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ABSTRACT 

In this paper, we present a text compression technique which 

utilises morpheme-based text compression to optimise storage 

resources. The proposed technique is designed to decompose 

words into their morphemes and then to produce code 

representations for compression. The proposed algorithm is 

implemented using English Language text data and applied 

using 30 different texts of different lengths collected from 

different sources with different natures. The efficiency 

increases with the increase in the number of long, repetitive 

morphemes in the input data. To the best of our knowledge, 

the resulting implementation is the first to demonstrate 

lossless compression using such a technique. We illustrate its 

suitability and effectiveness on a number of benchmark file 

sizes – small, middle-sized, large, and very large real-world 

application. The results indicated a good compression 

performance of 98% making the approach an attractive one. A 

further virtue of this method is its dynamic application. A 

degraded compression can be compensated for by appending 

identified morphemes within the document to the dictionary to 

improve compression. The evaluation experiments show that: 

if storage space is the primary consideration, the morpheme-

based text compression technique is an efficient approach for 

compressing text data. 

General Terms 
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1. INTRODUCTION 
The demand and dependence on digital data and information 

keep on increasing. New knowledge, ideas and technologies 

are created and added daily into the annals of organisations, 

institutions, governments, and even individuals; their daily 

digital data and document files needs keep on growing to 

significant sizes. It is asserted that ―The web is creating 

massive amounts of data every second of the day [15]. 

Moore‘s law states that the amount of digital information 

increases tenfold every five years and the Social Web is 

accelerating data‖ [15]. A special report in The Economist, 

Andrew Brust [2] observed that we are at the point of an 

―industrial revolution of data,‖ with vast amounts of digital 

information being created, stored and analysed. The rise of 

―big data‖ has led in turn to an increased demand for tools to 

both visualise and analyse the information. The New 

Competition Is Data; Data Complications‖ [15]. The 

information in schools, offices, libraries, books, etc is mostly 

textual data which keeps on increasing daily. Projects such 

Gutenberg, Distributed Proofreaders and Digital Text 

Community are converting already published books into 

eBooks [5, 17]. They are electronically preserving the literary 

material and other media of the world for everyone to use [5]. 

Digital Text Community is digitising ―ink-on-paper‖ text such 

as books, periodicals, documents [8] and most hitherto 

physical libraries are also being digitised. The arrival of total 

digitised education or world would surely be the beginning of 

data storage trauma. This will be the time and period when 

every learnable and learnt material in schools, colleges and 

universities can only be accessed electronically.  

1.1 Theory of Data Compression 
The theoretical background of compression is provided 

by information theory. Information theory is a study of 

information based on probability theory [7].  It was proposed 

by Claude E. Shannon at Bell Laboratories in 1948 [12] and 

based on people‘s reception and reaction towards given 

information; which is aimed at a mathematical way of 

measuring the quantity of information [7]. Data compression 

is the fundamental expression of information theory which is 

a branch of mathematics concerned with various questions 

about information, including different ways of storing and 

communicating messages [12]. Data compression is 

connected to the field of information theory because of its 

concern with redundancy [12]. Redundancy is the number of 

bits used to transmit a message minus the number of bits of 

actual information in the message. According to Wikipedia, 

redundancy refers to ―the amount of wasted "space" used to 

transmit certain data‖ [17]. Data compression is a way to 

reduce or eliminate unwanted redundancy. Therefore, the 

basis of any data compression algorithm depends on the 

presence of redundancy in the given data. The more 

redundancy the source data has, the more effective a 

compression algorithm may be [7].  
 

1.2 Early Development in Data 

Compression 
According to history of irreversible data compression, the idea 

of creating sounds by adding together pure tones goes back to 

antiquity [18]. Following work by Joseph Fourier around 

1810, it became clear by the mid-1800s how smooth function 

could be decomposed into sums of sine waves with 

frequencies corresponding to successive integers. Early 

telephony and sound recording in the late 1800s already used 

the idea of compressing sounds by dropping high-and low-

frequency components [18]. Early days of television in the 
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1950s saw similar kinds of compression for images but 

serious efforts were made when digital storage and processing 

of images became common in the late 1980s [18].  Morse 

code used in telegraphy was a form of earliest text 

compression [18]. Modern data compression began in 1940s 

with the development of information theory [18]. In 1949, 

Claude Shannon and Robert Fano introduced the method of 

compressing information using probabilities of blocks and in 

late 1970s, software compression programs based on adaptive 

Huffman coding were developed [18]. In 1977, Abraham 

Lempel and Jacob Ziv published a paper with a different 

approach to the symbol coding problem; their method is the 

basis of most lossless data compression techniques [11, 18]. 

The late 1980s and early 1990s saw digital images 

compression standards and lossy compression methods 

respectively [18]..  
 

1.3 Data Compression Algorithms 
A data compression algorithm refers to the step-by-step 

methodologies employed to compress data into a relatively 

small size with the aim of converting source data at the 

compression end into a compressed message [7] and restore it 

precisely the same content information or with little 

distortion. Compression algorithms can be divided into two 

major families [12]. They are lossless compression and lossy 

compression [11, 13]. The lossless compression which is 

applied to database records, spreadsheets, or word processing 

files, encodes the original input without loss of information. 

The lossy compression accepts a slight loss of data and proves 

effective when applied to graphics, images and digitised voice 

[12]. An algorithm may be static or adaptive Figure 1 and 

Figure 2 respectively base on its ability to adjust itself. The 

compression algorithm which samples from the inputs to 

adjust the model is called adaptive compression [13]. A fixed 

model compression algorithm is called static modelling 

compression. 
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Figure 1: Static compression model diagram 
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 Figure 2: Adaptive compression model diagram 

 

 

1.4 Characteristics of Existing 

Compression Algorithms 
There are two major ways to compress data, Statistical-based 

model and Dictionary-based model [6]. The choice of either 

method is informed by the type of data being compressed. The 

statistical-based algorithms explore the numerical redundancy 

of individual characters within the data. 
 

1.5 Statistical-Based Compression Method 
The statistical-based algorithms explore the numerical 

redundancy of individual characters within the data. It is 

based on counting individual symbol and the determination of 

its frequency of occurrence. This technique achieves 

compression by assigning shorter codes to most frequently 

used symbols and longer codes to rare appeared symbols [14]. 

Among the compression techniques that use statistical 

criterion are Huffman coding algorithm, Shannon-Fano 

algorithm, run-length coding and arithmetic algorithms [7].   
 

1.6 Dictionary-Based Data Compression 
A dictionary-based compression scheme uses a different 

concept [12]. A coding system (coder) keeps a pattern of 

characters in memory called dictionary, which keeps string 

patterns seen before and the indices are used to encode the 

repeated patterns [7]. It reads in input data and looks for 

groups of symbols that appear in a dictionary. If a string 

match is found, a pointer or index into the dictionary is output 

instead of the code for the symbol. When the match is longer, 

the compression ratio is better, however, the size of the 

dictionary may affect the efficiency of the algorithm. In 

general, dictionary-based compression replaces phrases 

(symbols) with pointers. If the number of bits in the pointer is 

less than the number of bits in the phrase, compression will 

occur. However, the methods for building and maintaining a 

dictionary are varied. Some popular dictionary-based 

algorithms are LZ77 and LZ78 compression algorithms. 
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1.7 Recent Development in Data 

Compression 
Data compression as an area for research work is generally 

not new. According to Ibrahim Akman and his colleagues, 

most text compression algorithms perform compression at 

character level or at word level [1]. Jan Lansky and Michal  

Zemlicka reported that there are two basic types of text 

compression by symbol representation – the characters and 

words. They believe that, the syllable is another way by which 

text can be compressed [9]. They claimed that syllable, 

character and word compressions will be suitable for middle, 

small and very large files respectively. Today‘s advances in 

lossless file compression, generally assume that there is an 

inherent redundancy in text and therefore seek to minimise or 

eliminate these redundancies [7]. Most text compression 

algorithms perform data compression at character level or 

word level and they do not consider adjacent string structures 

in words such as syllable [1]. The existing text compression 

techniques have been reported to have some weaknesses [1]. 

At the character level, a single bit error may be sufficient to 

result in a long stream of errors in the coded file, at the 

syllable level, the compression ratio does not meet the desired 

storage requirements and the most effective compression 

algorithms are reported to be computationally expensive [1]. 
 

1.8 Overview of Morpheme Concept  
A morpheme is the smallest bit of language that has its own 

meaning; either a word or a part of a word [3]. Every 

language has a morpheme and every word comprises one or 

more morphemes. They can be classified in different ways. A 

morpheme may be free or bound [10]. Free morphemes can 

stand alone and function independently as words; while bound 

morphemes appear only together with other morphemes or as 

parts of words, always in conjunction with a root. Bound 

morphemes can be split further into derivational or 

inflectional [5, 10]. Derivational morphemes are the type, 

whose part of speech is modified upon root combination. For 

instance, in the word joyfulness, the addition of the bound 

morpheme -ness to the root joyful changes the word from an 

adjective (joyful) to a noun (joyfulness). 

Inflectional morphemes cause a change to a noun‘s number or 

verb's tense leaving the word's meaning or class intact. They 

are achieved by addition of –s or –ed to the root.  For 

example, adding -s to the root dog to form dogs and adding -

ed to wait to form waited. English has eight inflectional 

affixes – affixes that depend on the function of a word in a 

sentence. For example, the inflectional affix‗s‘ on the end of 

pot makes the word plural. The remaining affixes in English 

are derivational affixes, which change the form or meaning of 

words. Table 1 lists all eight of the inflectional affixes in 

English. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Table 1: The inflectional affixes in English Language 

 

Inflectional Affixes Derivational Affixes 

S: creates plural 

nouns 

Noun  Verbs Adjective Adverb 

S: creates possessive 

nouns 

-ant -ate -able -ly 

S: creates third 

person singular 

verbs 

-er -en -al -ward 

Ed: creates verbs 

past tense 

-hood -ise -ful -wise 

en: creates past 

participle 

-ment others -y others 

ing: creates present 

participle 

-ness  -ous  

er: creates 

comparatives 

-tion  others  

est: creates 

superlatives 

others    

Table 2 labels the various morphemes in a typical English 

sentence: “The students have a wonderful teacher” 

Table 2 : Illustration of morphemes 
 

The  stud

ent 

s hav

e 

a won

der 

ful teac

h 

er 

free free bound free free free boun

d 

free boun

d 

 

2. MATERIALS AND METHODS  

2.1 Research Design 
Experimental research design was used to obtain information 

about the population by selecting and experimenting sample 

from the entire population. Scientific sampling procedure was 

used to select 30 text data files from different sources of 

different natures for the implementation and experimentation 

of the proposed algorithm.  
 

2.2 The Proposed Algorithm 

The proposed morpheme-based algorithm works using 

English text data as follows:  

 Miss – “Mis” and “s”; Rejoyce – “Re”, “joy” and “ce”; 

displays – “dis”, “play” and “s” etc.  

The proposed algorithm is as follows: 

i. Read the text input 

ii. Partition the string input into possible morphemes 

iii. Extract morphemes. 

iv. Scanned the extracted morpheme through the 

dictionary to do a match if there exist. 

v. Represent the morphemes with the relevant code 

representation 

vi. If the string in the input text is not in the morpheme 

unit passed text unaltered.  

The operation of the algorithm is further illustrated in Figure 3 

using a flow chart.  
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Figure 3: Morpheme-based text compression algorithm  

flowchart 

 

Table 3: Alphabets Number Assignment 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Alphabets number assignment shown in Table 3 was used as 

the basis for coding to generate the morpheme dictionary. 

This assignment scheme made the generation of the dictionary 

simple and computationally inexpensive.  
 

2.3 MORPHEME DICTIONARY 

GENERATION 

2.3.1 Morpheme coding system 
The morphemes were coded by a simple approach of adding 

the coded numbers for each character. The target morpheme 

assigned, for instance, the morpheme ―ing‖ was coded as 

follows: 

 Step 1: assign the constituent characters in the 

morpheme with their respective numbers 

 i = 9 

 n = 14 

 g = 7 

Step 2: sum them up 

 9 + 14 + 7 = 30 

From the calculation performed, the morpheme ―ing‖ would 

be assigned the correspondent code representation 30. Thus, 

in the dictionary, the morpheme ―ing‖ would be represented 

by the code 30. All the other morphemes were coded likewise 

and were assigned code representations. Using the same 

process of coding, the morpheme dictionary was obtained as 

shown in Table 4. 

2.4 Demonstration of the Proposed 

Algorithm for English Language Text Data 
The English language is used for the implementation of the 

proposed algorithm. The choice of English Language was its 

widespread; global language; most important and popular 

language worldwide [4]. Again, English is considered the 

most widely and commonest language on the Internet [16]. 

English sentence is selected for the illustration of the 

proposed approach since this is the language used in 

implementation. 

“The display of joyfulness by miss joyce in playing computer 

games using a joystick is enjoyed by her friends”.  

The given sentence contains 19 words but the resultant 

morpheme count is 27. 

Algorithm  

i. Read the sentence word by word 

ii. Send each word to the morphemes unit one by one to be 

partitioned into its morphemes. For example, morphemes 

unit partitions the string ―display‖ into two morphemes: 

display as “dis” and “play”. 

joyfulness as “joy” “ful” and “ness” 

miss as “mis” and “s” 

joyce as “joy” and “ce” 

playing as “play” and “ing” 

computer as “compute” and “r”  

games as “game” and “s” 

using as “us” and “ing”  

Char Code 

Blank 0 

A 1 

B 2 

C 3 

D 4 

E 5 

F 6 

G 7 

H 8 

I 9 

J 10 

K 11 

L 12 

M 13 

N 14 

O 15 

P 16 

Q 17 

R 18 

S 19 

T 20 

U 21 

V 22 

W 23 

X 24 

Y 25 

Z 26 
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joystick as “joy” and “stick” 

enjoyed as “en”, “joy” and “ed” 

her as “he” and “r” 

friends as “friend” and “ 

 

2.5 Theoretical Consideration of the 

Proposed Algorithm 
We took the sentence under consideration morpheme-by-

morpheme vis-a-vis the number of times each morpheme is 

repeated in the given sentence. For example, ―joy‖ reoccurred 

four (4) times. This proposed algorithm proposes that, if the 

morpheme ―joy‖ is encoded and represented by a token (code 

representation) which is less than the number of characters 

involved instead of the usual conventional requirements of 

this individual character being repeated, there could be some 

significant saving of storage space of a storage resource. The 

detailed breakdown of the sentence and the inherent character 

redundancies is done below: 

  s               3-1 = 2 redundant characters 

joy   4-1 = 3 redundant characters 

play    2-1 = 1 redundant character 

ing   2-1 = 1 redundant character 

 r                          2- 1 = 1 redundant character 

The morpheme-based technique represents the original 27 

morphemes in only 19. Certainly, the actual format used for 

the storage of text is generally binary rather than ASCII 

morphemes like this, but the principle remains the same. 

 

2.6 Compression Performance Metrics 
According to Ida Mengyi Pu, ―the compression effect of an 

algorithm is measured by the amount of shrinkage of the 

source file in relation to the size of the compressed version‖ 

[7]. From this assertion, the following formulae are provided: 

    (1) 

where CR represents compression ratio; Lac represents the 

size after compression and Lbc size before compression. 

  

CR=    

 

     (2) 

 

where Cf represents compression factor  

*100   (3) 

*100 

        = 29.6% (1 dp.) 

where Sp represents saving percentage 

*100  (4) 

     *100 

 (1 dp.)    

where Cg represents compression gain. 

2.7 Decompression Component 
The decompression method is the same as the compression 

aspect. It uses the same components as the compression 

algorithm. The compressed text whose first string is a word is 

read since the morpheme is not modified during 

decompression. Coded text data is replaced by the original 

morpheme in the word. At the decompression, the string 

replaces the coded representation. The code will be the same 

as the one created since during compression the order of 

morpheme remains same during compression/decompression  

process. At the same time, the alphabetic text is transmitted to 

the output unit. If the entry text is a coded representation, then 

its code is searched for and replaced. The searching and 

replacement process is continued till the end of the file is 

reached and finally, the original text is produced from the 

compressed text. 

 

2.8 Implementation of the Proposed 

Algorithm 
The performance of the algorithm was measured using 30 text 

files of sizes ranging from 10 Kilobytes to 7,181 Kilobytes. 

The texts were selected from different sources. The data 

collected for the experiment were grouped into four 

categories: namely, small-sized files (file_size < 100 

kilobytes), middle-sized files (file_size <200 kilobytes), large-

sized files (file_size <1000 kilobytes), and very large-sized 

(file_size >1000 kilobytes). The summary of the categories is 

indicated in Table 5. 

 

2.9 Experimental Design and Testing 

Environment 
Hewlett-Packard Pentium IV of system type 32-bit operating 

system; processor of type Intel(R) Atom(TM) CPU  

N455 of speed 1.66 GHz machine with an installed memory 

(RAM) of 1.00 GB, a Hard disk capacity of 217 gigabytes and 

having Microsoft Windows XP as its Operating System was 

used to run the various texts.   
 

3. RESULTS AND DISCUSSIONS 

3.1 Data Classification   
The data collected for the experiment were grouped into four 

categories: namely, small-sized files (file_size < 100 

kilobytes), middle-sized files (file_size <200 kilobytes), large-

sized files (file_size <1000 kilobytes), and very large-sized 

(file_size > 1000 kilobytes).  
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3.2 Small-Sized File Category 
The ten (10) different files range from 10KB to 81 KB.  The 

experimental results in Table 6 showed gain of storage space 

increased from 3.9% to 96.5%. On the average, there was an 

overall saving percentage of 59.39% in the small-sized 

category.  

The outcome of the experiment is summarised using graph in 

Figure 4. 

 
 

 

Table 4: Morpheme dictionary 

 

                                                                            

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    

Morpheme 

   

Index 

 

Morpheme 

   

Index 

  

Morpheme 

  

Index 

a 1 ster 62 ings 49 

arch 30 er 23 ies 33 

be 7 vice 39 semi 46 

un 35 let 37 ingly 67 

in 23 ie 14 fully 76 

non 43 hood 42 ily 46 

dis 32 ship 52 est 44 

de 9 dom 32 es 24 

inter 66 ry 43 e 5 

mis 41 ing 30 en 19 

mal 26 ful 39 s 19 

pseudo 80 ite 34 ers 42 

super 79 an 15 er 23 

out 56 ist 48 ence 27 

sur 58 ism 41 ences 46 

sub 42 or 33 ably 40 

over 60 rs 37 ement 57 

under 62 ant 35 ements 76 

hyper 72 ment 52 ely 42 

ultra 72 al 13 ations 78 

mini 45 age 13 ation 59 

co 18 ness 57 ance 23 

pan 31 ise 33 ances 42 

anti 44 en 19 ally 50 

pro 49 less 55 ors 52 

trans 72 ly 37 ments 71 

fore 44 like 37 ively 73 

pre 39 y 25 ive 36 

post 70 ish 36 ity 54 

ex 29 ian 24 ions 57 

re 23 ic 12 ion 38 

uni 44 ive 36 ward 46 

mono 57 ous 55 ed 9 

bi 11 able 20 wise 56 

di 13 wards 65 ure 44 

multi 75 proto 84 ry 43 

tri 47 poly 68 counter 96 

neo 34 auto 57   
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Table 5: Text categories 

SSF 

(file_size<100KB 

MSF 

(file_size<200KB) 

LSF 

(file_size<1000KB) 

VLSF 

(file_size>1000) 

10 101 349 1,169 

11 104 438 1,177 

14 128 567 2,109 

18 144 621 2,123 

18 152 800 7,181 

37 152  

38 175 

43 182 

44 183 

81 199 

 

MSF:Middle-sized File  SSF:Small-sized File 

 

VLSF: Very Large-sized File  LSF:Large-sized File 

 

Table 6: Experimental result and compression gain of small-sized file category 

 

File # Category Original size 

(KB) 

Compressed size 

(KB) 

Saving 

percentage 

SSF 1 Researcher mock text 1 10 0.1 89.1 

SSF 2 Curriculum 18 4.6 70.4 

SSF 3 A paper on data revising dictionary 81 68.8 15.1 

SSF 4 Bible text 11 0.4 96.5 

SSF 5 Dr. Gordon Moore IC 1965 article 18 15.9 11.9 

SSF 6 Data compression literature 44 42.3 3.9 

SSF 7 Article on polytechnic education 37 8.1 78.1 

SSF 8 Readme ―Calgary News‖ 14 2.4 83.0 

SSF 9 Educational committee report 43 5.4 87.5 

SSF10 Project documentation Software Eng. 38 17.2 54.8 

 

  

 

 

Figure 4: Compression gain for small-side files 

3.3 Middle-sized Files Category 
The middle-sized file (MSF) category consists of collection of 

text data of sizes smaller than 200 kilobytes, (file_size <200 

kilobytes). The ten (10) different files in this category ranged 

from 101KB to 199 KB. The experimental results are 

summarised in Table 7. The results show gains in storage 

resource space from 3.5% to 83.3%. The average saving 

percentage is 34.53%. The results are further graphed as 

shown in Figure 5. 

3.4 Large-sized Files (LSF) Category 
The experimental results of this category show saving 

percentages from 44.3% to 77.4% as summarised in Table 8 

with average overall percentage of 63.54%. The results are 

further indicated in Figure 6. 
 

3.5 Very Large-sized Files Category 
A close inspection of Table 9 suggests that better compression 

percentages were recorded for larger texts for the compression 

technique. It made gains from 18.5% to 96.4%. In general, an 

average of 60.62% compression percentage was obtained for 

files whose size is larger than 1000 Kilobytes and it gradually 

increases as the file size gets larger as indicated in Table 9. 

Figure 7 establishes the graphical aspect of the very large-

sized file category. 
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Figure 5: Compression percentage for middle-sized files 
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Table 7: Experimental results of middle-sized file category 

File # Category Original size 

(KB) 

Compressed size 

(KB) 

Saving 

percentage 

MSF 1 Student Project work 104 31.5 69.7 

MSF 2 E-book ―Double Your Dating‖ 175 168.8 3.5 

MSF 3 Text collection on algorithm 144 24.1 83.3 

MSF 4 Mini project in Software Engineering 101 68.5 32.1 

MSF 5 Bank of Ghana 2005 annual report 183 168.1 8.2 

MSF 6 Book MS. Word program 199 76.4 61.6 

MSF 7 MSC Thesis 152 107.5 29.3 

MSF 8 Oxford journal paper‖ 128 71.0 44.5 

MSF 9 Skills assessment report 152 54.0 64.5 

MSF10 Article on mobile telephone 182 109.0 40.1 

 

Table 8: Experimental Results of Large-sized File Category 
 

File # Category Original size 

(KB) 

Compressed size 

(KB) 

Saving 

percentage 

LSF 1 Researcher mock text 2 567 231.4 59.2 

LSF 2 UEW Thesis 621 233.2 64.4 

LSF 3 Book ―Getting Started with ICT  800 445.3 44.3 

LSF 4 project ―Using Rhythmic Pattern to 

 improve Pupil‘s handwriting  

349 79.0 77.4 

LSF 5 Thesis ―Adoption of e-banking in 

Ghana‖ 

438 111.9 74.4 

 

 

Table 9: Very Large-sized Files Category 
 

File # Category Original size 

(KB) 

Compressed size 

(KB) 

Saving 

percentage 

VLSF 1 Researcher mock text 2 2,123 76.42 96.4 

VLSF 2 UEW Thesis 1,117 682.4 42.4 

VLSF 3 Book ―Getting Started with ICT  1,169 953.9 18.5 

VLSF 4 project ―Using Rhythmic Pattern to 

 improve Pupil‘s handwriting  

7,181 112.2 98.4.4 

VLSF 5 Thesis ―Adoption of e-banking in 

Ghana‖ 

2,109 1,099.0 47.8 

 

 

 

Figure 6: Compression gain in large-sized file category 
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Figure 7: Compression gain in very large-sized file 

category 
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3.6 Comparison of Compression 

Percentages for the Four Categories of File 

Sizes 
From Figure 8, the compression percentages for the four 

categories of files fluctuated. SSF category recorded a highest 

compression gain of 96.5% and a lowest compression gain of 

3.9%. MSF category had a highest compression gain of 83.3% 

and also depreciated to a lowest percentage of 3.5%. Again, 

LSF recorded a highest compression gain of 77.4% and a 

lowest compression gain of 44.3%; while VLSF category had 

a highest gain of a storage resource space of 98.4% with a 

least gain in storage space of 18.5%. It is important to note 

that saving percentages for the four categories follow similar 

trends depending only on the size of the source files as shown                

in Figure 8. This means that the content of the text does not 

affect the performance of the proposed morpheme-based 

compression technique. 

 

Figure 8: Compression percentages for the four categories 

of file sizes 

4. CONCLUSION  
Considering the analysis, it could be inferred that on the 

average, as the size of data increases, the performance of the 

proposed algorithm also improved. This could be observed 

among the very large-sized file (VLSF) category. VLSF 3 of 

size 1,169KB had a saving percentage of 18.5% and VLSF 

1,177 KB recorded 42.0%. Equally, VLSF 1 of size 2,123KB 

recorded 96.4% compression gain, while VLSF 4 of size 

7,181KB obtained a compression percentage of 98.4%.  These 

observations could confirm the report of IDC in 2011 that 

most of the digital content is not unique. They reported that 

nearly 75% of our digital world is a copy; only 25% is unique. 
Again, it was noted that saving percentages for the four 

categories follow similar trends depending only on the size of 

the source files as shown in Figure 8. This means that the 

content of the text does not affect the performance of the 

proposed morpheme-based compression technique. It was also 

observed that morpheme-based text compression technique 

was very suitable for all manner of file sizes – small, middle, 

large, or very large. This could be so because the proposed 

morpheme-based compression took advantage of the 

character, word and syllable methods of data compression.  
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