
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

33

Optimising Storage Resource using Morpheme based

Text Compression Technique

Rockson Kwasi Afriyie
Department of Computer

Science

Kwame Nkrumah University of

Science and Technology,
Ghana

J. B. Hayfron-acquah
Department of Computer

Science Kwame Nkrumah

University of Scienceand

Technology, Ghana

Joseph K. Panford
Dpt. of Computer Science

KNUST, Ghana

ABSTRACT

In this paper, we present a text compression technique which

utilises morpheme-based text compression to optimise storage

resources. The proposed technique is designed to decompose

words into their morphemes and then to produce code

representations for compression. The proposed algorithm is

implemented using English Language text data and applied

using 30 different texts of different lengths collected from

different sources with different natures. The efficiency

increases with the increase in the number of long, repetitive

morphemes in the input data. To the best of our knowledge,

the resulting implementation is the first to demonstrate

lossless compression using such a technique. We illustrate its

suitability and effectiveness on a number of benchmark file

sizes – small, middle-sized, large, and very large real-world

application. The results indicated a good compression

performance of 98% making the approach an attractive one. A

further virtue of this method is its dynamic application. A

degraded compression can be compensated for by appending

identified morphemes within the document to the dictionary to

improve compression. The evaluation experiments show that:

if storage space is the primary consideration, the morpheme-

based text compression technique is an efficient approach for

compressing text data.

General Terms

Text compression: Morpheme

Keywords

Algorithm, morpheme, clean data, storage resource

1. INTRODUCTION
The demand and dependence on digital data and information

keep on increasing. New knowledge, ideas and technologies

are created and added daily into the annals of organisations,

institutions, governments, and even individuals; their daily

digital data and document files needs keep on growing to

significant sizes. It is asserted that ―The web is creating

massive amounts of data every second of the day [15].

Moore‘s law states that the amount of digital information

increases tenfold every five years and the Social Web is

accelerating data‖ [15]. A special report in The Economist,

Andrew Brust [2] observed that we are at the point of an

―industrial revolution of data,‖ with vast amounts of digital

information being created, stored and analysed. The rise of

―big data‖ has led in turn to an increased demand for tools to

both visualise and analyse the information. The New

Competition Is Data; Data Complications‖ [15]. The

information in schools, offices, libraries, books, etc is mostly

textual data which keeps on increasing daily. Projects such

Gutenberg, Distributed Proofreaders and Digital Text

Community are converting already published books into

eBooks [5, 17]. They are electronically preserving the literary

material and other media of the world for everyone to use [5].

Digital Text Community is digitising ―ink-on-paper‖ text such

as books, periodicals, documents [8] and most hitherto

physical libraries are also being digitised. The arrival of total

digitised education or world would surely be the beginning of

data storage trauma. This will be the time and period when

every learnable and learnt material in schools, colleges and

universities can only be accessed electronically.

1.1 Theory of Data Compression
The theoretical background of compression is provided

by information theory. Information theory is a study of

information based on probability theory [7]. It was proposed

by Claude E. Shannon at Bell Laboratories in 1948 [12] and

based on people‘s reception and reaction towards given

information; which is aimed at a mathematical way of

measuring the quantity of information [7]. Data compression

is the fundamental expression of information theory which is

a branch of mathematics concerned with various questions

about information, including different ways of storing and

communicating messages [12]. Data compression is

connected to the field of information theory because of its

concern with redundancy [12]. Redundancy is the number of

bits used to transmit a message minus the number of bits of

actual information in the message. According to Wikipedia,

redundancy refers to ―the amount of wasted "space" used to

transmit certain data‖ [17]. Data compression is a way to

reduce or eliminate unwanted redundancy. Therefore, the

basis of any data compression algorithm depends on the

presence of redundancy in the given data. The more

redundancy the source data has, the more effective a

compression algorithm may be [7].

1.2 Early Development in Data

Compression
According to history of irreversible data compression, the idea

of creating sounds by adding together pure tones goes back to

antiquity [18]. Following work by Joseph Fourier around

1810, it became clear by the mid-1800s how smooth function

could be decomposed into sums of sine waves with

frequencies corresponding to successive integers. Early

telephony and sound recording in the late 1800s already used

the idea of compressing sounds by dropping high-and low-

frequency components [18]. Early days of television in the

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

34

1950s saw similar kinds of compression for images but

serious efforts were made when digital storage and processing

of images became common in the late 1980s [18]. Morse

code used in telegraphy was a form of earliest text

compression [18]. Modern data compression began in 1940s

with the development of information theory [18]. In 1949,

Claude Shannon and Robert Fano introduced the method of

compressing information using probabilities of blocks and in

late 1970s, software compression programs based on adaptive

Huffman coding were developed [18]. In 1977, Abraham

Lempel and Jacob Ziv published a paper with a different

approach to the symbol coding problem; their method is the

basis of most lossless data compression techniques [11, 18].

The late 1980s and early 1990s saw digital images

compression standards and lossy compression methods

respectively [18]..

1.3 Data Compression Algorithms
A data compression algorithm refers to the step-by-step

methodologies employed to compress data into a relatively

small size with the aim of converting source data at the

compression end into a compressed message [7] and restore it

precisely the same content information or with little

distortion. Compression algorithms can be divided into two

major families [12]. They are lossless compression and lossy

compression [11, 13]. The lossless compression which is

applied to database records, spreadsheets, or word processing

files, encodes the original input without loss of information.

The lossy compression accepts a slight loss of data and proves

effective when applied to graphics, images and digitised voice

[12]. An algorithm may be static or adaptive Figure 1 and

Figure 2 respectively base on its ability to adjust itself. The

compression algorithm which samples from the inputs to

adjust the model is called adaptive compression [13]. A fixed

model compression algorithm is called static modelling

compression.

 X Compression

 Compression

Figure 1: Static compression model diagram

 Update

X Compression

 Compression

 Figure 2: Adaptive compression model diagram

1.4 Characteristics of Existing

Compression Algorithms
There are two major ways to compress data, Statistical-based

model and Dictionary-based model [6]. The choice of either

method is informed by the type of data being compressed. The

statistical-based algorithms explore the numerical redundancy

of individual characters within the data.

1.5 Statistical-Based Compression Method
The statistical-based algorithms explore the numerical

redundancy of individual characters within the data. It is

based on counting individual symbol and the determination of

its frequency of occurrence. This technique achieves

compression by assigning shorter codes to most frequently

used symbols and longer codes to rare appeared symbols [14].

Among the compression techniques that use statistical

criterion are Huffman coding algorithm, Shannon-Fano

algorithm, run-length coding and arithmetic algorithms [7].

1.6 Dictionary-Based Data Compression
A dictionary-based compression scheme uses a different

concept [12]. A coding system (coder) keeps a pattern of

characters in memory called dictionary, which keeps string

patterns seen before and the indices are used to encode the

repeated patterns [7]. It reads in input data and looks for

groups of symbols that appear in a dictionary. If a string

match is found, a pointer or index into the dictionary is output

instead of the code for the symbol. When the match is longer,

the compression ratio is better, however, the size of the

dictionary may affect the efficiency of the algorithm. In

general, dictionary-based compression replaces phrases

(symbols) with pointers. If the number of bits in the pointer is

less than the number of bits in the phrase, compression will

occur. However, the methods for building and maintaining a

dictionary are varied. Some popular dictionary-based

algorithms are LZ77 and LZ78 compression algorithms.

 X

 Decompression

Update

 x

 Decompression

Decoder

Coder

Model-C

Model-D
Coder

Decoder

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

35

1.7 Recent Development in Data

Compression
Data compression as an area for research work is generally

not new. According to Ibrahim Akman and his colleagues,

most text compression algorithms perform compression at

character level or at word level [1]. Jan Lansky and Michal

Zemlicka reported that there are two basic types of text

compression by symbol representation – the characters and

words. They believe that, the syllable is another way by which

text can be compressed [9]. They claimed that syllable,

character and word compressions will be suitable for middle,

small and very large files respectively. Today‘s advances in

lossless file compression, generally assume that there is an

inherent redundancy in text and therefore seek to minimise or

eliminate these redundancies [7]. Most text compression

algorithms perform data compression at character level or

word level and they do not consider adjacent string structures

in words such as syllable [1]. The existing text compression

techniques have been reported to have some weaknesses [1].

At the character level, a single bit error may be sufficient to

result in a long stream of errors in the coded file, at the

syllable level, the compression ratio does not meet the desired

storage requirements and the most effective compression

algorithms are reported to be computationally expensive [1].

1.8 Overview of Morpheme Concept
A morpheme is the smallest bit of language that has its own

meaning; either a word or a part of a word [3]. Every

language has a morpheme and every word comprises one or

more morphemes. They can be classified in different ways. A

morpheme may be free or bound [10]. Free morphemes can

stand alone and function independently as words; while bound

morphemes appear only together with other morphemes or as

parts of words, always in conjunction with a root. Bound

morphemes can be split further into derivational or

inflectional [5, 10]. Derivational morphemes are the type,

whose part of speech is modified upon root combination. For

instance, in the word joyfulness, the addition of the bound

morpheme -ness to the root joyful changes the word from an

adjective (joyful) to a noun (joyfulness).

Inflectional morphemes cause a change to a noun‘s number or

verb's tense leaving the word's meaning or class intact. They

are achieved by addition of –s or –ed to the root. For

example, adding -s to the root dog to form dogs and adding -

ed to wait to form waited. English has eight inflectional

affixes – affixes that depend on the function of a word in a

sentence. For example, the inflectional affix‗s‘ on the end of

pot makes the word plural. The remaining affixes in English

are derivational affixes, which change the form or meaning of

words. Table 1 lists all eight of the inflectional affixes in

English.

Table 1: The inflectional affixes in English Language

Inflectional Affixes Derivational Affixes

S: creates plural

nouns

Noun Verbs Adjective Adverb

S: creates possessive

nouns

-ant -ate -able -ly

S: creates third

person singular

verbs

-er -en -al -ward

Ed: creates verbs

past tense

-hood -ise -ful -wise

en: creates past

participle

-ment others -y others

ing: creates present

participle

-ness -ous

er: creates

comparatives

-tion others

est: creates

superlatives

others

Table 2 labels the various morphemes in a typical English

sentence: “The students have a wonderful teacher”

Table 2 : Illustration of morphemes

The stud

ent

s hav

e

a won

der

ful teac

h

er

free free bound free free free boun

d

free boun

d

2. MATERIALS AND METHODS

2.1 Research Design
Experimental research design was used to obtain information

about the population by selecting and experimenting sample

from the entire population. Scientific sampling procedure was

used to select 30 text data files from different sources of

different natures for the implementation and experimentation

of the proposed algorithm.

2.2 The Proposed Algorithm

The proposed morpheme-based algorithm works using

English text data as follows:

 Miss – “Mis” and “s”; Rejoyce – “Re”, “joy” and “ce”;

displays – “dis”, “play” and “s” etc.

The proposed algorithm is as follows:

i. Read the text input

ii. Partition the string input into possible morphemes

iii. Extract morphemes.

iv. Scanned the extracted morpheme through the

dictionary to do a match if there exist.

v. Represent the morphemes with the relevant code

representation

vi. If the string in the input text is not in the morpheme

unit passed text unaltered.

The operation of the algorithm is further illustrated in Figure 3

using a flow chart.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

36

Figure 3: Morpheme-based text compression algorithm

flowchart

Table 3: Alphabets Number Assignment

Alphabets number assignment shown in Table 3 was used as

the basis for coding to generate the morpheme dictionary.

This assignment scheme made the generation of the dictionary

simple and computationally inexpensive.

2.3 MORPHEME DICTIONARY

GENERATION

2.3.1 Morpheme coding system
The morphemes were coded by a simple approach of adding

the coded numbers for each character. The target morpheme

assigned, for instance, the morpheme ―ing‖ was coded as

follows:

 Step 1: assign the constituent characters in the

morpheme with their respective numbers

 i = 9

 n = 14

 g = 7

Step 2: sum them up

 9 + 14 + 7 = 30

From the calculation performed, the morpheme ―ing‖ would

be assigned the correspondent code representation 30. Thus,

in the dictionary, the morpheme ―ing‖ would be represented

by the code 30. All the other morphemes were coded likewise

and were assigned code representations. Using the same

process of coding, the morpheme dictionary was obtained as

shown in Table 4.

2.4 Demonstration of the Proposed

Algorithm for English Language Text Data
The English language is used for the implementation of the

proposed algorithm. The choice of English Language was its

widespread; global language; most important and popular

language worldwide [4]. Again, English is considered the

most widely and commonest language on the Internet [16].

English sentence is selected for the illustration of the

proposed approach since this is the language used in

implementation.

“The display of joyfulness by miss joyce in playing computer

games using a joystick is enjoyed by her friends”.

The given sentence contains 19 words but the resultant

morpheme count is 27.

Algorithm

i. Read the sentence word by word

ii. Send each word to the morphemes unit one by one to be

partitioned into its morphemes. For example, morphemes

unit partitions the string ―display‖ into two morphemes:

display as “dis” and “play”.

joyfulness as “joy” “ful” and “ness”

miss as “mis” and “s”

joyce as “joy” and “ce”

playing as “play” and “ing”

computer as “compute” and “r”

games as “game” and “s”

using as “us” and “ing”

Char Code

Blank 0

A 1

B 2

C 3

D 4

E 5

F 6

G 7

H 8

I 9

J 10

K 11

L 12

M 13

N 14

O 15

P 16

Q 17

R 18

S 19

T 20

U 21

V 22

W 23

X 24

Y 25

Z 26

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

37

joystick as “joy” and “stick”

enjoyed as “en”, “joy” and “ed”

her as “he” and “r”

friends as “friend” and “

2.5 Theoretical Consideration of the

Proposed Algorithm
We took the sentence under consideration morpheme-by-

morpheme vis-a-vis the number of times each morpheme is

repeated in the given sentence. For example, ―joy‖ reoccurred

four (4) times. This proposed algorithm proposes that, if the

morpheme ―joy‖ is encoded and represented by a token (code

representation) which is less than the number of characters

involved instead of the usual conventional requirements of

this individual character being repeated, there could be some

significant saving of storage space of a storage resource. The

detailed breakdown of the sentence and the inherent character

redundancies is done below:

 s 3-1 = 2 redundant characters

joy 4-1 = 3 redundant characters

play 2-1 = 1 redundant character

ing 2-1 = 1 redundant character

 r 2- 1 = 1 redundant character

The morpheme-based technique represents the original 27

morphemes in only 19. Certainly, the actual format used for

the storage of text is generally binary rather than ASCII

morphemes like this, but the principle remains the same.

2.6 Compression Performance Metrics
According to Ida Mengyi Pu, ―the compression effect of an

algorithm is measured by the amount of shrinkage of the

source file in relation to the size of the compressed version‖

[7]. From this assertion, the following formulae are provided:

 (1)

where CR represents compression ratio; Lac represents the

size after compression and Lbc size before compression.

CR=

 (2)

where Cf represents compression factor

*100 (3)

*100

 = 29.6% (1 dp.)

where Sp represents saving percentage

*100 (4)

 *100

 (1 dp.)

where Cg represents compression gain.

2.7 Decompression Component
The decompression method is the same as the compression

aspect. It uses the same components as the compression

algorithm. The compressed text whose first string is a word is

read since the morpheme is not modified during

decompression. Coded text data is replaced by the original

morpheme in the word. At the decompression, the string

replaces the coded representation. The code will be the same

as the one created since during compression the order of

morpheme remains same during compression/decompression

process. At the same time, the alphabetic text is transmitted to

the output unit. If the entry text is a coded representation, then

its code is searched for and replaced. The searching and

replacement process is continued till the end of the file is

reached and finally, the original text is produced from the

compressed text.

2.8 Implementation of the Proposed

Algorithm
The performance of the algorithm was measured using 30 text

files of sizes ranging from 10 Kilobytes to 7,181 Kilobytes.

The texts were selected from different sources. The data

collected for the experiment were grouped into four

categories: namely, small-sized files (file_size < 100

kilobytes), middle-sized files (file_size <200 kilobytes), large-

sized files (file_size <1000 kilobytes), and very large-sized

(file_size >1000 kilobytes). The summary of the categories is

indicated in Table 5.

2.9 Experimental Design and Testing

Environment
Hewlett-Packard Pentium IV of system type 32-bit operating

system; processor of type Intel(R) Atom(TM) CPU

N455 of speed 1.66 GHz machine with an installed memory

(RAM) of 1.00 GB, a Hard disk capacity of 217 gigabytes and

having Microsoft Windows XP as its Operating System was

used to run the various texts.

3. RESULTS AND DISCUSSIONS

3.1 Data Classification
The data collected for the experiment were grouped into four

categories: namely, small-sized files (file_size < 100

kilobytes), middle-sized files (file_size <200 kilobytes), large-

sized files (file_size <1000 kilobytes), and very large-sized

(file_size > 1000 kilobytes).

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

38

3.2 Small-Sized File Category
The ten (10) different files range from 10KB to 81 KB. The

experimental results in Table 6 showed gain of storage space

increased from 3.9% to 96.5%. On the average, there was an

overall saving percentage of 59.39% in the small-sized

category.

The outcome of the experiment is summarised using graph in

Figure 4.

Table 4: Morpheme dictionary

Morpheme

Index

Morpheme

Index

Morpheme

Index

a 1 ster 62 ings 49

arch 30 er 23 ies 33

be 7 vice 39 semi 46

un 35 let 37 ingly 67

in 23 ie 14 fully 76

non 43 hood 42 ily 46

dis 32 ship 52 est 44

de 9 dom 32 es 24

inter 66 ry 43 e 5

mis 41 ing 30 en 19

mal 26 ful 39 s 19

pseudo 80 ite 34 ers 42

super 79 an 15 er 23

out 56 ist 48 ence 27

sur 58 ism 41 ences 46

sub 42 or 33 ably 40

over 60 rs 37 ement 57

under 62 ant 35 ements 76

hyper 72 ment 52 ely 42

ultra 72 al 13 ations 78

mini 45 age 13 ation 59

co 18 ness 57 ance 23

pan 31 ise 33 ances 42

anti 44 en 19 ally 50

pro 49 less 55 ors 52

trans 72 ly 37 ments 71

fore 44 like 37 ively 73

pre 39 y 25 ive 36

post 70 ish 36 ity 54

ex 29 ian 24 ions 57

re 23 ic 12 ion 38

uni 44 ive 36 ward 46

mono 57 ous 55 ed 9

bi 11 able 20 wise 56

di 13 wards 65 ure 44

multi 75 proto 84 ry 43

tri 47 poly 68 counter 96

neo 34 auto 57

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

39

Table 5: Text categories

SSF

(file_size<100KB

MSF

(file_size<200KB)

LSF

(file_size<1000KB)

VLSF

(file_size>1000)

10 101 349 1,169

11 104 438 1,177

14 128 567 2,109

18 144 621 2,123

18 152 800 7,181

37 152

38 175

43 182

44 183

81 199

MSF:Middle-sized File SSF:Small-sized File

VLSF: Very Large-sized File LSF:Large-sized File

Table 6: Experimental result and compression gain of small-sized file category

File # Category Original size

(KB)

Compressed size

(KB)

Saving

percentage

SSF 1 Researcher mock text 1 10 0.1 89.1

SSF 2 Curriculum 18 4.6 70.4

SSF 3 A paper on data revising dictionary 81 68.8 15.1

SSF 4 Bible text 11 0.4 96.5

SSF 5 Dr. Gordon Moore IC 1965 article 18 15.9 11.9

SSF 6 Data compression literature 44 42.3 3.9

SSF 7 Article on polytechnic education 37 8.1 78.1

SSF 8 Readme ―Calgary News‖ 14 2.4 83.0

SSF 9 Educational committee report 43 5.4 87.5

SSF10 Project documentation Software Eng. 38 17.2 54.8

Figure 4: Compression gain for small-side files

3.3 Middle-sized Files Category
The middle-sized file (MSF) category consists of collection of

text data of sizes smaller than 200 kilobytes, (file_size <200

kilobytes). The ten (10) different files in this category ranged

from 101KB to 199 KB. The experimental results are

summarised in Table 7. The results show gains in storage

resource space from 3.5% to 83.3%. The average saving

percentage is 34.53%. The results are further graphed as

shown in Figure 5.

3.4 Large-sized Files (LSF) Category
The experimental results of this category show saving

percentages from 44.3% to 77.4% as summarised in Table 8

with average overall percentage of 63.54%. The results are

further indicated in Figure 6.

3.5 Very Large-sized Files Category
A close inspection of Table 9 suggests that better compression

percentages were recorded for larger texts for the compression

technique. It made gains from 18.5% to 96.4%. In general, an

average of 60.62% compression percentage was obtained for

files whose size is larger than 1000 Kilobytes and it gradually

increases as the file size gets larger as indicated in Table 9.

Figure 7 establishes the graphical aspect of the very large-

sized file category.

0

10

20

30

40

50

60

70

80

90

S
a

v
in

g
 p

e
rc

e
n

ta
g

e

M
S

F
 1

M
S

F
 2

M
S

F
 3

M
S

F
 4

M
S

F
 5

M
S

F
 6

M
S

F
 7

M
S

F
 8

M
S

F
 9

M
S

F
 1

0

Files

Figure 5: Compression percentage for middle-sized files

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

40

Table 7: Experimental results of middle-sized file category

File # Category Original size

(KB)

Compressed size

(KB)

Saving

percentage

MSF 1 Student Project work 104 31.5 69.7

MSF 2 E-book ―Double Your Dating‖ 175 168.8 3.5

MSF 3 Text collection on algorithm 144 24.1 83.3

MSF 4 Mini project in Software Engineering 101 68.5 32.1

MSF 5 Bank of Ghana 2005 annual report 183 168.1 8.2

MSF 6 Book MS. Word program 199 76.4 61.6

MSF 7 MSC Thesis 152 107.5 29.3

MSF 8 Oxford journal paper‖ 128 71.0 44.5

MSF 9 Skills assessment report 152 54.0 64.5

MSF10 Article on mobile telephone 182 109.0 40.1

Table 8: Experimental Results of Large-sized File Category

File # Category Original size

(KB)

Compressed size

(KB)

Saving

percentage

LSF 1 Researcher mock text 2 567 231.4 59.2

LSF 2 UEW Thesis 621 233.2 64.4

LSF 3 Book ―Getting Started with ICT 800 445.3 44.3

LSF 4 project ―Using Rhythmic Pattern to

 improve Pupil‘s handwriting

349 79.0 77.4

LSF 5 Thesis ―Adoption of e-banking in

Ghana‖

438 111.9 74.4

Table 9: Very Large-sized Files Category

File # Category Original size

(KB)

Compressed size

(KB)

Saving

percentage

VLSF 1 Researcher mock text 2 2,123 76.42 96.4

VLSF 2 UEW Thesis 1,117 682.4 42.4

VLSF 3 Book ―Getting Started with ICT 1,169 953.9 18.5

VLSF 4 project ―Using Rhythmic Pattern to

 improve Pupil‘s handwriting

7,181 112.2 98.4.4

VLSF 5 Thesis ―Adoption of e-banking in

Ghana‖

2,109 1,099.0 47.8

Figure 6: Compression gain in large-sized file category

0

10

20

30

40

50

60

70

80

90

100

S
a

v
in

g
 p

e
rc

e
n

ta
g

e
 (

K
B

)

V
L
F
S

 1

V
L
F
S

 2

V
L
F
S

 3

V
L
F
S

 4

V
L
F
S

 5

Files

Figure 7: Compression gain in very large-sized file

category

0

100

200

300

400

500

600

700

800

F
ile

 s
iz

e

LSF1 LSF2 LSF3 LSF4 LSF5

File

Original size

Compressed size

Saving percentage

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

41

3.6 Comparison of Compression

Percentages for the Four Categories of File

Sizes
From Figure 8, the compression percentages for the four

categories of files fluctuated. SSF category recorded a highest

compression gain of 96.5% and a lowest compression gain of

3.9%. MSF category had a highest compression gain of 83.3%

and also depreciated to a lowest percentage of 3.5%. Again,

LSF recorded a highest compression gain of 77.4% and a

lowest compression gain of 44.3%; while VLSF category had

a highest gain of a storage resource space of 98.4% with a

least gain in storage space of 18.5%. It is important to note

that saving percentages for the four categories follow similar

trends depending only on the size of the source files as shown

in Figure 8. This means that the content of the text does not

affect the performance of the proposed morpheme-based

compression technique.

Figure 8: Compression percentages for the four categories

of file sizes

4. CONCLUSION
Considering the analysis, it could be inferred that on the

average, as the size of data increases, the performance of the

proposed algorithm also improved. This could be observed

among the very large-sized file (VLSF) category. VLSF 3 of

size 1,169KB had a saving percentage of 18.5% and VLSF

1,177 KB recorded 42.0%. Equally, VLSF 1 of size 2,123KB

recorded 96.4% compression gain, while VLSF 4 of size

7,181KB obtained a compression percentage of 98.4%. These

observations could confirm the report of IDC in 2011 that

most of the digital content is not unique. They reported that

nearly 75% of our digital world is a copy; only 25% is unique.
Again, it was noted that saving percentages for the four

categories follow similar trends depending only on the size of

the source files as shown in Figure 8. This means that the

content of the text does not affect the performance of the

proposed morpheme-based compression technique. It was also

observed that morpheme-based text compression technique

was very suitable for all manner of file sizes – small, middle,

large, or very large. This could be so because the proposed

morpheme-based compression took advantage of the

character, word and syllable methods of data compression.

5. ACKNOWLEDGMENTS
Authors are thankful to Dr. M. Asante, Head of Department,

Computer science, Kwame Nkrumah University of Science

and Technology (KNUST), Kumasi.

6. REFERENCES
[1] Akman, I. et‘al. 2011. Lossless text compression

technique using syllable based morphology. The

International Arab Journal of Information Technology,

Vol. 8, No. 1, January 2011.

[2] Andrew, B. 2011. Big Data.

www.zdnet.com/blog/service...of...data...growing.../4750

http://www.zdnet.com/five-big-data-trends-

revolutionizing-retail-7000019510/

[3] International Dictionary of English. 2002. Morpheme is

the smallest bit of language. Low Price Edition,

University Press.

[4] David G. 2000. The future of English; A guide to

forecasting the popularity of English Language in the

21st century.

[5] Distributed proofreaders. 2011. Digitisation of Public

Domain Books. http://www.pgdp.netg. (accessed 2011

October 20).

[6] http://www.codeguru.com/cpp/cpp/algorithms/compressi

on/article.php/c5089/ (accessed 2010 August 13).

[7] Ida, M. P. 2006. Fundamental data compression.

Butterworth-Heinemann Linacre House, Jordan Hill,

Oxford OX2 30 Corporate Drives, Suite 400, Burlington,

MA 01803.

[8] Jon, N. 2007. Digital Text Community — new forum on

digitizing ―ink-on-paper‖ texts. http://www.teleread.com

/ebooks/digital-text-community-new-forum-on

digitizing-ink-on paper-texts/ (accessed 2011 October

24).

[9] Lansky, J., Zemlicka, M. 2005. Text Compression:

Syllables Conference: Databases, Texts, Specifications,

Objects - DATESO, pp. 32-45, 2005

http://academic.research.microsoft.com/Publication/1873

500/text-compression-syllables. (Access 2011 December

14).

[10] Mark, C. 2003. An Introduction to Language. ENG 346:

Aspects of the English Language Lesson 4:

Morphology.Updated January 7, 2003.

http://www.uncp.edu/home/canada/work/markport/langu

age/aspects/spg2003/04morph.htm. (accessed 2012 April

3).

[11] Mark, N. 1989. Data compression, LZW Data

Compression http://marknelson.us/1989/10/01/lzw-data-

compression.

[12] Mark, N. and Jean-loup, G. 1995. The Data compression

book 2nd edition, M&T Books, Wiley, New York, NY.

http://staff.uob.edu.bh/files/781231507_files/The-Data-

Compression-Book-2nd-edition.pdf

[13] Shenfeng, C. 1996. Algorithmic Applications of data

Compression Techniques. Department of Computer

Science; Duke University. http://www.cs.duke.edu/~reif/

paper/chen/chen.thesis/chen.thesis.pdf.

[14] Skibi´nski, P. Grabowski, S. Z., and Deorowicz, S. 2005.

Revisiting dictionary-based compression Software

Practice and Experience. (accessed 2012 January 11).

[15] Social Media Informer. 2012. Data is growing and shows

no signs of slowing down. http://www.socialmedia

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10

Files

P
e

rc
e

n
ta

g
e

s

VLSF LSF MSF SSF

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 2, May 2014

42

informer.com/data/information/statistics/ (accessed 2012

December 4).

[16] Web Technology Survey. Usage of content languages for

websites.http://w3techs.com/technologies/overview/cont

ent_language/all

[17] Wikipedia. 2012. Converting already published books

into eBooks. en.wikipedia.org/wiki/Gutenberg (accessed

2012 May 5).

[18] Wolfram, S. 2002. A new kind of science. Notes for

Chapter 10: Processes of Perception and Analysis

Section: Data Compression Page 1069.

http://www.wolfram science.com/nksonline/page-1069b-

text?firstview=1 (accessed 2011 March 10).

IJCATM : www.ijcaonline.org

