
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

25

A Study on Detection of Anti-Patterns in Object-Oriented

Systems

Harvinder Kaur

University Institute of Engineering & Technology
Panjab University

Chandigarh

Puneet Jai Kaur
University Institute of Engineering & Technology

Panjab University
Chandigarh

ABSTRACT

Software quality is an important issue in the development of

software systems. The extent to which the software possesses

a desired set of quality attributes such as testability,

performance, maintainability, and manageability indicates the

success of the design and the overall quality of the software

system. These attributes are adversely affected by anti-

patterns. These design smells, the symptoms of code smells,

are introduced during software development that constrains

the evolution of system by making it difficult for engineers to

bring changes. Researchers and practitioners put a great effort

to detect these anti-patterns to reduce costs, effort and

resources. Their detection is important because it allows

refactoring or removing them from systems. Consequently, it

improves software quality and usability. This paper discusses

various manual, semi-automated and SVM based anti-pattern

detection techniques for object-oriented systems, so that

researchers can get a clear and concise view about them. The

limitations and advantages (over previous approaches) of

some detection techniques are also compared in this paper.

Keywords

Designs Smells, Code Smells, Anti-pattern, Maintainability,

Testing, Detection Techniques.

1. INTRODUCTION
Software testability is a significant attribute of software

quality that facilitates testing activities and reduces testing

effort and cost. The importance of software quality lies in the

complexity and popularity of the software systems. Anti-

patterns negatively affect the testability and hence quality of

the object-oriented systems (Brown et al [1]). Anti-pattern

classes require much greater testability effort than non anti-

pattern classes. Their early detection and correction is

necessary to comfort the development and maintenance

process.

An anti-pattern is a generally used, but largely ineffective

solution to a problem. We can also call them design smells.

These “poor solutions” disrupt the development and

maintenance activities by increasing the difficulty to

understand the source code. The reasons of introducing these

design smells during development include: time pressure, lack

of understanding, communication, and skills. It is important to

detect the occurrence of code smells because they are

indicators of possible presence of design smells. In order to

improve the quality and maintenance costs, anti-patterns

should be detected first.

Organization of Paper: The paper is organized as: Section 2

describes the background of anti-patterns and the problems

related to them. Section 3 provides a concise description of

various anti-pattern detection approaches. Limitations and

advantages of some currently used techniques for detecting

design smells are compared. Section 4 concludes the paper.

2. BACKGROUND

2.1 Problems with Anti-pattern

approaches
Dhambri et al. [2] communicate six problems which must be

taken care of for an anti-pattern detection technique to be

efficient. These problems are concerned with:

 Unconfined specifications of anti-patterns.

 The trends of evolution.

 Efforts required by the quality analysts to retrieve,

Organize, and use the detected candidate anti-patterns.

We now revise and describe these problems.

Problem 1: Uncertainty of making the decision that whether

the participant classes exist as real anti-patterns or not. Non

anti-pattern classes may show all the symptoms of an anti-

pattern class. The analysts’ interference is significant to

validate the results of detection due to ambiguous process of

detection. Therefore, a detection technique should address the

issue.

Problem 2: Inadequacy of listing a large set of candidates. A

detection technique can be discarded due to the results

containing a lot of false positives. The purpose of a detection

technique is to allow the quality analyst for a manual

assessment. Therefore, a list of the candidates of a detection

approach should be made available.

Problem 3: Complexity of considering the opinion of a

quality analyst. Given a certain set of symptoms, a design,

which is interpreted as good or poor by the quality analysts’,

depends on their background and contextual knowledge.

Problem 4: Need to consider the detection framework. Some

design fundamentals may be violated by the classes which are

supposed to be “good” by many quality analysts in a given

environment .An organisation or application domain can be

the examples of the context.

Problem 5: Significance of using thresholds to deal with

quantitative data. Different values may be explained in a

different way by quality analysts’, given their different
backgrounds, even if there are consents on utmost values.

Problem 6: Trouble of improving and using semantic data.

Some anti-pattern’s symptoms like, a class accomplishing a

single action, involves semantic data. An example of such an

anti-pattern is Functional Decomposition. Semantic data

should be taken into consideration by an automated detection

technique.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

26

3. ANTI-PATTERN DETECTION

APPROACHES

3.1 Manual Techniques
Travassos et al. [3] introduced a technique to identify design

smells considering manual review and reading techniques.

Only manual inspection is done which does not comprise

specification of smells. This technique is not automated and

cannot be applied to broad systems. They ignore cases 1,3,4,6

due to analyst supervision throughout the detection process,

but come across cases 2,5.

Marinescu [4] proposed a metric-based approach with

detection techniques, executed in the IPLASMA tool, to

detect design smells. To obtain 10 relevant anti-patterns, 10

detection techniques were illustrated. This approach has two

shortcomings: a) requires vast knowledge of metric-based

rules to successfully detect an anti-pattern. b) different

threshold values result into distinct outcomes.

Likewise, Munro [5] presented metric-based heuristics to

detect anti-patterns. He also proposed a template to

characterize code smells systematically to overcome the

limitation of text-based descriptions. The template includes

three portions: name of code smell, text-based descriptions of

its attributes, and heuristics to detect them. To describe the

choice of metrics and thresholds to detect code smells, he

performed an empirical study. The work presented by

Marinescu [4] and Munro [5] only addressed cases 5, 6. It

does not deal with the uncertainty, case 1.They lack any

ranked lists of candidates, case 2.Their approaches does not

support any of these cases: 1) Context of the programs. 2)

Quality analysts’ interpretation, case 3 and 4.

Alikacem and Sahraoui [6] presented an ad hoc domain

specific language (DSL) that allows the specification of

fuzzy-logic rules to express the thresholds of rules conditions.

This language detects the defiance of quality principles and

smells in object-oriented systems. The author did not verify

their approach on real program and only addresses case 5.

To study legacy code, Ciupke [7] introduced a technique

which specifies design problems as queries. He located the

occurrences of these problems in a model derived from the

source code. Table 1 represents the problems addressed by

manual approaches.

3.2 Semi-automated Techniques
Dhambri et al. [2] (Manual approach) and Simon et al. [8]

proposed some visualisation techniques to determine a trade-

off between manual inspections (time-consuming and non-

representative) and fully automated approaches (systematic

and productive).They did not address cases 1,2.

Lanza and Marinescu [9] and van Emden and Moonen [10]

presented approaches to perform fully automatic detection

that do not deal with uncertainty and long lists, cases 1 and

2.Their approaches use visualisation techniques to show the

results of detection. They do not take into account quality

analysts’ interpretation and thresholds, cases 3 and 4.

Rao and Reddy [11] came up with the use of design

propagation probability matrices (DCPP matrix).They made

use of change propagation between the design of artifacts to

define Shotgun Surgery and Divergent Change anti-patterns.

Their matrix model the uncertainty of the detection technique.

It considers neither quality analysts’ interpretation, nor the

context of systems, cases 3 and 4 respectively. It compares

candidates to fixed templates characterizing the anti-patterns

and does not use thresholds, case 2. Semantic data is not used,

case 6 and cannot report ranked lists, case 5.

Moha et al. [12] introduced a DSL based on set of rules

(metrics, relation between classes) that describes the character

of each anti-pattern. They defined a platform for automatic

conversion of rule cards into detection algorithms and also

proposed some algorithms [13]. All the available occurrences

of well-known anti-patterns like Blob, Functional

Decomposition, Spaghetti Code, and Swiss Army were

identified with the result of 100% recall and precision

between 41% and 88% with the average of 60%.Their

detection approach confronted cases 4, 5, 6 but does not

manage the uncertainty for the solution, case 1. It was not

concerned with ranked list of candidates, case 2, and quality

analysts’ interpretations is not supported , case 3.

Khomh et al. [14] proposed BDTEX (Bayesian Detection

Expert), a Goal Question Metric (GQM) based approach. This

Problems

Manual Approaches

Travassos et

al.

(1999)

Marinescu

(2004)

Munro

(2005)

Alikacem &

Sahraoui

(2006)

Dhambri et.

al

(2008)

Ciupke

(2010)

Problem 1 Y

Problem 2

Problem 3 Y Y Y

Problem 4 Y Y Y

Problem 5 Y Y Y Y

Problem 6 Y Y Y Y

Table 1.Summarizes the problems addressed by some Manual Techniques

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

27

Table 2. Summarizes the problems addressed by some Semi-automated Techniques.

technique of detection takes into account anti-pattern

definitions to build Bayesian Belief Networks (BBNs).It is

highly uncertain to discover the occurrence of an anti-pattern.

The outcome of BBNs is the probability that a class is an anti-

pattern or not which addresses case 1. These probabilities

allow the quality analysts’ to rank the classes with respect to

their probabilities.

Therefore, case 2 is also taken care of. It takes into account

the judgement of quality analysts’ when data is not available

or need to standardize to some other context, case 3. The

previous results, which are obtained in context of a given

module and verified by a quality analyst, can be used to

instruct a BBN.

Consequently, BBNs avoid cases 3, 4, and 5. Table 2

represents the problems addressed by various semi-automated

approaches.

Problems

Semi-automated Approaches

Simon et

al.

(2001)

van Emden &

Moonen

(2002)

Lanza &

Marinescu

(2006)

Rao and

Reddy

(2008)

Moha

(2010b)

F.Khomh et

al.

(2011)

Problem 1 Y Y

Problem 2 Y

Problem 3 Y

Problem 4 Y Y Y

Problem 5 Y Y Y Y Y

Problem 6 Y Y

Techniques Limitations Advantages over previous approaches

DETEX

(DECOR) [12]

 Low precision & recall rate when

implemented on subgroups of the system

 Rule-based

 Excessive number of faulty positives visible

 Unranked outcomes

 an accomplished routine with a description

language

 a clear detection programme

 verification of the technique for detection

 thorough processing of technique

BDTEX [14]

 only provides a possibility that a class exists as

an anti-pattern

 Involves huge extent of unpredictability

 Outcomes were ranked.

 Operate in case of omitted data.

 Allows quality analysts’ to use their knowledge.

 Present better precision, recall, and utility (by

quality analysts) than DECOR.

SMURF [15]

 To instruct the classifier, it demands tagged

data.

 Incremental

 Both inter and intra system applicability.

 Allows users feedback

 Good precision and recall in comparison to

BDTEX and DETEX.

 Users feedback enhances SMURF efficiency

Table 3. Compares limitations and advantages of some anti-pattern detection techniques

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 5, May 2014

28

3.3 SVM based Techniques
Maiga et.al [15] also proposed SMURF. This approach also

uses a machine learning technique (SVM) using polynomial

kernel as a basis for detection, but it takes into account the

practitioners’ feedback. SMURF is designed to work on both

inter and intra system configurations. It results in a better

precision and recall for both the system as a whole or

subsystems. This approach is incremental and reveals that the

efficiency of this technique can be improved by taking into

account practitioners’ feedback. Table 3 compares the

limitations and advantages of some detection techniques.

4. CONCLUSION
The presence of design smells adversely affects the evolution

of object-oriented systems. To improve the software

testability and quality, anti-pattern detection is important.

From the study on anti-pattern detection techniques, this paper

concludes that the current state-of-art SMURF is the most

accurate technique for detecting design smells till now [15]. In

comparison to previous manual and semi-automated

approaches (DETEX and BDTEX) for anti-pattern detection,

SMURF has a much better precision and recall as it

overcomes all the limitations of previous approaches.

5. REFERENCES
[1] Brown, W. J., Malveau, R. C., Brown , W. H.,

McCormick III , H. W., Mowbray, T. J. 1998.

AntiPatterns: Refactoring Software, Architectures, and

Projects in Crisis.1st ed. John Wiley and Sons.

[2] Dhambri, K., Sahraoui, H., Poulin, P. 2008. Visual

detection of design anomalies. In Proceedings of the 12th

European Conference on Software Maintenance and

Reengineering.IEEE Computer Society, pp. 279–283.

[3] Travassos, G., Shull, F., Fredericks , M., Basili , V. R.

1999.Detecting defects in object-oriented designs: using

reading techniques to increase software quality. In

Proceedings of the 14th Conference on Object-Oriented

Programming, Systems, Languages, and

Applications.ACM Press,pp. 47–56.

[4] Marinescu, R. 2004. Detection strategies: metrics-based

rules for detecting design flaws.In Proceedings of the

20th International Conference on Software

Maintenance.IEEE Computer Society Press, pp. 350–

359.

[5] Munro, M. J. 2005. Product metrics for automatic

identification of “bad smell” design problems in java

source-code.In Proceedings of the 11th International

Software Metrics Symposium.IEEE Computer Society

Press, pp.15.

[6] Alikacem, E., Sahraoui, H.Détection d'anomalies

utilisant un langage de description de règle de qualité.In:

Rousseau, R., Urtado, C., Vauttier, S. (Eds.), actes du

12e colloque Langages, Modèles, Objets. Hermès

Science Publications, pp. 185–200.

[7] Ciupke, O. 1999. Automatic detection of design

problems in object-oriented reengineering. In Proceeding

of 30th Conference on Technology of Object-Oriented

Languages and Systems. IEEE Computer Society Press,

pp. 18–32.

[8] Simon, F., Steinbrückner, F., Lewerentz, C. 2001.

Metrics based refactoring.In Proceedings of the Fifth

European Conference on Software Maintenance and

Reengineering (CSMR’01). IEEE Computer Society , pp.

30-38.

[9] Lanza, M., Marinescu, R. 2006.Object-Oriented Metrics

in Practice. Springer Berlin Heidelberg,

[10] van Emden, E., Moonen, L. 2002. Java quality assurance

by detecting code smells,In Proceedings of the 9th

Working Conference on Reverse Engineering

(WCRE’02).IEEE Computer Society Press.

[11] Rao, A. A., Reddy, K. N. 2008. Detecting bad smells in

object oriented design using design change propagation

probability matrix.In Proceedings of the International

MultiConference of Engineers and Computer Scientists.

[12] Moha, N., Guéhéneuc, Y. -G., Duchien, L., Meur, A. -F.

L. 2010. DECOR: a method for the specification and

detection of code and design smells. IEEE Transactions

on Software Engineering(2010a), vol. 36, no.1, pp. 20–

36.

[13] Moha, N., Guéhéneuc, Y. -G., Meur, A. -F. L., Duchien,

L., Tiberghien, A. 2010. From a domain analysis to the

specification and detection of code and design smells.

Formal Aspects of Computing (FAC), vol. 22, no. 3-4,

2010b, pp. 345-361.

[14] Khomh, F., Vaucher, S., Gu´eh´eneuc, Y. -G., Sahraoui,

H. 2011. Bdtex: A gqm-based bayesian approach for the

detection of antipatterns. J. Syst. Softw., vol. 84, no. 4,

pp. 559–572.

[15] Maiga, A. et al. 2012. SMURF: a SVM based

incremental anti-pattern detection approach.In

Proceedings of the 19th Working Conference on Reverse

Engineering (WCRE). IEEE Computer Society Press.

IJCATM : www.ijcaonline.org

