equation (2)

E= 𝐸𝑖
𝑛
𝑖=1 (2)

where n is the total number of pieces.

An estimate of the standard deviation of each of the estimates

𝐸𝑖can be obtained by getting the range in which 99% of the

estimated values are likely to occur and dividing by 6 as

shown in equation (3).

𝑆𝐷𝑖=
|𝑏−𝑎|

6
 (3)

standard deviation of the expected SLOC for the entire

software system SD is calculated by taking the square root of

the sum of the squares of standard deviations of each estimate

𝑆𝐷𝑖 as shown in equation(4)

𝑆𝐷= 𝑆𝐷𝐼
𝑛
𝑖=𝑛 (4)

where n is the total number of pieces.

Therefore the total software size is expected to lie in the range

expressed in equation (5)

𝐸 ± 𝑆𝐷 (5)

Where E is the estimated size of the entire system computed

as shown in equation (5)

With real experience this method can yield accurate results

[7], though it also faces criticism of the allowed range of the

size estimate as shown in equation (5) being large hence the

estimate cannot be narrowed down to given value.

2.2 Developer opinion and previous project

experience
Software cost estimates are typically required in the early

stages of the life-cycle when requirements and design

specifications are immature. Under these Conditions, the

production of an accurate cost estimate requires extensive use

of expert judgment and the quantification of significant

estimation uncertainty. Research has shown that under the

right conditions, expert judgment can yield relatively

“accurate” estimates [9]. Unfortunately, most expert

judgment-based estimates do not meet these conditions and

frequently degenerate into outright guessing. At its best,

expert judgment is a disciplined combination of a „best guess‟

and historical analogies. Developer opinion is otherwise

known as guessing. If you are an experienced developer, you

can likely make good estimates due to familiarity with the

type of software being developed. How well this estimates

are, depend on the expertise of the person giving the estimate

hence it cannot be empirically proved but only to trust the

estimates. But incase of good experience by the developer it

can yield good estimates.

Looking at previous project experience serves as a more

educated guess. By using the data stored in the metrics

database for similar projects, you can more accurately predict

the size of the new project. If possible, the system is broken

into components, and estimated independently.

2.3 Count Function Blocks
The technique of counting function blocks relies on the fact

that most software systems decompose into roughly the same

number of "levels"[5]. Using the information obtained about

the proposed system, follow these steps:

1. Decompose the system until the major functional

components have been identified

(Call this a function block, or software component).

2. Multiply the number of function blocks by the expected

size of a function block to get a size estimate.

3. Decompose each function block into sub functions.

4. Multiply the number of sub functions by the expected

size of a sub function to get a second size estimate.

5. Compare the two size estimates for consistency.

Compute the expected size of a function block and/or a sub

function with data from previous projects that use similar

technologies and are of similar scope.

If there are no previous developments on which to base

expected sizes, use the values 41.6 KSLOC and 4.16 KSLOC

for the expected size of function blocks and sub functions

respectively. These values were presented by Britchner and

Gaffney (1985) [9] as reasonable sizes for aerospace projects

(real-time command and control systems).It has the

disadvantage that it requires that one is well knowledgeable

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

31

on the software to be developed in order to decompose it to

blocks and sub functions

2.4 Function Point Analysis
Function points allow the measurement of software size in

standard units, independent of the underlying language in

which the software is developed. Instead of counting the lines

of code that make up a system, count the number of externals

(inputs, outputs, inquiries, and interfaces) that make up the

system.

There are five types of externals to count:

1. External inputs- data or control inputs (input files, tables,

forms, screens, messages, etc.) to the system

2. External outputs- data or control outputs from the system

3. external inquiries-- I/O queries which require a response

(prompts, interrupts, calls, etc.)

4. External interfaces- libraries or programs which are passed

into and out of the system (I/O routines, sorting procedures,

math libraries, run-time libraries, etc.)

5. Internal data files - groupings of data stored internally in

the system (entities, internal control files, directories)

Apply these steps to calculate the size of a project:

1. Count or estimate all the occurrences of each type of

external.

2. Assign each occurrence a complexity weight

3. Multiply each occurrence by its complexity weight, and

total the results to obtain a function count.

Table 1: Complexity weights are

Description Low medium High

external inputs 3 4 6

external outputs 4 5 7

external inquiries 3 4 6

external interfaces 5 7 10

internal data files 7 10 15

4 Multiply the function count by a value adjustment multiplier

(VAM) to obtain the function point count.

VAM= 𝑣𝑖 × 0.01 + 0.06514
𝑖=1 (6)

Where VI is a rating of 0 to 5 for each of the following

fourteen factors (i). The rating

reflects how each factor affects the software size.

1. Data communications

2. Distributed functions

3. Performance

4. Heavily used operational configuration

5. Transaction rate

6. On-line data entry

7. Design for end user efficiency

8. On-line update of logical internal files

9. Complex processing

10. Reusability of system code

11. Installation ease

12. Operational ease

13. Multiple sites

14. Ease of change

Assign the rating of 0 to 5 according to these values:

0 - factor not present or has no influence

1 - Insignificant influence

2 - Moderate influence

3 - Average influence

4 - Significant influence

5 - Strong influence

Function point analysis is extremely useful for the transaction

processing systems that make up the majority of MIS projects.

However, it does not provide an accurate estimate when

dealing with command and control software, switching

software, systems software or embedded systems.

3. Pairwise comparison matrix size

estimation framework
In 1977, Saaty [3] argued that like a physical measurement

scale with a zero and a unit to apply to objects, we can also

derive accurate and reliable relative scales that do not have a

zero or a unit by using our understanding and judgments that

are the most fundamental determinants of why we want to

measure anything [3]. He showed that AHP (Analytic

Hierarchy Process) can be used to solve the Multi Criteria

Decision Making (MCDM) problem. MCDM is referring to

making decision in the presence of multiple criteria. Zahedi

[4] summarizes the original AHP procedure by Saaty [3] into

four phases:

1. Break the decision problem into a hierarchy of

interrelated problems.

2. Provide the matrix data for pair wise comparison of

the decision elements.

3. Using Eigenvector Method (EV) as a prioritization

method.

4. Aggregate the relative weights of the decision

The most integral part of Analytical Hierarchical Process

(AHP) is a pairwise comparison matrix. A pairwise

comparison matrix provides a formal, systematic means of

extracting, combining, and capturing expert judgments and

their relationship to analogous reference data (historical data)

[5]. Bozoki gives a more detailed description of his approach

in his paper [6]. Using a pairwise comparison matrix to

estimate software size in incremental development requires an

expert‟s judgment on increments‟ relative size compared to

one another. The effectiveness of this approach is supported

by experiments that indicate that the human mind is better at

identifying relative differences than at estimating absolute

values [83]. Many adjustments have been made to the original

AHP procedure that was proposed by Saaty [3] in 1977 by

different authors. This research work therefore intends to use

some of these modifications and further adapt it in order to fit

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

32

it in the estimation of software size and cost in incremental

development. Analytical Hierarchy Process (AHP) therefore

3.1: Step1: Rank the increments

Rank the increments from the largest to the smallest. An

expert ranks the increments to be developed starting with the

one he perceives to be the largest to the smallest. Though this

step is not mandatory it lessens work during comparison.

3.2 Step 2: Create a pairwise matrix
Pairwise matrix begins with creating a judgment matrix to

solve the sizing problem in incremental software

development. Creating a judgment matrix involves creating an

n x n matrix (𝑨𝒏×𝒏 = 𝒂𝒊𝒋), where n is the number of

increments to be developed in order to deliver the whole

software. Note that in incremental software development the

total software is delivered in a series of increments and

demonstrated in equation (7)

Total software= 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠𝑖
𝑛
𝑖=1 (7)

(The assumption in equation (7) is that all the increments are

independent and the gluing code i.e. extra code for integration

has been factored in. This assumption will be addressed fully

in this thesis)

Element, 𝑎𝑖𝑗 in the matrix is an estimate of the relative size of

increment 𝑖 with respect to increment j, i.e.

𝑎𝑖𝑗 =
𝑠𝑖𝑧𝑒𝑖

𝑠𝑖𝑧𝑒𝑗
 (8)

Judgment matrix should have two critical properties

1. 𝑎𝑖𝑗 = 1
𝑎𝑖𝑗

 which means that increment 𝑖 is 𝑎𝑖𝑗

times bigger than increment j, then increment j

is1
𝑎𝑖𝑗

 times smaller than entity 𝑖;

2. An increment is same size as itself meaning that all

diagonal elements 𝑎𝑖𝑖 = 1.

The implication of these properties is that an expert is only

required to fill the upper or lower triangle of the judgment

matrix. For example, see Table 2, which is a judgment matrix

with estimates of the relative software size of four increments.

The values in Table 2 row1 indicate that increment I is 𝑎𝑖𝑗 as

big as increment, 𝑎𝑖𝑘 bigger than increment K, and 𝑎𝑖𝑙bigger

than increment L. The remaining entries are interpreted in the
same manner.

Taking an example of four increments that are to be

developed to deliver the whole software namely increment I,

increment J, increment K, increment L we create a pairwise

comparison matrix of n=4 (the matrix is depicted here as a

table with the sole purpose of increasing understanding and
making comparison concept clear to all).

Create matrix consisting of n increments in this case four

increments and an expert fills the elements according to his or

her perceived relative size of one increment in respect to the

other.

Table 2: Partially filled pairwise comparison matrix

showing relative sizes of four increments

 Increment

I

Increment

J

Increment

K

Increment

L

Increment

I

 𝑎𝑖𝑗 𝑎𝑖𝑘 𝑎𝑖𝑙

Increment

J

 𝑎𝑗𝑘 𝑎𝑗𝑙

Increment

K

 𝑎𝑘𝑙

Increment

L

Table 2 represents a partially filled

matrix

 𝒂𝒊𝒋 𝒂𝒊𝒌 𝒂𝒊𝒍

 𝒂𝒋𝒌 𝒂𝒋𝒍

 𝒂𝒌𝒍

Note that the expert when filling the judgment matrix is

guided by the scale developed by Saaty [3] as shown in Table

3. The explanation and definition column of Table 3 are

adapted to fit this work as shown in Table 3

Table 3: Modified Saaty scale

Intensity of

importance

Definition Explanation

1 Equal size

between the

increments

Two increments

are equal in size

2 Weak or slight

size advantage of

one increment

over the other

 judgment

slightly favor one

increment over

another

3 Moderate size

advantage of one

increment over the

other

 judgment

moderately favor

one increment

over another

4 Moderate plus

5 Strong size

advantage of one

increment over the

other

 judgment

strongly favor

one increment

over another

6 Strong plus

7 Very strong or

demonstrated

importance

An increment is

favored very

strongly over

another

8 Very, very strong

9 Extreme

importance

The evidence

favoring one

increment over

another is of the

highest possible

order

1.1–1.9 When increments

are very close a

decimal is added

to 1 to show their

difference as

appropriate

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

33

Applying condition two of the judgment matrix i.e. an

increment compared to itself is the same in terms of size. The

diagonal of the matrix represented in Table 4 is filled making

the upper part of the matrix fully filled leaving only the lower
part (Table 4).

Table 4: Partially filled matrix where condition2 is applied

 Increment

I

Increment

J

Increment

K

Increment

L

Increment I 1 𝑎𝑖𝑗 𝑎𝑖𝑘 𝑎𝑖𝑙

Increment J 1 𝑎𝑗𝑘 𝑎𝑗𝑙

Increment

K

 1 𝑎𝑘𝑙

Increment L 1

Table 4 represents partially filled

matrix

 1 𝑎𝑖𝑗 𝑎𝑖𝑘 𝑎𝑖𝑙

 1 𝑎𝑗𝑘 𝑎𝑗𝑙
 1 𝑎𝑘

 1

Using the first condition of the judgment matrix i.e. 𝑎𝑖𝑗 =

1
𝑎𝑖𝑗

 which means that entity 𝑖 is 𝑎𝑖𝑗 times bigger than entity

j, then entity j is1
𝑎𝑖𝑗

 times smaller than entity𝑖;

We can now fully fill the matrix i.e. the lower part of the

matrix is filled by considering the reciprocal condition.

Table 5: Fully filled matrix where the two conditions have
been applied

 Increment

I

Increment

J

Increment

K

Increment

L

Increment

I

 1 𝑎𝑖𝑗 𝑎𝑖𝑘 𝑎𝑖𝑙

Increment

J

1
𝑎𝑖𝑗

 1 𝑎𝑗𝑘 𝑎𝑗𝑙

Increment

K

1
𝑎𝑖𝑘

 1
𝑎𝑗𝑘 1 𝑎𝑘𝑙

Increment

L

1
𝑎𝑖𝑙

 1
𝑎𝑗𝑙 1

𝑎𝑗𝑘 1

Table 5 represents the matrix

 1 𝑎𝑖𝑗 𝑎𝑖𝑘 𝑎𝑖𝑙

1

𝑎𝑖𝑗
 1 𝑎𝑗𝑘 𝑎𝑗𝑙

1

𝑎𝑖𝑘

1

𝑎𝑗𝑘
 1 𝑎𝑘

1

𝑎 𝑖𝑙

1

𝑎𝑗𝑙

1

𝑎𝑗𝑘
 1

3.3 Step 3: Extract ranking vectors
Now we have a fully filled matrix that gives us relative sizes

of the increments that we want to develop in order to deliver

the entire software. The judgment matrix is interpreted that

each column yields a different ranking vector for the purpose

of determining the relative size of the four increments. Each

vector is normalized such that the increment that corresponds

to itself (the diagonal elements) is always 1, and it is the

reference increment against which all comparisons in the

same column are made. Therefore, column 1 indicates that

increment J is 1
𝑎𝑖𝑗

 as big as increment I; increment K is

1
𝑎𝑖𝑘

 of the size of increment I and increment L is 1
𝑎𝑖𝑙

 of

increment I. Each column can be interpreted in this manner. In

this case the ranking vectors are

1
1

𝑎𝑖𝑗

1
𝑎𝑖𝑘

1

𝑎𝑖𝑙

 this is the ranking

vector from column one the respective ranking vector

generated by column two, three and four are

𝑎𝑖𝑗

1
1

𝑎𝑖𝑘

1

𝑎𝑗𝑙

𝑎𝑖𝑘

𝑎𝑗𝑘
1
1

𝑎𝑗𝑘

𝑎𝑖𝑙

𝑎𝑗𝑙
𝑎𝑘𝑙

1

 respectively. A matrix of n increments will yield four n

ranking vectors. If the ranking vectors are different which is

always the case then it means that there is more estimation

uncertainty and extra estimation needs to be done in order to

come up with one ranking vector called Priority vector. A

special case exists when a judgment matrix is perfectly

consistent. This occurs when 𝑎𝑖𝑗 ×𝑎𝑗𝑘 =𝑎𝑖𝑘 all for i, j, k

If judgment matrix is not consistent then we need to go to step

4 otherwise we skip to step 5

3.4 Step 4: Compute priority vector
There are some methodologies that have been proposed by

different authors to tackle this problem. The methods are

reviewed as follows without looking at the strengths and

weaknesses of each.

3.4.1 Eigen value methodology
Let A be a 𝑛 × 𝑛 matrix. A number λ is known as Eigen value

of A if there exists a non-zero vector v such that

 Av=λv (9)

In this case, vector v is called an eigenvector of vector 𝐴

corresponding to Eigen value λ

Eigen values and eigenvectors are defined only for square

matrices i.e. the number of rows must be equal to the number

of columns in the matrix i.e. 𝑛 × 𝑛 matrix hence works well

with the comparison matrix which must be a square matrix.

For a 𝑛 × 𝑛 matrix there are n Eigen values for the matrix. In

order to solve for priority vector using this method we must

calculate the Eigenvector corresponding to highest Eigen

value of the judgment matrix that is

Av=λ m ax v (10)

Where λ m ax is the highest Eigen value of the judgment

matrix

The next step is to test if the pair wise comparison matrix is

consistent this is achieved by calculating consistency index

(C.I).

C.I=
𝜆𝑚𝑎𝑥 −𝑛

𝑛−1
 (11)

Where 𝜆𝑚𝑎𝑥 is the highest Eigen value of the judgment matrix

and n is the number of rows or column.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

34

In accordance with Saaty [3] defined the matrix as consistent

when C.I<0.1 If C.I.>0.1.If C.I falls outside this range he

suggested an algorithm about repeating questions to correct

the matrix until it became consistent.

3.4.2 Normalization of the Row Sum (NRS)
NRS sums up the elements in each row and normalizes by

dividing each sum by the total of all the sums, thus the results

now add up to unity. NRS has the form:

𝒂𝒊
′= 𝒂𝒊𝒋

𝒏
𝒋=𝟏 𝑖 = 1,2 …𝑛 (12)

𝒘𝒊=
𝒂𝒊
′

 𝒂𝒊
′𝒏

𝒊=𝟏

𝑖 = 1,2 …𝑛 (13)

3.4.3 Arithmetic Mean of Normalized Columns

(AMNC)
AMNC was also called the Additive Normalization method in

[10]. The new name is relatively clear, in that it describes its

calculation process. Each element in A is divided by the sum

of each column in A, and then the mean of each row is taken

as the priority.

𝑎𝑖𝑗
,

=
𝑎𝑖𝑗

 𝑎𝑖𝑗
𝑛
𝑖=1

𝑗, 𝑖 = 1,2 …𝑛 (14)

𝑤𝑖=
1

𝑛
 𝑎𝑗

′𝑛
𝑖=1 𝑖 = 1,2 …𝑛 (15)

3.4.4 Normalization of Reciprocals of Column Sum

(NRCS)
NRCS takes the sum of the elements in each column, forms

the reciprocals of these sums, and then normalizes so that

these numbers add up to unity, e.g. to divide each reciprocal

by the sum of the reciprocals. It is in this form:

𝑎𝑗
𝑖=

1

 𝑎𝑖𝑗
𝑛
𝑗=1

1,2 …𝑛 (16)

𝑤𝑖=
𝑎𝑖

′

 𝑎𝑖
′𝑛

𝑖=1

𝑖 = 1,2. .𝑛 (17)

Without looking at the strength and weaknesses of each

methodology that is beyond the scope of this research the

thesis chooses to use Geometric Mean because of its

simplicity.

3.4.5 Geometric mean method
The geometric mean is computed as

𝑥𝑖= 𝑎𝑖𝑗

1

𝑛𝑛
𝑗=1 (18)

Where 𝑛 = 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡𝑠 and Element, 𝑎𝑖𝑗 in the

matrix is an estimate of the relative size of increment 𝑖 with

respect to increment j

This when computed for n rows for a matrix of 𝑛 × 𝑛 will

yield vector 𝑥 =

𝑥1

𝑥2
.
.
.

𝑥𝑛

 for the matrix in Table 5 we will

compute the values of vector 𝑥 as shown in equation (19-22)

𝑥𝑖= 1 × 𝑎𝑖𝑗 × 𝑎𝑖𝑘 × 𝑎𝑖𝑙
1

4 (19)

𝑥𝑗 =
1

𝑎𝑖𝑗
× 1 × 𝑎𝑗𝑘 × 𝑎𝑗𝑙

1

4
 (20)

𝑥𝑘=
1

𝑎𝑖𝑘
×

1

𝑎𝑗𝑘
× 1 × 𝑎𝑘𝑙

1

4
 (21)

𝑥𝑙=
1

𝑎𝑖𝑙
×

1

𝑎𝑗𝑙
×

1

𝑎𝑗𝑘
× 1

1

4
 (22)

This will yield a priority vector of𝑥 =

𝑥𝑖

𝑥𝑗
𝑥𝑘

𝑥𝑙

 3.5 Step 5: Factor in Historical analogy

It is at this point this research work proposes two adaptations

to the methodology to apply to the problem of software sizing

in incremental software development.

1. Case where there is only one historical analogy

(reference).

2. Case where more than two historical analogies
exist.

3.5.1 Case 1: One Historical Analogy
This is applicable when only one reference analogy exists i.e.

only one reference historical analogy for a given increment

can be found. The first step in this case is to calculate 𝑚

(multiplier) as shown

𝑚=
𝑠𝑖𝑧𝑒 𝑟𝑒𝑓

𝑥𝑟𝑒𝑓
 (23)

where ref is the increment which a historical reference exists

The next step is to calculate size of all increments using

𝑚 according to equation (24)

𝑠𝑖𝑧𝑒𝑖
𝑠𝑖𝑧𝑒𝑗
𝑠𝑖𝑧𝑒𝑘
𝑠𝑖𝑧𝑒𝑙

 =𝑚 × 𝑥 =

𝑚 × 𝑥𝑖

𝑚 × 𝑥𝑗
𝑚 × 𝑥𝑘

𝑚 × 𝑥𝑙

 (24)

3.5.2 Case 2: This occurs where more than two

historical analogies exist
When only one historical analogy exists it becomes easy to

compute the respective sizes of all increments. A

complication therefore arises when more than one historical

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

35

reference exists because any reference picked will yield

different estimate for a given increment .This work therefore

proposes the use of Beta distribution to solve this problem

In order to use Beta distribution we will need to have the

following values

1. Optimum estimate(OE)

2. Least likely estimate(LLE)

3. Expected estimate(ES)

Optimum estimate(OE)= the largest estimate for given

increment generated by a given historical analogy (reference)

this essentially means that the actual size of this increment is
expected not to exceed this estimate.

Least likely estimate=the smallest estimate for given

increment generated by given historical analogy (reference)

this implies that the actual size of this estimate is not expected
to go below this estimate.

Expected estimate= average of the estimates for given

increments lying between least likely estimate and most likely

estimate it essentially means that the actual size of the

increment has the highest probability of falling here.

In our earlier example lets now assume that references exist

for all the increments it is therefore required that we calculate

multiplier generated by each reference as shown in equation
(25-28).

For increment I the multiplier generated by its reference is

 𝑚=
𝑠𝑖𝑧𝑒 𝑟𝑒𝑓

𝑥𝑟𝑒𝑓
 (25)

For increment J the multiplier generated by its reference

is 𝑚𝑗=

𝑠𝑖𝑧𝑒 𝑗𝑟𝑒𝑓

𝑥𝑗
 (26)

For increments K the multiplier generated by its reference is

 𝑚𝑘=

𝑠𝑖𝑧𝑒 𝑘𝑟𝑒𝑓

𝑥𝑘
 (27)

For increments L the multiplier generated by its reference is

 𝑚𝑙=

𝑠𝑖𝑧𝑒 𝑙𝑟𝑒𝑓

𝑥𝑙
 (28)

 Each multiplier will yield different estimate for a given

increment and so the challenge will be to know which

estimate is the closest to the actual size of the increment. It is

for this reason that this thesis proposes the use of Beta

distribution to solve this problem. How to compute the
estimates are shown in Table 6.

Table 6: Estimates of each increment

Multiplier

used

Increment I

estimates

Increment J

estimates

Increment

K
estimates

Increment

L
estimates

 Estimate

1
𝑚𝑖 × 𝑥𝑖 𝑚𝑗 × 𝑥𝑖 𝑚𝑘 × 𝑥𝑖 𝑚𝑙 × 𝑥𝑖

Estimate 2 𝑚𝑖 × 𝑥𝑗 𝑚𝑗 × 𝑥𝑗 𝑚𝑘 × 𝑥𝑗 𝑚𝑙 × 𝑥𝑗

Estimate 3 𝑚𝑖 × 𝑥𝑘 𝑚𝑗 × 𝑥𝑘 𝑚𝑘 × 𝑥𝑘 𝑚𝑙 × 𝑥𝑘

Estimate 4 𝑚𝑖 × 𝑥𝑙 𝑚𝑗 × 𝑥𝑙 𝑚𝑘 × 𝑥𝑙 𝑚𝑘 × 𝑥𝑙

For each increment its size estimate are in its column .For

instance increment I its size estimates are

𝑚𝑖 × 𝑥𝑖

𝑚𝑖 × 𝑥𝑗
𝑚𝑖 × 𝑥𝑘

𝑚𝑖 × 𝑥𝑙

optimum estimate is picked as the highest estimate generated

from the column and the lowest estimate is picked as least

likely estimate, the expected estimate is taken as the average

of the estimates lying between optimum estimate and least

likely estimate because most weight tend to lie here. In the

table above let‟s take Increment I as our example and picking

𝑚𝑖 × 𝑥𝑖as the optimum estimate, 𝑚𝑖 × 𝑥𝑙 as the least

likely estimate then the expected estimate will be

Expected

estimate=
𝑠𝑢𝑚 𝑜𝑓𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑙𝑦𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑂𝐸 𝑎𝑛𝑑 𝐿𝐿𝐸

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑠 𝑙𝑦𝑖𝑛𝑔 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝐿𝐿𝐸 𝑎𝑛𝑑 𝑂𝐸

 (29)

In this case expected estimate is estimated as follows

ES=
𝑚 𝑖×𝑥𝑗 +𝑚 𝑖×𝑥𝑘

2
 (30)

Where LLE=𝑚𝑖 × 𝑥𝑖 and OE=𝑚𝑖 × 𝑥𝑙

Increment I size is therefore estimated as

 𝑠𝑖𝑧𝑒𝑖 =
𝑂𝐸+4𝐸𝑆+𝐿𝐿𝐸

6
 (31)

The size estimates of other increments are computed in the

same way. It is worth noting that the example used here has

only four different estimates for given increment this could be

more or less depending on number of increments to be

developed to deliver a system and the number of Historical

analogies (references available). A special case exist when

only two references exist and hence results in two estimates

for given Increment. If this scenario comes up the average of

the two estimates is taken the estimate of the increment.

3.6 Step 6: Calculate the total software size
At this point we have size estimates for all the increments and

the challenge therefore is to compute the size of the whole

software i.e. total size denoted here as 𝑠𝑖 .Because the total

software is being developed incrementally there is substantial

code that is written to glue the new increment to the already

developed increment. The term used for this in the COCOMO

models is breakage, because some of the existing code and

design has to be mended to fit in a new increment. This

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

36

research will refer to gluing code as incremental breakage

therefore the projected size of a given increment factoring in

the incremental breakage is estimated according to equation

(32)

𝑠𝑖=𝑠𝑖𝑧𝑒𝑖 + 𝑐𝑠𝑖𝑧𝑒𝑖−1 (32)

Where 𝑐𝑠𝑖𝑧𝑒𝑖−1 is the increment size with breakage code

factored in , 𝑠𝑖𝑧𝑒𝑖 is the initial increment size estimate

computed from reference analogy according to equation (31)

or beta distribution depending on the case that arises from step

5.The parameter c reflects the incremental breakage (or

overhead) associated with the previous increment which is

expressed in percentage. Kan asserted that 20% of the added

code in staged and incremental releases of a product goes into

changing the previous code [7]. Cusumano and Selby reported

that features may change by over 30% as a direct result of

learning during a single iteration [18]. In a recent paper the

authors argued that the incremental integration breakage can

be expected to lie in a range from 5% to 30%.. If c has a value

of 0.15, it corresponds to 15% breakage. In order to simplify

the discussion, it is assumed that all the code of 𝑠𝑖𝑧𝑒𝑖 is

developed from scratch i.e. no code reuse is not taken into

consideration the case of code reuse is beyond the scope of

this research. Therefore the total system size 𝑇𝑠 is computed

according to equation (33)

𝑇𝑠= 𝑠𝑖𝑧𝑒𝑖 + 𝑐 𝑠𝑖𝑧𝑒𝑛−1
𝑛
𝑖=1

𝑛
𝑖=1 for 𝓃 = 1,2 … . 𝑛 and 𝒾 =

1,2 … . 𝑛 (33)

Considering equation (32) equation (33) simplifies to

𝑇𝑆= 𝑠𝑖
𝑛
𝑖=𝑖 (34)

Where 𝑇𝑠 is the total software size,𝑠𝑖 is the net increment size

as defined in equation (34)

Compared to the LOC and Function point methodology ,the

pairwise framework has the advantage of combining both user

judgment, experience and historical analogy to generate size

estimates which are superior .The two methods only use user

experience neglecting the importance of historical analogy

which is useful in predicting size of future or current projects.

4.0 METHODOLOGY

4.1 Data and data collection form
The main focus of the research was to find out if the pairwise

comparison matrix framework produces superior size

estimates of a software compared to the currently popular

existing Putman‟s Loc estimation [12] and to prove if there is

any direct relationship between accuracy of the size estimates

produced by the model used in the estimation procedure and

the fact that software is delivered on time or not i.e. if

software project meets deadline. In order to accomplish these

objectives the following information was among the data

gathered

1. Language used to develop a software

2. Start and end date of the development of the

software

3. Number of developers allocated for the

software project

4. The estimation model used to estimate size

5. Size estimate generated by the model

6. The actual size of the software upon

completion

In order to capture all these and more information two

questionnaires were designed (The choice of the questionnaire

was appropriate because it allowed for the forms to be sent to

the project managers earlier which enabled them to familiarize

themselves with the content before an in person meeting was

conducted to guide them as they filled out the forms. Second

questionnaire was in form of a table to represent unfilled

matrix. Experts‟ filled the form according to their judgment

capturing relative sizes of different increments that were

developed to deliver the whole software. The use of more than

one expert was vital in checking consistency and have

platform for comparison.

 4.2 Data source
The source for the project data for this research was from

JJpeople firm which is Software firm that develops wide

range of softwares using JAVA and also serves training

ground for young software developers who are interested in

the same language. JJpeople has its offices in Vancouver,

London and its African branch in Nairobi. Use of this firm‟s

data conveyed several advantages to this research. First since

one of the main aims of this project is to establish the size of

the software the firm exclusive use of object oriented

language(JAVA) made the counting of lines of codes (LOC)

relatively easy. Secondly the firm develops wide range of

application making the data diverse this broadened the level

of interest in the results, as opposed to, say, a database

composed of only one type of application. The firm also

indicated that they have used incremental development in

some of their application therefore fitting well with this

research. The willingness of the management to provide data

and advice on the framework was also good for this research.

4.3 Data-Collection Procedure and project

attributes
For each of the projects, there was an in-person meeting with

the project manager who filled out the forms. There were two

main purposes to this labor intensive approach. The first goal

was to discuss each of the questions to ensure that it is well

understood and that each of the managers would answer

consistently. The second purpose was to impress upon the

managers the importance of their participation in this work.

Projects selected possessed two attributes: First, they were

small to medium in size. The average project size in this study

is just under 60 KSLOC .The project selected from the

database were also fairly recent with the oldest developed in

2003.All projects except project number eight had not used

any previous code i.e. there was no code reuse. Project

number eight was just selected because it was exclusively

developed incrementally therefore fitted well with this

research

 4.4 Data Analysis
The focus of this research was to check how close the size

estimates generated by the pairwise size estimation

framework were close to the actual size. Therefore an error

analysis was done to check how the size estimates from the

pairwise estimation framework deviates from the actual size.

The focus therefore was on the degree to which the pairwise

framework model‟s estimated size (matches the

actual size (). If the models were perfect, then for

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

37

every project = clearly, this was rarely, if

ever, the case. A simple analysis approach was to look at the

difference between and . The problem

with this absolute error approach was that the importance of

the size of the error varied with project size. For example, on

an 80KLOC, an absolute error of 10KLOC seemed likely to

cause serious project disruption in terms of staffing, whereas

the same error on a 1000KLOC project seemed much less of a

problem. In light of this, Boehm [13] and others have

recommended a percentage error test, as follows:

PercentageError= (36)

This test eliminated the problem caused by project size and

better reflected the impact of any error. However, the analysis

in this research concentrated on the pairwise comparison

framework estimates‟ average performance over the entire set

of projects. Errors were of two types: underestimates, where

 < ; and overestimates, where >

 . Both of these errors can have serious impacts on

projects. Large underestimates will cause the project to be

understaffed, and as the deadline approaches, project

management will be tempted to add new staff members. These

results in a Phenomenon known as Brooks‟ law: “Adding

manpower to a late software project makes it later” [14].

Otherwise productive staffs are assigned to teaching the new

team members, and with this, cost and schedule goals slip

even further. Overestimates can also be costly in that staff

members, noting the project slack, become less productive

(Parkinson‟s Law: “Work expands to fill the time available

for its completion”) or add so-called “gold plating,” defined as

additional systems features that are not required by the user

[13].

In light of the seriousness of both types of errors,

overestimates and underestimates, Conte et al. [8] have

suggested a magnitude of relative error, or MRE test, as

follows:

MRE= (35)

Where N is the number of projects used in this research

By means of this test, the two types of errors do not cancel

each other out when an average of multiple errors is taken,

and therefore was used as the test in this research. Graphs

were drawn to give good pictorial comparison between the

actual size and the estimates from pairwise framework using

EXCEL

5. RESULTS AND DISCUSSION

5.1 Project attributes
Projects selected possessed two attributes: First, they were

small to medium in size. The average project size in this study

is just under 600 SLOC .The project selected from the

database were also fairly recent with the oldest developed in

2001.All projects except project number eight had not used

any previous code i.e. there was no code reuse. Project

number eight was just selected because it was exclusively

developed incrementally therefore fitted well with this

research.

Table 7 below compares the actual size of the softwares and

the estimates generated by pairwise methodologies. The focus

of this research is on the degree to which the pairwise

comparison methodology estimates compare to the actual size.

Table 7 Showing error margin between actual size and

estimates from pairwise methodology

Projec

t No

Actual

size

(KLOC

)

Estimate of

Pairwise

methodolog

y (KLOC)

Absolut

e error

margin

(KLOC

)

%

error MRE

1 42.1 39.64 2.46 4.75 0.0475

2 72.12 69.49 2.63 3.65 0.0365

3 29.52 28.23 1.29 3.01 0.0301

4 42.82 43.11 0.29 0.68 0.0068

5 16.73 17.22 0.49 2.93 0.0293

6 196.22 196.41 0.19 0.09

7

0.0009

7

7 67.31 70.10 2.79 4.15 0.0415

8 52.76 49.44 3.32 6.29 0.0629

9 46.92 47.01 0.09 0.19 0.0019

10 37.54 38.09 0.55 1.47 0.0147

11 14.723 13.967 0.756 5.13 0.0513

12 24.666 24.061 0.605 2.45

3

0.0245

3

13 30.464 29.000 1.464 4.80

6

0.0480

6

14 109.65

9

109.410 0.249 0.22

7

0.0022

7

Mean

(𝑋)

55.968 55.36986

If the estimates match the actual size perfectly then error

margin was zero clearly this was not the case in any of the

projects in table 7 .The error margin was computed to check

the deviation of the pairwise size estimate methodology from

the actual value. Errors were of two types: underestimates,

Where pairwise estimates actual size and overestimates,

where pairwise estimates > actual size. Both of these errors

can have serious impacts on projects. Large underestimates

has serious impacts on projects. Large underestimates will

cause the project to be understaffed, and as the deadline

approaches, project management will be tempted to add new

staff members. These results in a phenomenon known as

Brook‟s law: “Adding manpower to a late software project

makes it later” [6]. Otherwise productive staff is assigned to

teaching the new team members, and with this, cost and

schedule goals slip even further. Overestimates can also be

costly in that staff members, noting the project slack, become

less productive (Parkinson‟s Law: “Work expands to fill the

time available for its completion”) or add so-called “gold

plating,” defined as additional systems features that are not

required by the user [5]. In light of the seriousness of both

types of errors, overestimates and underestimates, Conte et al.

[8] have suggested a magnitude of relative error, or MRE

MRE=

By means of this test, the two types of errors do not cancel

each other out when an average of multiple errors is taken,

and therefore was taken as the test used in this analysis.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

38

This test eliminates the problem caused by project size and

better reflects the impact of any error .From the error margin

it was noted that percentage error ranged 6.29 to 0.097 which

corresponds to MRE of 0.063 and 0.00097 respectively. It can

also be noted that as the project get bigger the methodology

tend to generate more accurate results. From the results shown

in the table 7 it is clearly depicted that with real experience

from the developer the estimates developed by pairwise

methodology can result in more accurate estimates especially

in large projects which are associated more with massive risk

as compared to relatively smaller risks.

The respective means of actual size and estimates computed

from pairwise comparison methodology were computed as

shown in table 7 and the difference in their mean is 0.59814

representing 1.07% error in the estimates generated by

pairwise methodology. This clearly shows that the method

generates close estimates that can be relied upon by software

managers in making major decisions prior to embarking on

the process of software development

The values of the actual size of the projects, the size estimates

generated by the pairwise comparison methodology and the

error margin is shown in the bar chart below in order to give a

clear impression of how the estimates are close. As clearly

depicted in the bar chart in figure 2 the estimates generated by

pairwise methodology and the actual size are so close. The

error margin is also shown in the bar chart to give a clear

impression of how close the estimates are to the actual value.

Figure 2: Bar chart showing comparison of actual size,

estimates by pairwise methodology and error margin.

Putman‟s methodology of Loc estimation was also used to

estimate the size of the fourteen projects and the results are

shown in table 8.

Table 8 Comparing actual size versus estimates from

Putman’s methodology

Project

No

Actual

size

(KLOC

)

Estimate of

Putman‟s

methodolog

y (KLOC)

Absolut

e error

margin

(KLOC

)

%

error

MR

E

1 42.1 45.89 3.79 9.00

2 72.12 76.87 4.75 6.59

3 29.52 32.66 3.14 10.6

4

4 42.82 45.45 2.63 6.14

5 16.73 16.00 0.73 4.36

6 196.22 200.43 4.21 2.15

7 67.31 69.04 1.73 2.57

8 52.76 50.99 1.77 3.35

9 46.92 50.01 3.09 6.59

10 37.54 38.99 1.45 3.86

11 14.723 14.900 0.177 1.20

12 24.666 27.000 2.334 9.46

13 30.464 34.010 3.546 11.6

4

14 109.65

9

115.879 6.22 5.67

MEAN

(

55.968 58.43707

The error margin was computed to check the deviation of the

estimates generated by the Putman‟s methodology from the

actual size. From the error margin it was noted that percentage

error ranged 11.64 to 1.20 with 11.64 being the highest error

percentage in deviation of the estimate from the actual size.

In order to show clearly how the estimates deviate from the

actual size a calculation of mean is computed in table 8 and

the difference in the mean is 2.46907 which represent 4.41%.

Error in the deviation is shown

The values of the actual size of the projects, the size estimates

generated by the Putman‟s methodology and the error margin

is shown in the bar chart in figure 3 in order to give a clear

impression of how the estimates compare to the actual size.

Figure 3: Bar chart showing comparison of actual size,

estimates by pairwise methodology and error margin.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

39

6. CONCLUSION
Compared to Putman‟s methodology the pairwise

methodology was superior in generating estimates of size in

incremental development of software. As noted in table 7

deviation of the mean of estimates generated by pairwise

comparison methodology deviated from the actual size by

1.07% while those of Putman‟s methodology deviated

by4.41% this therefore confirms the superiority of the

pairwise methodology. The table 9 and bar chart 4 shows the

pairwise error margin as compared to those of Putman‟s

methodology

Table 9: comparison of error margins

Project number Error

margin

(Putman‟s

method)

Error margin (pairwise

method)

1 3.79 2.46

2 4.75 2.63

3 3.14 1.29

4 2.63 0.29

5 0.73 0.49

6 4.21 0.19

7 1.73 2.79

8 1.77 3.32

9 3.09 0.09

10 1.45 0.55

11 0.177 0.756

12 2.334 0.605

13 3.546 1.464

14 6.22 0.249

Figure 4: Bar chart comparing error margins generated

by the two methods

7. ACKNOWLEDGMENTS
The authors would like to thank Dr Stephen Kimani and

Calvins Otieno for their contribution to the ideas and
proofreading of this paper.

8. REFERENCES
[1] Dalcher, D.: „Falling down is part of growing up; the

study of failure and the software engineering

community‟. Proc. 7th SEI Education in Software

Engineering Conf., San Antonio, Texas (Springer-

Verlag, New York, 1994), pp. 489–496 [6]Lambert, J.

“A Software Sizing Model,” Journal of Parametrics,

Vol. Vi, 1986, pp75-87.

[2] Standish Group. 2000. „Chaos 2000‟ (Standish, Dennis,

Mass, 2000)

[3] Saaty, T. “A Scaling method for Priorities in a

Hierarchical Structure”. .J. Math. Psychology Vol. 15

1977, p 234-281.

[4] Zahedi, F., The Analytic Hierarchy Process- A Survey of

the Method and its Application. Interfaces, 1986. 16: p.

96-108.

[5] Saaty, T. The Analytic Hierarchy Process, McGraw-Hill,

New York, NY: 1980.

[6] Bozoki, G. “Software Size Estimator (SSE),” Centre

National d'Etudes Spatiales (CNES), Toulouse, France,

June 1986.

[7] Miranda, E. “Improving Subjective Estimates Using

Paired Comparisons,” IEEE Software, Jan/Feb

2001.Proceedings of the 10th International Symposium

on Software Metrics (METRICS‟04) Saaty, T. “A

Scaling method for Priorities in a Hierarchical

Structure”. .J. Math. Psychology Vol. 15 1977, p 234-

281.

[8] Benediktsson, O., and Dalcher, D.: „Effort estimation in

incremental software development‟, IEE Proc., Softw.,

2003, 150, (6), pp. 351–357

[9] A.J. Albrecht and J. Gaffney, “Software function, source

lines of code, and development effort prediction: A

software science validation”, IEEE Transactions on

Software Engineering, Vo1.9, No.6, pp.639-648,

Nov.1983.

[10] Calibrating function point backfiring conversion ratios

using neuro-fuzzy technique Justin wong, Danny ho,

Luiz fernando capretz.

IJCATM : www.ijcaonline.org

