
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

40

Applicability of Lehman Laws on Open Source

Evolution: A Case study

Taranjeet Kaur
M.Tech. Student,

Dept. of CSE & IT,
RIEIT, Railmajra, Punjab, India

Nisha Ratti
Assistant Professor,
Dept. of CSE & IT,

RIEIT, Railmajra, Punjab, India

Parminder Kaur
Assistant Professor

Dept. of CSE
GNDU,Amritsar, India

ABSTRACT

Software evolution is an essential characteristic of real world

software ,as the user requirements changes, software needs to

change otherwise it becomes less useful. In order to be used

for a longer time period, software needs to evolve. Software

evolution can be a result of software maintenance. An effort is

made to find the applicability of Lehman Laws on different

releases of two software developed in C++ using object-

oriented metrics In this paper, a study has been conducted on

10 versions of Graphics Layout Engine and Flight Gear

Simulator evolved over the period of eight years.. The laws of

continuous change, growth and complexity are found

applicable according to the data collected.

General Terms
Validation

Keywords

Software evolution, Lehman Laws of evolution, open source,

revisions, object-oriented metrics, complexity.

1. INTRODUCTION
In response to changes in the environment or user requirement

software continues to evolve after the release of first version.

Software evolution is necessity of real world software. In

order to be used for a longer time period, software need to

evolve otherwise it will become less useful. Software

evolution was first addressed by MM Lehman in 1978[1],

while studying the software process within IBM. Lehman

demonstrated that software continues to evolve over time.

Due to changes and growth of software, it becomes complex.

It has been more than three decades, since the Lehman’s laws

were proposed but there are very few empirical studies to

support their applicability.

The work reported in this paper is based on the analysis of

two open source applications” i.e. GLE and FGS” both

developed in object- oriented language, C++. Different

releases have been examined to find the applicability of

Lehman’s laws of evolution on object-oriented software. The

work is based on the computation of object oriented metrics

proposed by Chidamber et al [2].

The rest of the paper is organized as: section 2 provides the

brief background about the Lehman Laws of evolution and the

metrics used. Section 3 contains the introduction to two case

studies, section 4 contains the data computed, section 5

presents the findings and interpretations on Lehman laws of

software evolution, section 6 presents the related works and

section 7 discusses conclusions followed by future work.

2. BACKGROUND
This section briefly describes the Lehman laws of software

evolution and object-oriented metrics used.

2.1 Lehman Laws [3]
 Continuing Change (1974)

 Increasing Complexity (1974)

 Self-Regulation (1974)

 Conservation of Organizational

 Stability (invariant work rate) (1980)

 Conservation of Familiarity (1980)

 Continuing Growth (1980)

 Declining Quality (1996)

 Feedback system(1996)

2.2 Metrics Used:
This contains the brief description of metrics used to compute

data required for study. A number of object-oriented metrics

(CBO, WMC, RFC, DIT, NOC, and LCOM) are proposed by

Chidamber et al [2].

•WMC (Weighted Methods per Class): The WMC metrics is

the sum of the complexities of its methods. Consider a class

Ci with methods M1, ---- Mn that are defined in the class, let

C1 -----Cn be complexity of methods then WMC=

•DIT (Depth of Inheritance Tree): DIT is used for a class

involving multiple inheritance. The DIT will be maximum

length from the node to the root of the tree.

•NOC (Number of Children): Number of immediate

subclasses subordinated to a class in class hierarchy.

•CBO (Coupling Between Objects): CBO classes is the count

of number of classes coupled .Two classes are coupled when

the methods declared in one class are used by methods of

other class.

•RFC (Response For Class): RFC metrics measured the

number of methods being invoked in response to the message

received by an object of that class.

•LCOM (Lack of Cohesion of Methods): Number of methods

in a class that are disjoint with respect to the member of class

being accessed by them.

•LOC (Lines of Code): LOC includes lines of source code

except commented and blank lines.

•NOM (Number of Methods): NOM for class defines the

number of methods defined in the class.

•NOV (Number of variables): NOV is the number of variables

used in source code.

•NOF (Number of Functions): NOF is the count of the

number of functions in the source code.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

41

3. INTRODUCTION TO CASE STUDIES
This section introduces two open source software’s under

consideration namely GLE and FGS, developed in C++. The

revisions details and source code is available online [5-8].

3.1 Case Study1: Graphics Layout Engine

(GLE)
GLE is a graphics scripting language designed for creating

publication quality graphs, plots, diagrams, figures and slides.

GLE relies on LaTeX for text output. Its output formats

include EPS, PS, PDF, JPEG, and PNG. It is developed in

C++ language. The source code is available on SourceForge

[4]. Since registration on source forge on 11-9-2000, 23

releases are available till date. Out of the 23 releases, we have

considered latest 10 releases from 25-12-2007 to 14-03-12.

The details of releases of Graphics Layout Engine are given in

Table1.

Table 1. Revision Details of GLE

VERSION

(GLE)

RELEASE

DATE LOC

NO. OF

FUNCTIONS

NO. OF

VARIABLES

NO. OF

CLASSES

4.1.0 25/12/2007 88115 4725 12078 366

4.1.1 5/1/2008 88155 4722 12076 366

4.1.0 9/2/2009 88770 4724 12076 366

4.2.0 20/4/2009 95293 5477 13409 414

4.2.1 5/9/2009 94524 9472 24570 495

4.2.2 6/10/2010 94749 5510 13493 417

4.2.3 23/10/2010 96943 5739 13938 435

4.2.4 1/1/2012 100812 6074 14630 482

4.2.4b 14/1/2012 100851 6076 14635 482

4.2.4c 14/3/2012 100741 6079 14635 492

3.2 Case study 2: Flight Gear Simulator

(FGS)
The goal of the Flight Gear project is to create a sophisticated

and open flight simulator framework for use in research or

academic environments, pilot training, as an industry

engineering tool, for DIY-ers to pursue their favorite

interesting flight simulation idea, and last but certainly not

least as a fun, realistic, and challenging desktop flight

simulator. It is developed in C++ language and is and open

source. Source code of 20 releases is available online [5]. 10

latest releases of the software are observed. Table 2 gives the

revision details of the Flight Gear simulator.

4. METHODOLOGY USED FOR DATA

COLLECTION
Since software used, are open source, the source code

required for study is available online. Various tools are used

accordingly to compute different metrics .the revision details

of Graphics Layout Engine are available on [6] and Fight

Gear Simulator are available on [7].

Table 2. Revision Details of FGS

5. OBSERVATIONS AND ANALYSIS

OF SOFTWARE EVOLUTION
In this section the evolution of two software is observed to

find the applicability of Lehman laws on the bases of

computed data.

5.1 Law 1: Continuing Change:
Law of continuing change states that in order to use the

software for longer period , it should change continuously

according the user and environment needs. The change can be

due to some bug fixing activity or the change can be due to

addition of new function or class to the software.

In case of GLE and FGS, the size and functionalities are

changed in each successive release of the software. In FGS

the number of functions and classes are increased in each

successive release except in release 1.9.1 as it was a bug fix

release. In GLE, the number of functions and number of

classes are changed in each successive release .The law of

continuing change is reflected by both the software.

5.2 Law 6: Continuing growth:
Law of continuous growth states that the software should

grows continuously in order to satisfy the requirements of

user. The growth of the software can be measured in terms of

its size and functionality. LOC of each version is computed to

analyze the growth in terms of size and computed number of

classes and number of functions to observe the growth in

terms of functionality.

5.2.1 Size Metrics:
The LOC growth for GLE and FGS is showed in Fig 1&2.

The growth of lines of code is the measure of lines in source

code. LOC curve for FGS showed the increase in LOC in each

release except in 2.8.0 (figure 2), few lines were removed may

be in response to the bug fix activity. LOC graph GLE

showed the increase in lines of code. In release 4.2.0 (figure

1), the increase was sharp, which further decreases in next

version. But in later versions, it again shows the increase in

LOC. So the law of continuing growth is reflected in terms of

size metrics.

VERSION

(FGS)

RELEASE

DATE LOC

NO. OF

FUNCTIONS

NO. OF

VARIABLES

NO. OF

CLASSES

0.9.9 18/11/2005 70112 3291 9344 182

1.0.0 15/12/2007 80326 3705 10632 216

1.9.0 20/12/2008 85413 3395 10974 207

1.9.1 26/1/2009 85413 3418 10974 207

2.0.0 17/2/2010 88000 3420 11375 213

2.4.0 16/8/2011 91883 3681 11896 217

2.6.0 17/2/2012 99060 3879 12896 242

2.8.0 16/8/2012 99043 4137 14102 258

2.10.0 18/2/2013 103771 5436 21402 494

2.12.0 16/9/2013 108772 5919 23734 550

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

42

Fig1: Growth curve of LOC for GLE

Fig2: Growth curve of LOC for FGS

5.2.2 Function Metrics
The growth of the software in terms of functionality can be

measured as number of classes and number of functions.

Functionality of software can be increased by addition of class

or functions figure 3&4 shows the number of classes for

different releases of GLE and FGS and figure 5&6 represent

the number functions in different releases of GLE and FGS. In

case of the FGS, the number of classes and functions are

increased in each successive release of a software. In case of

GLE, the number of classes and functions are increased in

linear fashion from version 4.1.0 to 4.1.2. In version 4.2.0,

the number of functions and classes are increased sharply but

in next version these are decreased. The later versions showed

the increase in the number of classes and number of functions.

Fig3: Growth curve of number of classes for GLE

.

Fig4: Growth curve of number of classes for FGS

Fig5: Growth curve of number of functions for GLE

Fig6: Growth curve of number of functions for FGS

Table 3 Object-oriented Metrics computed for GLE

80000

90000

100000

110000

LOC

LOC

0

50000

100000

150000

LOC

LOC

0

200

400

600

NO. OF CLASSES

NO. OF
CLASSES

0

200

400

600

NO. OF CLASSES

NO. OF
CLASSES

0

5000

10000

4
.1

.0

4
.1

.2

4
.2

.1

4
.2

.3

4
.2

.4
b

NO. OF FUNCTIONS

NO. OF
FUNCTION
S

0

5000

10000

0
.9

.9

1
.9

.0

2
.0

.0

2
.6

.0

2
.1

0
.0

NO. OF FUNCTIONS

NO. OF
FUNCTION
S

VERSION

(GLE)

Mc Cabe

Complexity DIT NOC CBO RFC WM LOCH

4.1.0 8900 104 76 423 3461 3547 18128

4.1.1 8898 104 64 433 3487 3493 17997

4.1.0 8908 104 80 424 3716 3902 18197

4.2.0 10061 148 98 482 5138 5145 28598

4.2.1 9905 147 102 990 6189 5835 32648

4.2.2 9942 149 102 575 4777 4943 27524

4.2.3 10187 178 114 724 5419 5494 24518

4.2.4 10692 224 146 886 6385 6369 30921

4.2.4b 10702 234 146 897 6431 6120 30656

4.2.4c 10698 210 143 976 6446 6326 29894

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

43

Table 4 Object-oriented Metrics computed for FGS

5.3 Law 2: Increasing Complexity:
Law of increasing complexity states that as the software

grows, its complexity increases unless certain measures are

taken to keep the complexity under check. Complexity may

arise due to changes or addition of functions. The object-

oriented metrics is used for object-oriented software to

determine the complexity, CBO, RFC, WMC ,DIT, LOCH

metrics are used to determine the complexity of GLE and

FGS, represented in Table 3&4 .WMC for GLE and FGS is

shown by fig 7&8. The FGS shows the increase in WMC in

first 8 versions but in later two versions it shows the decrease,

this can be due to some bug fixing activity .In case of GLE the

WMC showed the increasing trend in first in 4 versions but in

5th version it increased sharply, which were decreased in next

successive version. In later versions, the WMC are increased,

again in version 4.2.4b, the WMC are decreased, due to bug

fix activity.

.

Fig7: Growth curve for the average weighted methods for

different releases of GLE

.

Fig8: Growth curve for the average weighted methods for

different releases of FGS

.

Fig9: Growth curve for average coupling of objects of all

classes for different releases of GLE

.

Fig10: Growth curve for average coupling of objects of all

classes for different releases of FGS

.

Fig11: Growth curve for the response for all the classes for

different releases of GLE

0

2000

4000

6000

8000

WMC

WM

0

5000

10000

WMC

WM

0

500

1000

1500

CBO

CBO

0

500

1000

CBO

CBO

0

5000

10000

RFC

RFC

VERSION

(FGS)

Mc Cabe

Complexity DIT NOC CBO RFC WMC LOCH

0.9.9 4766 86 57 347 3905 4139 44121

1.0.0 5532 113 75 433 4295 5162 45751

1.9.0 6000 120 82 545 4298 5245 39941

1.9.1 6000 120 73 558 4233 5258 40489

2.0.0 6240 131 90 558 4243 5746 41868

2.4.0 6401 150 87 522 4241 5873 43023

2.6.0 6692 160 92 572 4246 5982 41652

2.8.0 6774 162 90 569 4647 6004 44878

2.10.0 6718 162 90 688 4796 5948 41843

2.12.0 7051 213 119 689 5381 5782 40269

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

44

.

Fig12: Growth curve for the response for all the classes for

different releases of FGS

The RFC and CBO are represented by Fig 9&11. For FGS ,

the RFC and CBO curve has shown the average increasing

trend of complexity. The CBO and RFC for GLE is shown by

Fig10&12, has shown the increase earlier releases before

4.2.1 after that it shows the downfall in release 4.2.2. but in

later releases the RFC and CBO count in seen to be increased.

DIT and NOC for FGS (Fig13 &15)and GLE(Fig14&16) are

increased in successive releases of FGS and GLE ,which

showed the increase in complexity. LOCH (Fig19 & 20) for

the successive releases of FGS and GLE are increased in the

mid bit showed the downfall in later releases which indicates

the increase in complexity. Mc cabe complexity (Fig19 & 20)

for both the software is increased in each successive release.

From above interpretations the law of increasing complexity

is reflected by FGS and GLE.

Fig13: Growth curve for total depth of inheritance tree for

all classes for different releases of FGS

. Fig 14: Growth curve for total depth of inheritance tree

for all classes for different releases of GLE

.

Fig15: Growth curve for total number of direct

descendent for all classes for different releases of GLE

.

Fig16: Growth curve for total number of direct

descendent for all classes for different releases of FGS

.

Fig17: Growth curve for showing cohesion for all classes

for different releases of GLE

Fig18: Growth curve showing the cohesion for all classes

for different releases of GLE

0

2000

4000

6000

RFC

RFC

0

500

DEPTH OF
INHERITANCE TREE

DEPTH OF
INHERITAN
CE

0

500

DEPTH OF
INHERITANCE

DEPTH OF
INHERITAN
CE

0

100

200

NO. OF CHILDREN

NO. OF
CHILDREN

0

50

100

150

NO. OF CHILDREN

NO. OF
CHILDREN

0

20000

40000

4
.1

.0

4
.1

.2

4
.2

.1

4
.2

.3

4
.2

.4
b

LACK OF COHESION

LACK OF
COHESION

35000

40000

45000

50000

0
.9

.9

1
.9

.0

2
.0

.0

2
.6

.0

2
.1

0
.0

LACK OF COHESION

LACK OF
COHESION

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

45

.

Fig19: Growth of Mc cabe Cyclomatic complexity for

GLE

.

Fig20: Growth of Mc cabe Cyclomatic complexity for FGS

5.4 Law 7 : Declining Quality:
Law of declining quality, states that the software system

evolving will decline with time unless it is rigorously

maintained. The law is similar to the law2 increasing

complexity. As the complexity of the software increases, its

quality is decreased. Open source developers are free from

any restrictions and pressures; they work according to their

own interest which results in the declining quality of open

source software. The decline of the quality of GLE and FGS is

reflected by law 2.

5.5 Law 8: Feedback System:
The law of feedback system states that the evolution of the

software is multi-level, multi agent and multi - loop feedback

system. The existence of feedback system in case of open

source software is reflected as the feature request and bugs are

reported by the user community. In case of open source multi

agent and multi loop system is difficult to determine.

5.6 Law 4: Conservation of organizational

stability:
Law of conservation of organizational stability states that the

average global rate of activity on evolving software is

invariant over the product life i.e. over the product lifetime,

the amount of work that goes into evolution, is fixed. But the

measure of the work done in case of open source system is

extremely difficult to determine as in overall development of

software includes the community efforts and community size

increases in case of open source systems.

5.7 Law 5: Conservation of organizational

familiarity:
Law of conservation of organizational familiarity, states that

familiarity with the evolving software is conserved. The

average incremental growth rate should be constant as the

software evolves i.e. to properly evolve the software the team

should do it in fixed increments or there will be risk of losing

the understanding of the software. By observing the revision

details of Flight Gear Simulator, it is found that the changes to

the number of classes or functions were few thereby the

familiarity is maintained .In GLE, there is sharp change in

release 2.1.0 (fig 20) which were decreased in next successive

version and later versions shows the regular change and

increase in size.

5.8 Law 3: Self-Regulation
Law of self-regulation, states that the evolution process is

self-regulating leading to steady process. There is the balance

between what is desired to change and what is actually

achieved. The growth curve of Flight Gear Simulator shows

the regular change and increase in size but in GLE there is

sharp change in release 2.1.0 (fig 20) but in later shows the

regular change and increase in size.

6. RELATED WORKS
The study carried out in this paper is closely related to some

prior studies carried out by various researchers , includes

Johari et al [8] find the applicability of Lehman laws on two

open source software by considering 12 releases of Jhot and

16 releases of Rhino. Chris .J.Arges[9] evaluates Lehman

laws on Linux kernel by studying 810 versions of linux kernel

over the period on 14 years. Godfrey and Tu [10] examined

the 96 version of linux kernel to find applicability of laws.

The pioneer work in software evolution field was done by

Belady and Lehman [3] by analyzing the 20 release of OS/360

which led to the development of laws and published in

[14][15]. Robles.G et al [11] conducted detailed literature

review and given the description of the state of research in the

area of open source software. Cook et al [12] has given the

detailed explanation of SPE classification.

7. CONCLUSIONS AND FUTURE

WORKS
In this paper, a study has been conducted on two open source

software to find the applicability of Lehman laws. It is found

that the law 1, 2 & 6 can be determined using different

metrics but law 3, 4 &5 are difficult to determine in case of

open source software and law 7&8 are related by hypotheses

based on the study of change log of two software. To

determine these laws more effectively, it requires deeper

empirical studies in the field of open source software.

Contributions of this work are:

1. The study is carried out in field of open source software.

2. The study encourages new opportunities of research in the

 field open source software evolution.

3. The study conducted may contain some anomalies and is

 ascertained as the material used is available on internet.

8. REFERENCES:
[1] id., Programs, Cities, Students, Limits to Growth?,

Inaugural Lecture, May 1974. Publ. in Imp. Col of Sc.

Tech. Inaug.l Lect. Ser., vol 9, 1970, 1974, pp. 211 - 229.

Also in Programming Methodology, (D Gries ed.),

Springer, Verlag, 1978, pp. 42 – 62

[2] Chidamber, S.R. and Kemerer, C. F. (1994), A metrics

suite for object-oriented design. IEEE Transaction on.

Software Engineering. Vol 20 No.6,June 1994,Page No.

476–493.

[3] Belady ,L.A. and Lehman M.M. 1976. A model of large

program development. IBM Syst .J. 15 225-252

0

5000

10000

15000
4

.1
.0

4
.1

.0

4
.2

.1

4
.2

.3

4
.2

.4
b

Mc Cabe Complexity

Mc Cabe
Complexity

0

5000

10000

0
.9

.9

1
.9

.0

2
.0

.0

2
.6

.0

2
.1

0
.0

Mc Cabe Complexity

Mc Cabe
Complexity

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No. 18, May 2014

46

[4] GLE source code available[online]

http://sourceforge.net/projects/glx/?source=navbar.

[5] Flight Gear source code available [online]

http://fgfs.physra.net/ftp/Source/.

[6] GLE revision details [online] http://www.gle-

graphics.org/main/changes.html.

[7] Flight Gear Revision details [online]

http://www.flightgear.org/category/news/.

[8] Johari K and Kaur A, Effect of software evolution on

software metrics: An open source case study ACM

SIGSOFT Software Engineering Notes September 2011

Volume 36 Number 5.

[9] Arges C.J., Linux and Lehman- Literature Review of

Open Source Evolution Analysis.

http://chrisarges.net/files/arges_linux_evolution.pdf.

[10] Godfrey M.W. and Tu Q., Evolution in open source

software: A case study. In Software Maintenance, 2000.

Proceedings. International Conference on, pages 131

142. IEEE, 2000.

[11] Robles.G, Amor.J, Barahona.G.J and Herrariz.I, The

evolution of the laws of software evolution. A discussion

based on a systematic literature review.ACM Computing

Surveys, Vol. 1, No. 1, Article 1, Publication date: June

2013.

[12] Cook S, Harrison R, Lehman M.M., Wernick P,

Evolution in software systems: foundations of the SPE

classification scheme, Journal of Software Maintenance

and Evolution: Research and Practice, Volume 18, Issue

1, January/February 2006, Pages: 1–35.

[13] Godfrey M.W., German D.M., The Past, Present, and

Future of Software Evolution Proc. ICSM 2008.

[14] Lehman .M.M. On Understanding Laws, Evolution and

Conservation in the Large Program Life Cycle, J. of Sys.

and Software, v. 1, n. 3, 1980, pp. 213 – 221.

[15] Lehman .M.M.(1980), Programs , life cycles and the

laws of software evolution. In Proceedings of the IEEE

(Special issue for Software Engineering, 68(9), pp1060-

1076).

IJCATM : www.ijcaonline.org

