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ABSTRACT 

During the past decades, Large-Eddy Simulation (LES) has 

been demonstrated to be a useful research tool for 

understanding the physics of turbulence as well as an accurate 

and sophisticated predictive method for flows of engineering 

interest. The LES is numerical technique and is based on the 

separation between large and small scales in which the large- 

scale motion is exactly calculated and the effects of small 

sales or so called sub grid-scale motions are modelled. It is 

also important to note that the explicit or implicit filter 

representations like spectral cut-offs or numerical 

discretizations are commonly used in LES of turbulent flows. 

Strictly we can say that in LES we need to filter the Navier-

Stokes equations in turbulence. Therefore, the study on the 

filtering approach in turbulence is the main objects of the 

present research, and in this study we have elaborately studied 

on this filtering approach and analyzed some general algebraic 

properties of the filtered representations. It is shown that the 

averaged equations are the same in terms of the generalized 

central moments, and then we have defined the resolved 

turbulence using these average properties. The algebraic 

consistency rules related with the resolved quantities to the 

turbulent stresses are derived and their possible use in sub 

grid-scale modelling is examined. In this study, we have also 

discussed about the standard Smagorinsky model for LES and 

then we derived an expression to determine the Smagorinsky 

constant dynamically, which suppose to be assured the 

consistency between the filter and the sub grid-scale model. 

Finally, we have derived the governing equations for LES by 

applying the filtering approach to the Navier-Stokes 

equations. 
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1. INTRODUCTION 
Most flows encountered in engineering practice are 

turbulence. Still today, turbulence in fluids is considered as 

one of the most difficult problems in modern physics as well 

as in engineering applications. Understanding the structures in 

space of turbulent flow and their statistical properties remain 

challenges both for experimentalists and theoreticians. 

Turbulence is an important and complicated kind of fluid. It is 

common experience that the flows observed in nature, such as 

those of rivers and winds usually differ from the streamline 

flow or the laminer flow of a viscous fluid. These kind of 

irregular flows occur at high Reynolds numbers and are often 

termed turbulent flows. In turbulent flow, the steady motion 

of the fluid is only steady in so far as the temporal mean 

values of the velocities and the pressure are concerned 

whereas actually both the velocities and the pressures are 

irregularly fluctuating. The velocity and the pressure 

distributions in turbulent flows as well as the energy losses are 

determined mainly by the turbulent fluctuations. the essential 

characteristics of turbulent flow is that the turbulent 

fluctuations are random in nature. 

In 1937, Taylor and Von Karman [1] gave the following 

definition: 

Turbulence is an irregular motion which in general makes its 

appearance in fluids, gaseous or liquid, when the flow past 

solid surfaces or even neighbouring stream of the same fluid 

flow past over one another. 

According to this definition the flow has to satisfy the 

condition of irregular. Indeed, this irregularity is a very 

important feature. Because of irregularity, it is impossible to 

describe the motion in all details as a function of time and 

space coordinates. But, fortunately, turbulent motion is 

irregular in the sense that it is possible to describe it by laws 

of probability. It appears possible to include distinct average 

values of various quantities, such as velocity, pressure, 

temperature etc, and this is very important. Therefore, it is not 

sufficient just to say that turbulence is an irregular motion. 

Yet we do not have a clear-cut definition of turbulence. This 

is rather difficult. Hinze (1975) [2] suggests in the book 

‘Turbulence’ 

‘Turbulent fluid motion is an irregular condition of the flow in 

which various quantities show random variation with time and 

space coordinates, so that statistically distinct average can be 

discerned’ 

Although it is very difficult to give a precise definition of 

turbulence, however, yet most flows encountered in 

engineering practice are considered as turbulent flows, and 

they are characterized by the following properties: 

Turbulent flows are highly unsteady. A plot of the velocity as 

a function of time would appear random to an observer 

unfamiliar with these flows. 

They are three-dimensional. The time-averaged velocity may 

be a function of only two coordinates, but the instantaneous 

field appears essentially random. 

The contain a great deal of velocity. Stretching of vortices is 

one of the principle mechanisms by which the intensity of the 

turbulence is increased. 

Turbulence increases the rate at which conserved quantities 

are stirred. That is, particles of fluids width differing 

concentrations of the conserved properties are brought into 
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contact. The actual mixing is accomplished by diffusion. 

Nonetheless, this behaviour is often called diffusive. 

By increasing the mixing of momentum, turbulence brings 

fluids differing momentum content into contact. The reduction 

of the velocity gradients produced by the action of viscosity 

reduces the kinetic energy of the flow; in other words, it is 

dissipative. The lost energy is irreversibly converted into 

internal energy of the fluid. 

These properties are important. The effects produced by 

turbulence may or may not be desirable. Turbulence is not a 

feature of fluids but of fluid flows. Most of the dynamics of 

turbulence is the same in all fluids. Whether they are liquids 

or gases, if the Reynolds number of the turbulence is large 

enough; the major characteristics of turbulent flows are not 

controlled by the molecular properties of the fluid in which 

the turbulent occurs. The characteristics of turbulence depend 

on its environment. 

It is considered that the turbulent fluctuation is random in 

nature but it does not imply that the motion is ‘completely 

random’. All turbulent flows exhibit characteristic structure 

with respectable features. However, those features show 

statistical variations in their size and strength in the time and 

space of their occurrence. 

Turbulent flow is completely nonlinear and complex and 

recent studies suggest that this flow contains various types of 

verticals structures. The existence of these verticals structures 

in turbulent flow is the concept against random motion of 

fluid element. These verticals structures are also known as 

turbulent eddies. When these eddies move they affect the fluid 

surroundings them. These eddy and their random movements 

give rise to fluctuations in velocity components and pressure 

at any point in the flow field. The movement of those eddies 

is longitudinal as well as in the lateral direction impacts to the 

flow a greater ability diffusion and makes the analysis of such 

a flow extremely complex. The Navier-Stokes equations 

govern the evolution of the flows of interest. 

We ask that authors follow some simple guidelines. In 

essence, we ask you to make your paper look exactly like this 

document. The easiest way to do this is simply to download 

the template, and replace the content with your own material.  

2. LARGE – EDDY SIMULATION 
A simulation which treats the large eddies more exactly than 

small ones may make sense; Large – Eddy simulation (LES) 

is such an approach. LES are three dimensional, time 

depended and expensive but much less costly than a DNS. 

LES is the preferred method for flows in which the Reynolds 

number is too high or the geometry is too complex for the 

application of DNS. 

The scale selection that the Large – Eddy simulation 

technique is based on a separation between large and small 

scales (Pierre sagaut, 1998 [3]). In order to define these two 

categories, a reference or cut-off length first has to be 

determined. Those scales that are of a characteristic size 

greater than the cut-off length are called large or resolves 

scales, and others are called small or sub grid scales and the 

way of a statistical model called a sub grid model. 

The governing equation for Large Eddy Simulation is the 

filtered Navier-Stokes equations, so we have to filter the 

Navier-stokes equations with effective filter functions. There 

are several filter functions that are used to filter the Navier-

Stokes equations, and using these filter-functions we can 

decompose the velocity fields into grid-scale and subgrid-

scale velocity. Still today researchers are developing new SGS 

models. Therefore, it is clearly revealed that the filtering 

approach to the Navier-Stokes equations plays a vital role for 

formulating the governing equations as well as for developing 

SGS model for LES. 

We have realized by the previous discussions that the Large-

Eddy Simulation (LES) in turbulence is the more effective 

method than the other techniques such as Reynolds Averaged 

Navier – Stokes (RANS), Direct Numerical Simulation 

(DNS), etc. The LES is a numerical technique and is based on 

the separation between large and small scales in which the 

large-scale motion is exactly calculated and effects of small 

scale or so called sub grid-scale motions are modelled. 

Therefore, the study on the filtering approach in turbulence is 

the main objective and in this study we have elaborately 

explained this filtering approach which is previously done by 

Germano,M(1990). Then we discuss about the Smagorinsky 

model for LES and express a procedure for determination of 

the Smagorinsky constant dynamically. We also discuss on 

the consistent decomposition of the generalized central 

moments in turbulence. Finally, we derive the governing 

equations for LES by applying the filtering approach to the 

Navier – Stokes equations. 

 

3. A FILTERED REPRESENTATION BY 

A CONVOLUTION INTEGRAL 

A filtered representation of an original chaotic field,
 iu   

generally can be expressed by a convolution integral 

(Leonard, 1974 [5]) given by:  

                   

(1.1) 

 

with 

           (1.2) 
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characteristic filter time. The numerical discretizations  are 
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Formally, the filtering approach stands between the direct 

approach and the statistical approach and probably will 

produce in the future a unified theory linking the direct 

approach to the statistical one by a continuous interval of 

intermediate steps. 

We notice that physical space-time averages are often 

substitutive of ensemble average, particularly when 

symmetries or homogeneities are present in the flow. As a 

particular example let us consider the class of time filters Eqn. 

(1.3) parameterized in terms of the characteristic filter time    

; we see that they constitute a hierarchy of filters going from 

the identity 0 the direct approach, to the infinite time 

average,   and it is well known that for statistically 

steady flows this time average converges to the ensemble 

average. 

From an operational point of view the filtering approach 

consists in applying explicitly or implicitly to the Navier-

Stokes equations a linear operator commutative with the 

space-time derivatives. Its principal field of application is in 

computational fluid dynamics and the characteristic filter 

lengths and times are intimately related to the grid 

discretization or the spectral truncation. However the history 

of the filtering is very old, and dates from the first studies on 

turbulence. The first average proposed by Boussineq (1877) 

[6] is given by Eqn. 1.3 where,  is the characteristic filter 

time, while Reynolds (1895) preferred the spatial average 

Eqn. (1.4) where 
3l is a certain volume of space. It is evident 

that only in the case  or  l  do these averaging 

operators satisfy the simple conditions that Reynolds himself 

stated as necessary for a well-behaved mean operator: 

gfgf     (1.6) 

ff      (1.7) 

and was  subsequently directed to the statistical averages that 

obviously satisfy the Reynolds rules of the mean given in 

Eqns. 1.6 & 1.7. 

This approach radically changed with the advent of the 

computer. The analogies between the filtering operators and 

the numerical discrimination were appreciated (Rogallo & 

Moin, 1984 [7]); it was shown that their characteristic lengths 

and times can be correlated with computational grid values 

and the filtering approach become the framework that 

permitted a formal theory of the Large-Eddy simulation in all 

its aspects. 

The old idea of averaging the Navier-Stokes equations was 

almost always couple to the parallel idea of a decomposition 

of the turbulent signal into a mean part   
iu that is to say 

the part generated by the average, and a fluctuation
iu  , 

whose sum is the original quantity, 
 iii uuu . The 

usual procedure of the statistical approach is to write 

equations for the fluctuating velocities   
iu   and to produce 

evolutionary equations for the central moments defined in 

terms of the fluctuations as: 


kjiji uuuuu ,              (1.8) 

Giving rise to the well-known problem of the closure This 

procedure, when extended to non-Reynolds averaging 

operators (Germano, 1987 [8]), produces a lot of problems 

mainly because the mean value of the fluctuations is now  

different from zero and the assumption that there is no 

correlation between the mean values and the fluctuations is no 

longer valid: 

;0


iu ;0


ji uu
                              

(1.9)

           

As a consequence the classical relations between the moments  


kjiji uuuuu ,  and the central moments 

(Moin & Yaglom, 1971) [9] 

jijiji uuuuuu 


 
 (1.10a)     (1.10a) 

kjijikjij

kjikjikji

uuuuuuuuu

uuuuuuuuu
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







 (1.10b) 


lkji uuuu    (1.10 c) 

are no longer valid and new terms arising that considerably 

complicate the system of averaged equations and their 

closure. However, if we introduce a new set of generalized 

central moments: 

   kjikj uuuuu ,,,, 
                  

(1.11) 

This is formally defined by using the Eqn. 1.10. 

  jijiji uuuuuu  ,,
 

(1.12a) 

 

kjijik

ikjjiikjikji

uuuuuu

uuuuuuuuuuuu





,

,,,,





 (1.12b) 

  ...............................,,, lkji uuuu
      

(1.12c)

 

Here the simplicity is regained, as we see will later. A trace of 

this idea can be found in the papers of Lilly (1966) [10] and 

Deardroff (1970) [11]. In this last paper, when the Reynolds 

rules of the mean are assumed valid in the case of the 

characteristic explicit filter Eqn. 1.4, he states: ‘However, this 

assumption is not separately necessary and may be 
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incorporated into later assumption if 


ji uu is formally 

replaced by jiji uuuu  whenever it appears.’ 

In the next section we will apply this formal replacement in a 

rigorous way, and the evolutionary equations for the 

generalized central moments will be deduced for a general 

linear filtering operator. We expect that the result will be very 

simple and surprising at the same time: the evolutionary 

equations of the generalized central moments are exactly the 

Reynolds equations, and the algebraic structure of the closure 

is the same for same for every linear commuting filter. We 

consider this the averaging invariance of the turbulent 

equations. 

The averaging invariance of the turbulent equations in 

terms of the generalized central moments: 

Let us consider the generic linear and constant preserving 

operator, 

gfgf     (1.13) 

ff    if   = constant  (1.14) 

having only the commuting properties with space and time 

derivatives 

;,, ll ff    

;,, kk ff   (1.15)    

If we now consider the Navier-Stokes equations for 

incompressible fluids: 
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So that, the continuity and momentum equation can be 

rewritten as follows: 

0, kku     (1.16) 

  kkiikkiti puuu ,,,
,    (1.17) 

Taking a moment of the Eqn. 1.17 with ju  and adding this 

to another moment of the Eqn. 1.17 but with the indices 

interchanged, we derived the following equation: 
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Now in terms of the moments ......., kjiji uuuuu   

the filters equations are the same for every filter. This 

averaging invariance can be extended directly and without 

recourse to the fluctuations to the generalized central 

moments that are the usual quantities modelled in the sub 

grid-scale or closure problem. Now using some algebraic 

operation we can derive the following equations, 
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Now, taking the generalized central moments of the Eqn. 2.18 

and using the Eqns. 1.12a & 1.12b, we can write the following 

equation: 
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     (1.22) 

      .....................,,,,, ,  tlkjitkji uuuuuuu 
(1.23) 

     (1.23)
 

Where the generalized central moments 

   hgfgf ,,,, 
   

are defined as in the Eqn. 1.12a as 

follows: 
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  gffggf ,
                                     (1.24a)

     (1.24a) 
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                                  (1.24b)  
(1.24b) 

  ...................,,, khgf
                             (1.24c)     

(1.24c) 

Now a generalized equation for the turbulent energy can be 

derived using the Eqn. 1.22 as follows: 

                                                                       

(1.25) 

where TE  is the generalized turbulent energy given by
 

 jiT uuE ,
2

1


  

                                                (1.26)     (1.26) 

It is easy to see that the structure of the averaging equations in 

terms of the generalized central moments does not depend on 

the particular filter and is formally equal to the structure of the 

well known statistical central moments expressed in terms of 

the fluctuations and given by the relation: 

  gfgf ,
  
  hgfhgf ,,

             (1.27)
 

3.1 An algebraic property of the 

generalized central moments 

3.2 The resolved turbulence 
The averaging invariance of the turbulent equations is the 

largely unexplored. Note that in some way the equations to 

the implicit or explicit filter actually applied in a single-level 

filtered representation. If the one-level filtered equations are 

independent of what real filter is applied, we can explore 

multi-level filtering procedures in order to generate improved 

sub-grid models usually the multi-level filtering procedures 

are based on special splitting operators, and we refer to the 

papers of Tehen (1973)[12] and Schiestel (1987)[13] on the 

matter. We notice that multi-level procedures have usually 

been produced in terms of a multiple decomposition of the 

velocity field iu  in ranks or in components 
 

iu  that when 

summed reproduced the original field. 

 



 ii uu

                                                                (1.28)

     (1.28) 

In this study we prefer to compare what happen at different 

levels and there will be no recourse to any kind of 

decomposition. In a sense this approach arises our grid 

intervals and compares the results at different levels of 

resolution. 

We see that the main problem of large –eddy simulation is to 

model the generalized turbulent stress  jif uu ,  related to 

the two velocity components ji uu ,  and defined: 

 
fjfijijif uuuuuu ,            (1.29) 

Now if  F  is the particular implicit or explicit filter applied 

and 
fiu the F -level filtered values Let us now introduce 

another filter, explicit test filter G and let us denoted by 

fgiu  

fgiu =
fgi

gfi uu              (1.30) 

Where GFFG filtered values 

Considering the turbulent stress   jifg uu ,  at the 

FG level, we get 

 
fgjfgifgjijifg uuuuuu ,           (1.31) 

And by  
fjfig uu ,   the resolve turbulent stress 

extracted from the resolved scale F , 

 
fgjfgi

gfjfifjfig uuuuuu ,         (1.32) 

The following algebraic relation holds: 

   
fjfiggjifjifg uuuuuu ,,,              (1.33) 

The physical meaning of this algebraic relation is the 

turbulent stress at the FG -level is equal to the G -averaged 

value of the turbulent stress at the F -level plus the resolved 

turbulent stress   
fjfig uu ,   extracted from the 

resolved scale F . 

Similarly we can extract from the resolved scale the resolved 

turbulent energy or the resolved production or the resolved 

dissipation or anything that we would like to test. 

The algebraic relation of the Eqn. (1.33) applies locally in 

space and time, so that the resolved turbulence is composed of 

fluctuating terms. In the applications we will see the utility of 

this algebraic relation in an ensemble form. 

If we denote an ensemble average with an over line, we can 

also write: 
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To apply the Eqn. (1.33) to the case in which the test filter 

G is the ensemble average .E  

We obtain:  

     
fjfijifjife uuuuuu ,,,              (1.35) 

and in the particular case in which .EEF  we have 

     
fjfiejiejie uuuuuu ,,,  

           
(1.36) 

Where  jie uu ,  represents the usual Reynolds stress. 

 
jijijie uuuuuu ,
            

(1.37) 

The Eqn. (1.36) can be interpreted as follows: The Reynolds 

stress is equal to the ensemble value of the turbulent stress at 

the levelF  plus the resolved turbulent stress  

 
fjfie uu ,  can be explicitly calculated in a large-

eddy simulation and in the following the possible use of this 

algebraic property in multilevel sub-grid modelling is 

discussed. 

3.3 Derivation of LES equation from 

Navier-Stokes equations 

3.3.1 Filtered Navier-Stokes Equations 
This chapter describes the equations of Large-Eddy 

simulation such as they are obtained by applying a 

homogeneous filter verifying the properties of linearity, 

conservation of constant and commutation with derivation to 

the Navier-Stokes equations. These are equations that will be 

resolved in the numerical simulation.  

The Navier-Stokes equations can be written in vector form 

with body force as follows: 
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Again we know from the vector properties. 
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And     uuu  .2          

Using these properties, the Eqn. (1.38) yields: 
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   (1.39) 

For incompressible fluid, 0.  u So the Eqn. (1.39) 

yields: 

 

 

  

               (1.40) 

 

 

Again, using the relation  

    uuu 2.    in Eqn. (1.40) we 

obtain the following equations: 

 

                   (1.41)     

 

Therefore, in the 

physical space, for in compressible fluid, the velocity field 

 321 ,, uuuu    expressed in a reference Cartesian 

coordinate system  321 ,, xxxX     is a solution of the 

system comprising the momentum and continuity equations 

having no body force given as follows: 

 

 

 

 

  (1.42) 

 

 

 

                                                        (1.43) 

in which  vand
p

p


 are the static pressure and the 

assumedly constant, uniform kinematics viscosity, 

respectively, and there is no body force. 

 

3.3.2 Derivation of LES equation from Navier-Stokes 
In light of the commutation with derivation property, the 

application of a filter to Eqn. (1.42) and (1.43) are expressed 

as follows: 
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Where p  is the filtered pressure. That is the Eqn. (1.44) and 

(1.45) are considered as the filtered Navier-Stokes equations. 
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In LES, the filtered or grid scale velocity is the convolution 

integral given as follows: 

      tdxdlttxxtxutxuxu iti
 

3

,
,;,,,)( 


    (1.46) 

where   ,;, lttxx  is filter kernel function. 

andl are characteristic filter length and characteristic 

filter time in i-direction. 

The filter momentum equation brings out the non-linear term 

ji uu   which will have to be expressed as a function of 

,uandu   which are now the only unknowns left in the 

problem and where .uuu  Here  u is the Grid-Scale 

(GS) (or large scale) component and u  is the Sub-Grid Scale 

(SGS) (or small-scale) component. 

Again the non-linear term 
jiuu can be expressed as, 
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Again the Eqn. (1.42) can be written as, 
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        (1.47) 

where 
jijiij uuuu  is the sub-grid tensor. The Eqn. 

(1.47) with continuity equation (1.45) are known as the 

governing equations for LES. 

  

   
ijijij

jijiijjiji

jijjii

jiji

jijiij

RCL

uuuuuuuuuu

uuuuuu

uuuuceuuuu

uuuu











 tensor grid-sub This

sin



 

The first one is Leonard Stress tensor ijL , the second is Cross 

Stress tensor ijC  and third is Reynolds Stress ijR . Leonard 

Stress is generated from interactions of  GS  vortices, which 

can be solved explicitly by filtered GS  field. The cross term 

is generated from the interactions of between GS  and 

SGS . Reynolds stress is introduced from the interactions 

between SGS components. 

For iii uuu  and ppp   the Eqn. (1.42) can be 

written as: 
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The momentum equation for the small scales is obtained by 

subtracting the large scale Eqn. (1.47) from the unfiltered 

momentum Eqn. (1.48), we can obtained the following 

equation: 
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     (1.49) 

which is the transport equation of SGS  components iu  . 

4. CONCLUSIONS 
The Large Eddy Simulation in turbulent flow is based on the 

separation between large and small scales in which the large-

scale motion is exactly calculated and the effects of small 

scales motions are modeled. In practice we need to filter the 

turbulent motion using some filtered approach, and it is shown 

that the explicit or implicit filter representations like spectral 

cut-offs or numerical discretizations are commonly used in 

LES for the separation of flows. In this study we have 

elaborately studied on this filtering approach and analyzed 

some general algebraic properties of the filtered 

representations. It is shown that the averaged equations are the 

same in terms of the generalized central moments, and then 

we have defined the resolved turbulence using these average 

properties. The algebraic consistency rules related with the 

resolved quantities to the turbulent stresses are derived and 

their possible use in subgrid-scale modeling is examined.  

The algebraic relation,   

   
fjfiggjifjifg uuuuuu ,,),(  

 

given in equation (1.29) should be interpreted as a general 

condition that, in some way. A multi-level filtering procedure 

must satisfy. With this perspective, different multi-level 

filtering techniques could be suggested for different subgrid 

models. In this study, we have also discussed about the 

standard Smagorinsky model for LES and then we derived an 

expression to determine the Smagorinsky constant 

dynamically, which suppose to be assured the consistency 
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between the filter and the subgrid-scale model. The consistent 

decomposition of the generalized central moments in 

turbulence has also been discussed elaborately. 

Finally, we have successfully derived the governing equations 

for LES by applying the filtering approach to the Navier-

Stokes equations. 
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