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ABSTRACT 

Digital filter is mathematical algorithm that operates on 

discrete time signals. Different optimization algorithms can be 

utilized to determine the impulse response of coefficient of 

such a filter. Optimization problems for the design of digital 

filters are often complex, highly nonlinear, and multimodal in 

nature. The problems usually exhibit many local minima. 

Ideally, the optimization method should lead to the global 

optimum of the objective function with minimum amount of 

computation. Classical optimization methods are generally 

fast and efficient, and have been found to work reasonably 

well for the design of digital filters. These methods are very 

good in locating local minima. Therefore, they tend to locate 

minima in the locale of the initialization point. In recent years, 

a variety of algorithms have been proposed for global 

optimization including stochastic or heuristic algorithms; one 

such technique is Differential Evolution (DE). This paper 

presents an efficient DE based optimization technique for 

designing digital IIR filter by solving constrained 

multivariable optimization problem, to optimize the 

magnitude response of digital filters employing stability 

constraints using DE with opposition based strategy. 

Keywords 

IIR Filter design, magnitude error (norm approximation 

error), Differential evolution Algorithm. 

1. INTRODUCTION 
Digital filter design is always an important issue in digital 

signal processing. Digital filter can be designed by using the 

values of the past outputs and present inputs, an operation 

brought about by convolution. If such a filter is subjected to 

an impulse then its output need not necessarily become zero. 

The impulse response of such a filter can be infinite in 

duration. This indicates that system is prone to feedback and 

instability. In digital IIR filter design, there are principally two 

approaches [14], namely:  

 Transformation approach  

 Optimization approach.  

The   approach to the design of digital IIR filter involves the 

transformation of an analog filter into a digital filter at a given 

set of prescribed specifications. In general, a bilinear 

transformation or impulse invariance is adopted in the 

transformation approach [1]. Impulse invariance procedure 

involve the choosing the response of the digital filter as an 

equispaced sampled version of the analog filter various steps 

involved in designing analog filter from impulse invariance 

are 

 Decide upon the desired frequency response 

 Design an appropriate analog filter 

 Calculate the Impulse response of this filter 

 Sample the value of analog filter impulse response  

 Use the result as a filter coefficients 

The Bilinear transformation is a mathematical relation by 

which an s- domain equation is converted directly in to the z- 

domain.  

But the performance of digital IIR filter designed by using the 

transformation approach is not up to the mark in most cases. 

In the optimization approach, with some criteria, various 

optimization methods have been proposed to obtain optimal 

filter performances to some extent, where the norm-error, 

mean-square-error, and ripple magnitudes (tolerances) of both 

pass band and stop band are usually used as criteria to 

measure the performance of the designed digital IIR 

filter[7,6.4. For the design of a digital IIR filter, the following 

constraints need to be strictly imposed in order that the overall 

design criteria are met in a satisfactory fashion:  

 Determination of the lowest filter order. 

 Filter stability. 

 Fulfillment of the tolerance settings that are determined 

by minimizing the ripple magnitudes of both pass band 

and stop band in the optimization procedure. 

These constraints always pose great difficulty in the process 

of optimization. So, it is very necessary to develop efficient 

optimization algorithms to deal with digital IIR filter design 

problems. 

2. PROBLEM STATEMENT  
Digital filter design problem involves the determination of a 

set of filter coefficients which meet performance 

specifications such as pass-band width and corresponding 

gain, width of the stop-band and attenuation, band edge 

frequencies and tolerable peak ripple in the pass band and 

stop-band. The transfer function of IIR is represented by 

cascading first and second order sections to avoid the 

coefficient quantization problem which causes instability [4, 

8]. In cascade realization coefficient range is limited. The 

structure of cascading type digital IIR filter is shown in (2.1): 

  
2

2
1 1

( )

( )

M N
j ji

i j ji j

q p z za z
H z A

b z s r z
 

  
  

   
          (2.1) 

where, , , , ,i i j j ja b q r s are filter coefficient 

V is the number of filter coefficients (V =1+ 2 4 )M N  
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Substitute
jz e   in above (2.1) 
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 
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   

                                                    (2.2) 

Euler’s identities are given below 

cos sinje j                                                 (2.3) 

cos sinje j                                                         (2.4) 

(2.2) is rewritten below considering (2.3) and (2.4) becomes  
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    (2.5) 

Rewriting above (2.5) 
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(2.6) 

Magnitude of transfer function is obtained as: 

 
   

   

   

   

2 2

2 2
1

2 2

2 2
1

1 cos sin

1 cos sin

1 cos cos 2 sin sin 2

1 cos cos 2 sin sin 2

M
i i

i i i

N
j j j j

j
j j j j

a a
H z A

b b

p r q p q

r s r s

 

 

   

   





 
 

 

   

   





   

(2.7)  

Magnitude of transfer function on simplification is rewritten 

as 

 
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(2.8) 

where, n
K




                                                                 (2.9) 

Order of filter is given by 2O M N  , where M and N are 

first order and second order poles and zero. In the IIR filter, 

the coefficients are optimized such that the approximation 

error function for magnitude is to be minimized. The 

magnitude response is specified at K equally spaced discrete 

frequency points in pass-band and stop-band. ( )e x Denotes 

the absolute error and is defined as below: 

0

( ) ( ) ( )

K

d i

n

e x H H 



 
                                       

(2.10)
 

Desired magnitude response,  d iH   of IIR filter is given 

as: 

1, ; passband
( )

0, ; stopband

i
d i

i

for
H

for







 


                                                             

(2.11)  

The ripple magnitudes of pass-band and stop-band are given 

by 1( )x and 2 ( ),x  respectively [2]. Ripple magnitudes are 

defined as: 

   1( ) max ( , ) min ( , )

; passband

i i

i

x H x H x

ii

  




 



                          

(2.12) 

and 

 2 ( ) max ( , ) ; stopbandi ix H x

i

  


                                                   

(2.13) 

Stability constraints are included in the design of casual 

recursive filters, which are obtained by using the Jury method 

[5]. The multivariable constrained optimization problem is 

stated as below: 

Minimize ( ) ( )f x e x                                                    (2.14) 

Subject to the stability constraints:- 

1 0 ( 1,2,...., )ib i M                                              (2.15) 

1 0 ( 1,2,...., )ib i M                                               (2.16) 

1 0 ( 1,2,...., )js j N                                               (2.17) 

1 0 ( 1,2,...., )j jr s j N                                       (2.18) 

1 0 ( 1,2,...., )j jr s j N                                        (2.19) 

Scalar constrained optimization problem is converted in to 

unconstrained multivariable optimization problem using 

penalty method. Augmented function is defined as in (2.20) 

 ( ) ( ) termA x e x r P                                                    (2.20) 

where, 
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P b b s
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 

   (2.21) 

with r is a penalty parameter having large value.  

Bracket function for constraint is given by. (2.21) is given 

below:- 
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                      (2.22) 

Similarly bracket functions for other constraints given by 

(2.22) are taken 

3. DIFFERENTIAL EVOLUTION 

APPROACH FOR DESIGN OF IIR 

DIGITAL FILTERS 
DE is a population-based stochastic function minimizes 

relating to evolutionary computation, whose simple features 

make it very attractive for numerical optimization[8]. DE uses 

a rather greedy and less stochastic approach to problem 

solving than do evolutionary algorithms. DE combines simple 

arithmetical operators with the classical operators of 

recombination, mutation, and selection to evolve from a 

randomly generated starting population to a final solution. 

The DE algorithm was first introduced by Storn and Price in 

1995 and was successfully applied in the optimization of 

some well-known nonlinear, non-differentiable, and non-

convex functions by Storn [3]. The different variants of DE 

are classified using the following notation: DE/z/y/x, where z 

indicates the method for selecting the parent chromosome that 

will form the base of the mutated vector, y indicates the 

number of difference vectors used to perturb the base 

chromosome, and x indicates the recombination mechanism 

used to create the offspring population. The bin acronym 

indicates that the recombination is controlled by a series of 

independent binomial experiments. The fundamental idea 

behind DE is a scheme whereby it generates the trial 

parameter vectors. In each step, the DE mutates vectors by 

adding weighted, random vector differentials to them. If the 

cost of the trial vector is better than that of the target, the trial 

vector replaces the target vector in the next generation [11, 12, 

13]. The variant implemented here was the DE/rand/3/bin, 

which involved the following steps and procedures [3].  

3.1 Parameter setup 
The user must choose the key parameters that control the 

Differential Evolution, i.e. population size (L), boundary 

constraints of optimization variables (V), mutation 

factor ( )mf , crossover rate (CR), and the stopping criterion of 

maximum number of iterations (generations) tmax.  

The set of filter coefficients (X) of IIR digital filter is 

represented as the population. For a system with V generators, 

the population is represented as a vector of length V. If there 

are L members in the population, the complete population is 

represented as a matrix as below: 

11 12 1

21 22 2

1 2

.. ..

.. ..

Population . . .. .

. . .. .. .

.. ..

t t t
V

t t t
V

t
ij

t t t
L L LV

x x x

x x x

x

x x x

 
 
 
 

  
 
 
 
 

 

where, 
t
ijx the jth element of V is set of committed decision 

variables giving ith individual of a population. In other words 

it represents the filter coefficients of IIR digital filter j of the 

possible solution i. Further,
 1 2, , ...,

T
t t t t
i i i iVX x x x 

 
stands 

for the position of the ith individual of a population of real 

valued V -dimensional vectors;  

3.2  Initialization of an individual 

population 

Set generation t = 0. Initialize a population 
t
ijx  ( j =1, 2, …, 

V; i = 1, 2, ..., L) individuals (real valued V-dimensional 

solution vectors) with random values generated according to a 

uniform probability distribution in the V-dimensional problem 

space. Initialize the entire solution vector population within 

the given upper and lower limits of the search space.  

min max min()( )t
ij i i ix x rand x x  

 
(j =1, 2, …, V;  i =1, 2, …, L)                                       (3.1.27) 

where, 
min
jx  and 

max
jx are lower and upper limits of filter 

coefficients. 

3.3  Opposition-based learning: a 

concept 

Evolutionary optimizations methods start with some initial 

solutions (initial population) and try to improve them toward 

some optimal solution(s). The process of searching terminates 

when some predefined criteria are satisfied. In the absence of 

a priori information about the solution, we usually start with 

random guesses [8]. The computation time, among others, is 

related to the distance of these initial guesses from the optimal 

solution. We can improve our chance of starting with a closer 

(fitter) solution by simultaneously checking the opposite 

solution [6]. By doing this, the fitter one (guess or opposite 

guess) can be chosen as an initial solution. In fact, according 

to the theory of probability, 50% of the time a guess is further 

from the solution than its opposite guess [6]. Therefore, 

starting with the closer of the two guesses (as judged by its 

fitness) has the potential to accelerate convergence. The same 

approach can be applied not only to initial solutions but also 

continuously to each solution in the current population [6, 14, 

8, 9]. 

min max
,

t t
i L j j j ijx x x x             

(j =1, 2, …, S;  i =1, 2, …, L)          (3.1.28) 

where, 
min
jx  and 

max
jx are lower and upper limits of filter 

coefficients. 

3.4  Evaluation of the individual 

population 
The goal is to minimize the objective function. The elements 

of parent/offspring 
t
ijx may violate constraint. This violation 

is corrected by fixing them either at lower or upper limits [8] 

as described in (3.1.29): 

min min

max max

min max

;

;

;

t
i ij i

t t
ij i ij i

t t
ij i ij i

x x x

x x x x

x x x x

 



 


 

(i = 1, 2, …,V;  j = 1, 2, , L) 

                                   (3.1.29) 

A penalty term is introduced in the objective function to 

penalize its fitness value. when so introduced, objective 

function is changed to the following generalized form: 
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 j t j
ijA e x     (j = 1, 2, …, L) (3.1.30) 

where,  

Penalty factor is given by 

 

 

2
min min

2
max max

min max

;

;

0 ;

t t
ij i ij i

j t t
i ij ij i

t
i ij i

x x x x

x x x x

x x x




 




  


 


                        

(3.1.31) 

3.5  Mutation operation (Differential 

Operation) 
Mutation is an operation that adds a vector differential to a 

population vector of individuals .Two difference vectors are 

used as a perturbation in this mutation strategy according to 

the following equation: 

 
   1 2 3 4

t t t t
ij ij m bj ij

t t t t
m r j r j m r j r j

Z x f x x

f x x f x x

   

  
      

( 1,2,..., ; 1,2,..., )j V i L         (3.1.32)                                                                                                                            

( )mf t  is the mutation factor and ( ) 0mf t   is a real 

parameter, which controls the amplification of the difference 

between two individuals with indexes R2 and R3 so as to avoid 

search stagnation and
 
is usually a constant value taken from 

the range [0.4, 1] 

The mutation operation using the difference between two 

randomly selected individuals causes the mutant individual to 

escape from the search domain. If an optimized variable for 

the mutant individual is outside of the domain search, then 

this variable is replaced by its lower bound or its upper bound 

so that each individual can be restricted to remain within the 

search domain [8]. 

3.6  Recombination operation 
After the mutation operation, recombination is applied to the 

population. Recombination is used to get a trial vector by 

replacing certain parameters of the target vector by the 

corresponding parameters of a randomly generated donor 

vector. For each vector, 
1t

iZ 
, an index R5(i)  {1, 2, . . ., 

V} is randomly chosen using a uniform distribution, and a 

trial vector,
1 1 1 1

1 2, , ...,
T

t t t t
i i i iVGU U U U    

 
 

1
( 4( ) ) ( 5( ))

( 4( ) ) ( 5( ))

t
ijt

ij t
ij

Z if R j CR or j R i
U

x if R j CR or j R i


  

 
 

(j =1, 2, 

…, V;  I =1, 2, …, L) (3.1.33) 

Usually, the performance of a DE algorithm depends on three 

variables: the population size, the mutation factor ( )mf t  and 

the CR. 

3.7     Selection operation 
Selection is the process whereby better offspring are 

produced. To decide whether the vector 
1t

iU 
 should be a 

member of the population comprising the next generation, it is 

compared with the corresponding vector
t
iX . Thus, if f 

denotes the cost function under minimization, then

 
1 1

1
( 1,2,.., ) ; ( ) ( )

( 1,2,.., ) ;

t t t
ij i it

ij t
ij

U j V if A U A X
x

x j V otherwise

 


  

 


   ( i = 

1, 2, …, L) (3.1.34) 

In this case, the cost of each trial vector 
1t

iU 
 is compared 

with that of its parent target vector
t
iX . If the objective 

function, F, of the target vector 
t
iX  is lower than that of the 

trial vector, the target is allowed to advance to the next 

generation. Otherwise, a trial vector replaces the target vector 

in the next generation. 

3.8 Verification of the stopping 

criterion  
Set the generation number for t = t + 1. Proceed to Step until a 

stopping criterion is met, usually a maximum number of 

iterations (generations), tmax. The stopping criterion depends 

on the type of problem. 

3.9            Flowchart for IIR filter design 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4. RESULTS AND COMPARISON 
The computational experiments show that the proposed DE 

method is superior or at least comparable to other algorithms 

and can be efficiently applied for higher filter design. The 

order of the digital IIR filter is set 8 for the LP, HP, BP, and 

BS filters. The objective of designing the digital IIR filter is to 

minimize the objective function. To design digital IIR filter, 

200 equally spaced points are set within the frequency 

Generate initial population of Individuals, Gen 

=0 

Compute and evaluate fitness of each individual 

Apply mutation and combination operators to 
generate new individuals 

Apply selection to form new population of 
Individuals 

G ≤Gmax 

G= G+1 

No 

Yes 

 

Start 

End 
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domain  0, , such that the number of discrete frequency 

points in .(3.1.13), comes out 182 for the LP and HP filters, 

and 143 for the BP and BS filters along with prescribed pass-

band and stop-band frequency range  is given in Table-4.1 . 

The design of cascaded digital IIR filter has been 

implemented by evaluating filter coefficients using 

differential evolution. Low pass (LP), high pass (HP), band 

pass (BP) and band stop (BS) filters have been considered for 

the design.  

Design conditions for these filters are given in Table-4.1. 

Filter 

Type 

Pass-

band 

Stop-band  ,H x  

Low-pass 
0 0.2  

 

0.3   
 

1 

High-pass 
0.8   

 

0 0.7  
 

1 

Band-pass 
0.4 0.6   

 

0 0.25

0.75

 

 

 

 

 

1 

Band-stop 

0 0.25

0.75

 

 

 

 

 

0.4 0.6   
 

1 

 

Design results are shown in Table-4.2. 

Method 
Magnitu

de error 

Pass band 

performance 

Stop band 

performance 

Low-pass 1.19293  

 
 

.91772 1.01569

.097965

jH e  

 

 
 

0.076412

0.076412

jH e  

 

High-pass 
1.860575

 

 
 

0.96559 1.000

0.039051

jH e  

 

 
 

0.4431

0.4431

jH e  

 

Band-pass 
0.393986

 

 
 

0.98582 1.00623

0.20403

jH e  

 

 
 

0.023780

0.023780

jH e  

 

Band-stop 
1.605629

 

 
 

0.91372 1.00456

0.90841

jH e  

 

 
 

0.158908

0.158908

jH e  

 

 

In the computational experiments of our proposed DE 

(Opposition Based) approach, the following evolutionary 

environments are used for any type of filter: the population 

size is 100, the crossover rate is 0.85, the mutation rate is 0.1, 

and the execution of the DE (Opposition Based) approach is 

stopped when the smallest fitness value of the chromosomes 

cannot be further reduced in the successive ninety 

generations. For the three cases studied in this work, the 200 

equally spaced points are set within the frequency domain [0, 

π]. 

 

5.  CONCLUSIONS 
In DE algorithm, there exist many trial vector generations 

strategies out of which a few may be suitable for solving a 

particular problem. Moreover three crucial control parameters 

involved in differential evolution algorithm, population size, 

scaling factor and crossover rate, may significantly influence 

the optimization performance. Design result shows that 

magnitude response of DE opposition based approach has 

smooth transition band. More over magnitude error is also 

reduced to achieve approximate ideal specifications. 

Moreover magnitude ripples of pass band and stop band are 

minimized. As shown through simulation results, the DEOB 

method satisfies prescribed amplitude specifications 

consistently.  
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