
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

1

An Efficient Non-Preemptive Algorithm for

Soft Real-Time Systems using Domain

Cluster–Group EDF

R. Kalpana
Dept. of CSE

Pondicherry Engg. College

S. Keerthika
Dept. of CSE

Pondicherry Engg. College

ABSTRACT

In this paper a new non-preemptive domain clustering

scheduling algorithm for soft real time application is

proposed. The main aim of this algorithm is to achieve high

deadline meeting ratio of the group Earliest Deadline First

(gEDF) algorithm by maintaining the excellent performance

during normal load. An efficient non-preemptive algorithm

called Domain Cluster – group EDF (DC-gEDF) is proposed

for real time systems which makes clustering the task

according to the domain specification with their deadlines and

schedules the tasks within a group. The results are analysed

and compared for the metric deadline meeting ratio of gEDF

and DC-gEDF under different deadline acceptable values. It

shows an improvement in the deadline meeting ratio for the

proposed DC-g-EDF algorithm.

General Terms

Real time scheduling

Keywords

Group scheduling, EDF, group EDF, soft real time, non-

preemptive

1. INTRODUCTION
Earliest deadline first (EDF)is a dynamic scheduling

algorithm [5] used in real-time task scheduler to place the

tasks in a priority queue [19]. Whenever a scheduling

processes need to perform the queue will be searched for the

task closest to its deadline. This task is to be scheduled for

next execution [2], [4]. EDF is an optimal scheduling

algorithm on preemptive scheduling processors, in that sense:

if a collection of independent tasks, each characterized by an

start time, an requirement and a deadline, can be scheduled by

any algorithm in a way that ensures all the tasks complete by

their deadline, the EDF will schedule this collection of tasks

so they all complete by their deadline.

In preemptive systems, tasks are pre-empted by higher

priority tasks or by some other techniques, while non-

preemptive systems will not permit pre-emption. Preemptive

scheduling algorithms are easy to develop but non-preemptive

scheduling algorithms are more efficient than the preemptive.

However, non-preemptive EDF techniques have produced

near optimal schedules for periodic and aperiodic tasks,

particularly when the system is lightly loaded [3]. When the

system is overloaded, it has been shown that the EDF

approach leads to very poor performance (i.e., low success

rates). In this dissertation, a system load or utilization is used

to refer to the ratio of the sum of the execution times of

pending tasks and the time available to complete the tasks [9],

[12]. The reason for the poor performance of EDF is because

of tasks that are scheduled based on their deadlines,

sometimes they miss their deadlines due to overload, so that

other tasks waiting for their turn for long time so their

deadlines are also have the chance to miss also – it is

sometime known as the domino effect. To overcome these

issues, the derivation of EDF algorithm is used. It is group

EDF (gEDF), where the tasks with “similar” deadlines are

grouped together (i.e., deadlines that are very close to one

another), and the Shortest Task First (SJF) algorithm is used

for scheduling tasks within a group. It should be noted that

our approach is different from adaptive schemes that switch

between different scheduling strategies based on system load.

gEDF is used in overloaded as well as under loaded

conditions.

However gEDF produces efficient scheduling results, it does

not concerns domain specification of tasks. Our approach is to

analyze the specification of given tasks and grouping them

with similar one using gEDF and with new scheduling

algorithm called Domain Cluster – group EDF (DC – gEDF).

This algorithm groups the tasks according to the domain and

applies gEDF to each group. So that each group can schedule

simultaneously, this reduces the overall duration to complete

the tasks.

2. RELATED WORK

2.1 Shortest Task First (SJF)

Shortest Task First (SJF) scheduling is probably optimal but

requires clairvoyance, profiling, or expected execution time to

fully implement. SJF can be implemented either pre-

emptively or non-pre-emptively. SJF has low average waiting

time [10], [11], [20]. In fact, SJF is optimal with respect to

average waiting time. It is very easy to prove this claim by

comparing it with other real-time algorithms.

In Soft Real Time systems [13], [14], each task may have one

or more than one predecessors. SJF algorithm [7] cannot

analyze the predecessors of the tasks. To overcome this issue

another real time scheduling algorithm has been proposed,

called Earliest Deadline First (EDF).

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

2

2.2 Earliest Deadline First (EDF)
Each task in an EDF scheduler is assigned with a deadline.

Every time a task is inserted in the system, the scheduling

system looks for the other task which is present in the queue

and which has the next nearest deadline and select it for

execution [7]. In order to ensure that the scheduling

application is still able to meet each deadline, a ‘scheduler

must evaluate if each new incoming task doesn't overload the

system and slow down the execution if it will do so.

However, EDF[8] performs worst during overload (i.e. when

the total CPU utilization exceeds 100%) condition [4], [15].

This poor performance may create the chance to miss the

deadline of the tasks. And this leads that other tasks need to

wait for a turn longtime and miss their deadline too.

2.3 Group Earliest Deadline First (gEDF)

In this concept the deadlines are formed as a group according

to their range of deadlines, dynamically. Here groups are

separated by the concept of traditional EDF but the group may

be arranged by different techniques say priority or SJF value,

etc. We use SJF to develop EDF, but it is one of the

techniques among the scheduling methods. gEDF is mainly

suitable for non-preemptive soft-real-time systems. A

group in the gEDF algorithm depends on a set of deadline

group range that is,these are grouped according to the

deadlines named as parameter Gr. A taskjbelongs to the same

group as taski if didj (di + Gr*(di – ti)), where ti is the

current time, 1 i, jN [1]. We group tasks with deadlines

which are close to each other. The tasks with close deadlines

are in a group.

We assume a uniprocessor system [16]. QgEDF is a queue for

gEDF scheduling. The current time is represented by t.

|QgEDF| represents the length of the queue QgEDF. = (r, e,

D, P) is the task at the head of the queue.

- gEDF Group = {k | k QgEDF, dik – di1D1* Gr, 1

km, where m |QgEDF|}, and D1 is the deadline of the first

task in a group

The pseudo code of the functions Enqueue and Dequeue are

given below:

Function Enqueue (QgEDF,)

if (’s deadline d>ti) then

inserttask into QgEDFby Earliest Deadline

First, i.e. di dii+1dii+2, where i,

i+1,i+2 QgEDF, 1 i |QgEDF| - 2;

end

- Enqueue is called on eachtask arrivals.

Function Dequeue (QgEDF)

if QgEDFthen

find a taskmin with emin = min {ek | k

QgEDF, dik – di1Gr*D1, 1 km, where

m |QgEDF|};run it and delete min from

QgEDF;

end

- Dequeue is called when the execution of all task ends.

3 DOMAIN CLUSTER – GROUP EDF

(DC-G-EDF)
A. Definitions

To define our algorithm we use the following

notations.

τi - denotes taski

Di – absolute deadline of taski

di - dynamic deadline of taski

Ut – denotes total cpu utilization

Tr – denotes the deadline tolerance of soft real time system

ei – denotes the execution time of taski

B. Scheduling Model: Non-Preemptive Real Time

Non-preemptive scheduling [17], [18] is much efficient than

preemptive scheduling since preemption requires context

switching method overhead which may be significant in well-

formed multithreading systems. In this non-preemptive model

SJF algorithm is used to schedule the tasks according to the

deadlines (i.e. which has small deadlines that are arranges

first).

 C. The Algorithm

We first group the tasks with their domain specification

together based on our novel algorithm. Within the group the

tasks were sorted based on another algorithm, where the task

at the head of the queue will be executed first followed by the

rest of the tasks in the queue sequence. A group member in

the Domain cluster group is to be rescheduled according to the

predecessors. And then, have to apply the gEDF algorithm to

schedule finally.

The clustering is based on the domain using the following

algorithm

Function Domain-Cluster (QDCgEDF, DC)
for i=1 to i<= | QDC | {

for j=i+1 to j<= | QDC | {

 findDCiwhich has same domain name and put it in

 QDCgEDF; }

}

//gEDF with predecessor constraints

ID2: for i=1 TO i<= | QDCgEDF | {

 TDCgEDF = QDCgEDF;

 If (Pr[τi]!==0) then

 If (flag[τi]==0) then ID1: if (m!==0) then

CDCgEDF = TDCgEDF;

 For j=1 to j<=Pr[τi] {

Sub[τi]=S[T[τij];

if(flag[Sub[τi]]==0) then TDCgEDF=

Sub[τi]; m++; goto ID1;

end }

end

end

printτi from QDCgEDF; }

4 NUMERICAL RESULTS
The following Table 1 depicts the resources, predecessor

associated with each domain along with the time (duration)

taken for each activity.

Table 1.Resource allocation

Activity Domain Resources Predecessor Time(

days)

A D1 3 0 2

B D2 3 0 3

C D1 3 A 2

D D2 2 A,B 4

E D3 1 C 4

F D1 4 C 3

G D1 4 D,E 5

H D2 2 F,G 2

 25

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

3

The following graph in Fig. 1 depicts the dependency graph

for the activities tabulated above:

1. Some activities can be done simultaneously so project

duration should be less than 49 days.

2. Critical path analysis is used to determine project

duration.

3. The critical path is the longest path through the network.

Domain Clusters

Now here in Fig. 2, this process has been formed into three

clusters according to their Domain specification. (i.e.) Domain

1 (D1) consists of processes A, C, F and G. Domain 2 (D2)

consists of processes B, D and H. Finally Domain 3 (D3)

consists of process E. So have to consider each cluster for

Critical Path analysis and have to apply gEDF to each cluster.

Using EDF and gEDF algorithm we couldn’t do the domain

analysis.

Fig 1: Determining the Project Schedule

Fig 2: Representation of Domain Clusters

Without Domain analysis we cannot able to schedule the

process to the members efficiently. If processes are scheduled

to the members randomly, there is a chance of misleading and

which results the projects may not be completed within

scheduled duration. So this DC-gEDF algorithm possesses

domain clustering to schedule the projects to the members

according to the specification. Domain clustering analysis

took place for assignment of project and not for scheduling.

Critical Path Analysis (CPA)

For CPA analysis, have to find the following values:

1 Earliest Start Time (EST)

2 Earliest Finish Time (EFT)

3 Latest start time (LST)

4 Latest Finish Time (LFT)

EFT Rule states that

EFT = EST + activity time

Node Notation: The node notation in Fig. 3

showing the EST, EFT, LST and LFT is as follows:

Fig 3: Notation of a Node

 D1

D3

A
C

F

G

B

D

H

E

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

4

Forward Pass

Identifies earliest times (EST and EFT)

EST Rule: All immediate predecessors must

be executed before an activity starts

Fig 4: Forward Pass

– If there one immediate predecessor, then

 EST = EFT of predecessor

– If >1 immediate predecessors, then

 EST = MAX{EFT’s of all predecessor}

Forward Pass: The forward pass is based on the Earliest Start

and Finish Times, which is given in Fig. 4.

Backward Pass

The pseudo code for the backward pass is shown below:

1. Identifies latest times (LST an LFT)

2. LFT Rule:
a. If activity is the immediate predecessor to

only 1 activity, then

b. LFT = LST of immediate follower

c. If activity is the immediate predecessor to

multiple activities, then

d. LFT = Min {LST of all immediate

followers}

3. LST Rule:
 LST = LFT – activity time

Backward Pass: The backward pass is based on Latest Start

and Finish Times which is given in Fig. 5.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

5

Fig 5: Backward Pass

Slack Time and Critical Path(s)

1. Slack is the total duration of an activity which may

be delayed without delaying the overall project

i. Slack = LST – EST

2. Activities which have slack 0 are CriticalActivities

3. The Critical Path is a continuous path throughout

the project from start to endwhich includes only

critical activities

Project Schedule and Slack Times

The following Table 2 shows the EST, EFT, LST, LFT, Slack

time corresponding to every activity. In addition to it, whether

an activity is a part of critical path is also shown in Fig. 6.

Table 2. Project Schedule

ACTIVITY ES

T

EF

T

LS

T

LF

T

SLA

CK,

LST-

EST

ON CRITICAL PATH?

A 0 2 0 2 0 Yes

B 0 3 1 4 1 No

C 2 4 2 4 0 Yes

D 3 7 4 8 1 No

E 4 8 4 8 0 Yes

F 4 7 10 13 6 No

G 8 13 8 13 0 Yes

H 13 15 13 15 0 Yes

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

6

Critical Path and Slack Times

Fig 6. Critical in the schedule

GANTT CHART

The Gantt chart for all the activities involved is depicted below in Fig. 7:

Fig 7. Gantt chart for activities

In this Gantt chart the clear work schedule has been defined.

The process A(D1) and B(D2) has no predecessors so they are

scheduled first. Then C (D1) has been scheduled followed by

D(D2) is scheduled. Now E(D3) and F(D1) are scheduled

concurrently because both are dependent on and completed

before itself. Then G(D1) and H(D2) are scheduled. So total

time taken to complete this project will 15 days and the

resource needed for this allocation is 7 Units.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

7

4. Effect of Deadline Tolerance on

Deadline Meeting Rate
Comparison between EDF, gEDF and DC – gEDF DMTR

The below figure Fig. 8 shows the deadline meeting rate of

EDF, gEDF and DC – gEDF algorithm as Tr in 100%. We

observe that DC – gEDF achieve a much better DMTR.

Fig. 8. Effect of Deadline Tolerance

From the above figure, it clearly shows that DC- gEDF has

produce much better DMTR during normal load and has

shown very significant increment during overload as the

deadline tolerance value increases. And it clearly states that

duration of a project will be much lower than EDF and gEDF

because DC – gEDF has high deadline meeting rate. It never

misses the deadline.

5. Comparisonof EDF, g-EDF And DC-g-

EDF
The comparison between Earliest Deadline First, Group

Earliest Deadline First and Domain Clustering- Group Earliest

Deadline first is tabulated in Table 3.

Table 3. Comparison of EDF, g-EDF and DC-g-EDF

6. CONCLUSION
Non-preemptive scheduling is more efficient for soft real time

systems where in context switching overhead is totally

eliminated. As, the Earliest Deadline First scheduling

algorithm is based on preemptive scheduling, it works fine

only when the system is slightly loaded. Group Earliest

Deadline First algorithm is based on non-preemptive

scheduling solves this problem by grouping tasks with the

same deadlines to be met. However, Group Earliest Deadline

First algorithm doesn’t consider the tasks in a domain-specific

manner. As proposed in this paper, Domain Clustering Group

Earliest Deadline First (DC-gEDF), groups tasks considering

their domain along with their deadlines which eliminates the

drawback in gEDF. Moreover, gEDF had no predecessor

constraints. But DC-gEDF includes the predecessor

constraints and is thereby more efficient than EDF and gEDF.

REFERENCES
[1] Wenming Li, B.S., M.S., GROUP EDF – A NEW

APPROACH AND AN EFFICIENT NON-

PREEMPTIVE ALGORITHM FOR SOFT REAL-TIME

SYSTEMS, UNIVERSITY OF NORTH TEXAS,

August 2006.

[2] R. Jain, C. J. Hughes, and S. V. Adve, “Soft Real-Time

Scheduling on Simultaneous Multithreaded Processors”,

In Proceedings of the 23
rd

IEEE International Real-Time

Systems Symposium, December 2002.

[3] K. Jeffay and C. U. Martel, “On Non-Preemptive

Scheduling of Periodic and Sporadic Tasks”,

Proceedings of the 12
th

IEEE Real-Time Systems

Symposium, San Antonio, Texas, December 1991, IEEE

Computer Society Press, pp. 129-139.

[4] C. D. Locke, “Best-Effort Decision Making for Real-

Time Scheduling”, CMU-CS-86-134 (PhD Thesis),

Computer Science Department, Carnegie-Mellon

University, 1986.

[5] S. Zilberstein, “Using Anytime Algorithms in Intelligent

Systems”, AI Magazine, fall 1996, pp.71-83.

[6] R. Heckmann, M. Langenbach, S. Thesing, and R.

Wilhelm, “The Influence of Processor Architecture on

the Design and the Results of WCET Tools”,

Proceedings of IEEE July 2003, Special Issue on Real-

time Systems.

[7] J. Nieh and M. S. Lam, “A SMART Scheduler for

Multimedia Applications”, ACM Transactions on

Computer Systems, Vol. 21, No. 2, May 2003.

[8] S. K. Baruah and J. R. Haritsa, “Scheduling for Overload

in Real-Time Systems”, IEEE Transactions on

Computers, Vol. 46, No. 9, September 1997.

[9] B. D. Doytchinov, J. P. Lehoczky, and S. E. Shreve,

“Real-Time Queues in Heavy Traffic with Earliest-

Deadline-First Queue Discipline”, Annals of Applied

Probability, No. 11, 2001.

[10] W. T. Chan, T. W Lam, K. S. Liu, P. W. H. Wong,

“Resource augmentation analysis of SRPT and SJF for

minimizing total stretch in multiprocessor scheduling”,

University of Liverpool, UK.

[11] L. Sha, R. Rajkumar, and S. S. Sathaye, “Generalized

Rate-Monotonic Scheduling Theory: A Framework for

EDF GEDF DC-GEDF

Pre-emptive

scheduling

Non-preemptive

scheduling

Domain specified
non-preemptive

scheduling

No predecessor

constraints

No predecessor

constraints

Solved with

predecessor
constraints

No group formed

Group based on

small units of
deadlines

Group based on both

domain and
deadlines

It may have

chance to miss the

deadlines of the
tasks when the

system is

overloaded.

Deadlines are

grouped together. So
no chance to miss

the deadlines.

Efficient then both
EDF& gEDF.

Even small

process need to
wait long for its

turn.

Deadline groups are

scheduled

independently.

Domain groups are

scheduled

independently.

Scheduling order

will not be

efficient.

It is efficient.

However, there is no
proper domain

matching process.

It solved both the
problem.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.20, May 2014

8

Developing Real-Time Systems”, Proceedings of the

IEEE, Jan. 1994.

[12] G. Buttazzo, M. Spuri, F. Sensini, “Value vs. Deadline

Scheduling in Overload Conditions”, Proceedings of the

16
th

IEEE Real-Time Systems Symposium (RTSS 1995),

Pisa, Italy, pp. 90-99, December 5-7, 1995.

[13] S. Baskiyar, N. Meghanathan, “A Survey of

Contemporary Real-Time Operating Systems”,

Informatica 29 (2005) 233-240.

[14] IEEE Information Technology – Portable Operating

System Interface (POSIX): IEEE/ANSI Std 1003.1, 1996

Edition.

[15] S. Agrawal, P. Bhatt, K.K Shukla, “Modified MUF and

EDF Algorithms for Overload Soft Real Time”, WSEAS

Conferences on Recent Advances in Systems,

Communications and Computers, April 6-8 2008.

[16] J. H. Anderson, V. Bud, U. C. Devi, “An EDF-based

Scheduling Algorithm for Multiprocessor Soft Real-

Time Systems”, 17thEuromicro Conference on Real-Time

Systems, 2005. Trans. Roy. Soc. London, vol. A247, pp.

529–551, April 1955.

[17] G Buttazzo, Research Trends in Real Time Computing

for Embedded Systems, 2006

[18] F. Balarin, L. Lavagno, P. Murthy, and A. S. Vincentelli,

“Scheduling for Embedded Real-Time Systems”, IEEE

Design & Test of Computer, January-March, 1998.

[19] N. C. Audsley, A. Burns, M. F. Richardson, A. J.

Wellings “Hard Real-Time Scheduling: The Deadline-

Monotonic Approach (1991)”, Proceedings 8th IEEE

Workshop on Real-Time Operating Systems and

Software

[20] P. Brucker, “Scheduling Algorithms”, Third Edition,

Springer, 2001.

IJCATM : www.ijcaonline.org

