
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

22

Risk Management in Software Development

using Artificial Neural Networks

 Amrita Gandhi Ajit Naik Kapil Thakkar Manisha Gahirwal
Computer Dept., VESIT. Computer Dept., VESIT Computer Dept., VESIT Computer Dept., VESIT.
 Mumbai-74, India. Mumbai-74, India. Mumbai-74, India. Mumbai-74, India

ABSTRACT

IT industry is one of the biggest industries around the world

with several software projects being developed which vary in

size, cost, complexity, etc. During development, many risks of

different types arise such as lack of staff experience, new

technologies, budgets, etc. These risks play a huge role in

success or failure of a project. Most of the available risk

management solutions are too costly and time consuming.

There is a need for an efficient risk management technique.

To assist the project manager in risk management, we have

developed an application which will identify the risks

involved during software development and predict the success

or failure of the project using Artificial Neural Networks. The

prediction will be done using historical data taking the

important and common risk factors into account. After risk

identification, the probability of success or failure will be

determined and suggestions for risk mitigation will be

provided for the project. This application will help the project

managers in carrying out risk management activities

efficiently.

General Terms

Risk Management, Machine Learning

Keywords

Risk Identification, Neural Networks, Backpropagation

1. INTRODUCTION
IT projects are much more risky than we think. A study

conducted by Flyvbjerg and Budzier [1] showed that amongst

the 1400+ projects surveyed, on an average 27% were over

budget, 16% of the projects could easily be categorized as

Black Swans. A black swan is a highly improbable event with

three principal characteristics: It is unpredictable; it carries a

massive impact; and, after analysis it appear less random, and

more predictable, than it was. These projects had a cost

overrun of over 200% and were late by almost 70%. These

were the projects which could cause stunning failures and

bring down companies. Presently, there are few software or

tools available which assist the developers in determining the

impact of these risks in the development lifecycle. Software

Development life cycle consists of well-defined steps such as

Requirement Analysis and Specification, Design, Coding,

Testing and Maintenance. Different type of risks are

associated with each of these steps. So, a tool is developed

which will help to determine the impact of the risks on the

project being developed, so that project failures due to these

risks can be minimized. This tool can be used in any phase of

the software development process and any number of times, to

find out the risk factors which will highly impact the project

in the future, if proper actions are not taken to mitigate them.

1.1 Risk Management
Risk management is the identification, assessment, and

prioritization of risks followed by coordinated and economical

application of resources to minimize, monitor, and control the

probability and/or impact of unfortunate events or to

maximize the realization of opportunities [2].

Risk management is the process where first risk identification

and calculation of its impact takes place, then a strategy is

developed to control those risks. Also we continuously

monitor the steps taken to control it. The steps in risk

management process are:

1. Risk Identification: Risk Identification is the activity where

the all the potential risks which can affect the development of

project are determined. For that risk check list can be created.

2 Risk Analysis: It is the understanding of when, where, and

why risk might occur, through direct queries to stakeholders

about the probability and impact of risk elements.

3 Plan: In this stage, a strategy is made to minimize the

impact of the risk. Proper steps are defined to manage risks.

4. Monitoring: The steps taken to avoid or minimize risk are

continuously monitored so that risk does not go out of control.

5 Control: The planned actions are carried out if the risk

occurs.

1.2 Artificial Neural Networks
A neural network is a parallel distributed processor made up

of processing units that is inspired by the way biological

nervous systems, such as the brain, process information. An

ANN consists of several layers of computing elements called

nodes. Each node receives an input signal from other nodes or

external inputs and after processing the signals, it outputs a

transformed signal to other nodes or final result. The first

layer is called the input layer where external information is

received. The last layer is called the output layer where the

network produces the solution. In between, there are one or

more hidden layers which are critical to artificial neural

networks to identify the complex patterns in the data. The

transfer (activation) function translates the input signals to

output signals.

The reasons for using ANN are as follows:

1. It has the ability to learn how to do tasks based on data

given for training.

2. It has the ability to generalize i.e. produce reasonable

outputs for inputs it has not been taught how to deal with.

http://www.amazon.com/Black-Swan-Impact-Highly-Improbable/dp/1400063515
http://www.amazon.com/Black-Swan-Impact-Highly-Improbable/dp/1400063515

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

23

1.3 Back propagation Algorithm
Back propagation is a supervised learning method, and is a

generalization of the delta rule. It requires a dataset of the

desired output for many inputs, making up the training set. It

requires that the activation function used by the artificial

neurons be differentiable. [3] It finds a way to train multi-

layered neural networks such that it can learn any arbitrary

mapping of input to output. It is simple to implement.
The algorithm is based on the error correction learning rule. It

consists of 2 phases:

Forward phase: Weights are fixed. Input signal propagates

through the network, layer by layer, until it reaches the output.

Backward phase: Error signal propagates backwards.

Obtained output is compared with the desired one.

1.4 Selection of Risk factors
There are several risk factors which affect the software

development process. But after taking a literature survey

[4][5][6], we have considered 10 most effective and common

risk factors for our project as follows:

1. Changing Scope / Objectives / Requirements.

2. Misunderstanding the Requirement.

3. Failure to Manage End User Expectations.

4. Introduction of New Technology.

5. Lack of Required Knowledge / Skills in Project Personnel.

6. Insufficient / Inappropriate Staffing.

7. Inadequate Documentation.

8. Scheduling and Planning.

9. Level of Complexity.

10. Budget.

2. IMPLEMENTATION
The flow of the project is shown in figure 1. Initially, the risk

factors values will be calculated by using a questionnaire and

risk exposure values. The calculated risk factors values will be

applied to a trained neural network. The neural network will

calculate the success rate of the project. Also, using the

calculated risk factors values, the factors with high risks will

be identified and mitigation steps to reduce the risk will be

provided.

Fig 1: Overview of the architecture

2.1 Creation of questionnaire and

calculation of risk factor value

A questionnaire was created which consisted of questions

related to the selected 10 risk factors. These questions were

selected from the extensive taxonomy-based questionnaire

[7]. Each question needs to be answered in YES/NO format as

shown in figure 3. Each question is assigned a weight. These

weights were determined by carrying out a survey. In the

survey, the project managers were asked to rate each

question’s importance out of 10. The average of the ratings

assigned to each question by different project manager was

taken to calculate the weight of that question. There are two

types of questions: positive and negative questions. Positive

questions are those questions which when answered as YES,

contribute to the risk. Negative questions are those questions

which when answered as NO, contribute to the risk. The value

of a risk factor is calculated as follows:

Risk Factor Value= Q1*W1+Q2*W2+...+QN*WN

Where QN= value of question N and WN = weight of WN

and so on.

For positive questions, QN=1, if answer=YES. QN=0, if

answer=NO.

For negative questions, QN=0, if answer=YES. QN=1, if

answer=NO.

The risk factor value is then mapped in the range of 1-10 as:

Risk factor Value= Risk Factor Value*10/W

Where W= W1+W2+W3+....+WN.

2.2 Generation of training data
As back propagation algorithm is used, in order to use the

network, the neural network has to be trained. To train the

network, we need to have historical data about the value of the

risk factors and corresponding result, whether project failed or

succeeded. The real data regarding to this is confidential for

the company. A survey was conducted in which the impact

value and probability of different risk factors were collected

from project managers. Combining them with random

numbers (in the range 1 to 10), tuples were generated. Each

tuple represented the risk factor values for a random project.

A threshold value was set to decide the success or failure of

the project.

2.3 Creating the neural network
Matlab R2012a was used to create the neural network. The

software consists of a neural network toolbox using which we

created the neural network. The neural network has 10 inputs

and 1 output.

2.3.1 Determining number of hidden layers and

number of hidden nodes
In order to select the best performing neural network for the

application, we tested the performance of neural networks

with different number of hidden layers and different number

of nodes. Initially a neural network with 1 hidden layer was

created. Then, the number of nodes were varied and

performance of each model was noted. Similarly, we tested

the performance of neural network with 2 and 3 hidden layers.

After comparing the performances, the ANN with 1 hidden

layer and 10 nodes gave the best performance for the given

input. Some of the results are shown in table 1

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

24

Table 1: Determining the best performing architecture

Number of hidden layers Number of hidden nodes Performance

1 3 0.1737

1 5 0.1823

1 8 0.2025

1 10 0.2578

1 12 0.1733

1 15 0.1741

1 20 0.2409

1 25 0.1684

2 10,10 0.2109

2 5,5 0.1859

2 15,15 0.1906

2 20,20 0.1952

2 8,10 0.1812

2 12,15 0.2075

2 20,25 0.1407

2.3.2 Training
The neural network was trained using scaled conjugate gradient backpropagation algorithm. The algorithm is a good choice for

classification problems. It has lesser memory requirements and is faster than gradient descent algorithms.

Fig 2: Neural network with 1 hidden layer and 10 hidden nodes

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

25

3. RESULTS
The output will contain the bar graph showing the success

percentage of the project. Also, it will show past values of the

risk factors, when project was run previously. It will help the

user to keep track of the risk values in the project. At the end,

depending on the risk values, all the risk factors will be

highlighted in the category of high, medium and low risk

values. By clicking on them, user will be able to see the

mitigation steps and also depending on phase the mitigation

steps will be provided.

Fig 3: Questionnaire for risk factor- Changing scope and requirements

Fig 4: Output of neural network

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

26

Fig 5: Comparing output with result of previous run

Fig 6: Categorizing the risks into various domains

 Fig 7: Graph depicting result of all the runs

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

27

Fig 8: Classification of risks into high, medium and low risk

Fig 9: Mitigation steps

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.19, May 2014

28

4. CONCLUSION AND FUTURE SCOPE
One of the most important phases in the project development

is Risk Management. Due to various risk factors, the

developer and the project team may not notice some of the

risks. Thus, we have successfully developed a tool that

predicts the amount of risks involved in a software project, so

that they can be detected well in advance and proper steps for

mitigation can be taken to increase the success rate of project.

So this will be an extremely useful tool for the project

managers in the Risk management process.

This is a general model, which can be further extended. As 10

most common factors were considered, in practice, we can

consider more factors which have a higher impact on the

project. This project contains the generalized questions in

software development. Similarly questionnaire can be

prepared according to the type of the software developed by

the company. Also, facility to add new questions or delete the

irrelevant questions from the forms can be provided to the

admin of the software. Time factor can also be taken into

account, i.e., if risk value of any factor remains high for a long

time during development process then more weightage can be

assigned to it. Also, depending on the software company in

which this software is used, mitigation steps can be set

according to different phases of software development

process.

5. REFERENCES
[1] Bent Flyvbjerg and Alexander Budzier 2011 Why your

IT project may be riskier than you think., Harvard

Business Review.

[2] Hubbard, Douglas (2009). The Failure of Risk

Management: Why It's Broken and How to Fix It. John

Wiley & Sons. p. 46.

[3] Neural Networks and Learning Machines by Simon

Haykin (2009)

[4] Barki, H.; Rivard, S.; and Talbot, J. Toward an

assessment of software development risk. Journal of

Management Infonnation Systems.

[5] Boehm, B. 1991. Software risk management: principles

and practices

[6] Moynihan. T. 1997 How experienced project managers

assess risk. IEEE Software.

[7] Marvin J. Carr, Suresh L. Konda, Ira Monarch, F. Carol

Ulrich, Clay F. Walker (1993). Taxonomy-Based Risk

Identification

IJCATM : www.ijcaonline.org

