
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

7

 A New Optimized Real-Time Disk Scheduling Algorithm

Nidhi
Madan Mohan Malaviya University of Technology,

 Gorakhpur (UP)-273010, India

Dayashankar Singh

Madan Mohan Malaviya University of Technology,
Gorakhpur (UP), India

ABSTRACT

In this paper, a new approach of disk scheduling has been

proposed to improve the throughput of modern storage device.

After the invention of disk with movable head, researchers are

making efforts continuously to improve the I/O performance

by implementing many intelligent scheduling algorithms of

disk accesses. Speeds of processor and memory capacity have

been increased several times than the speed of the disk. Due to

this difference in the speed of processor and the disk, I/O

performance of disk has become an important bottleneck.

Therefore, it is needed to develop some advanced methods for

using disk more efficiently. Management of disk performance

is an important aspect of operating system research and

development. In this paper, a new disk scheduling algorithm

has been developed and implemented to reduce the number of

head movements. Experiment has been carried out to compare

the performance of proposed algorithm with the performance

of all six classical disk scheduling algorithms. Experiment

shows that the numbers of head movements in existing

classical disk scheduling algorithms such as FCFS, SSTF,

SCAN, C-SCAN, LOOK and C-LOOK are high. But in

proposed new optimized real-time disk scheduling algorithm,

head movements are reduced and hence it maximizes the

throughput for the modern storage devices.

Keywords

FCFS, SSTF, SCAN, C-SCAN, LOOK, C-LOOK, Scheduling

Algorithm, Scheduler, Disk Head

1. INTRODUCTION

Since almost all the computer resources are needed to be

scheduled before use, scheduling is one of the important

fundamental function of operating system. Disk is one of the

important resources of computer. For meeting the

responsibilities for the disk driver entails having large disk

bandwidth and fast access time. Speed of the processor and

the memory capacity are increasing at very fast rate over 40%

per year but the speed of disk is growing only 7% per year [6].

Because this rate is unlikely to change substantially in the

incoming days, the I/O performance comes as the system

bottleneck. Even it is difficult to improve the mechanical

components, therefore it has been tried to use the disk more

efficiently. The access time is the important factor. Generally

the disk operates with a small function of the maximum

bandwidth the disk have. It has been proved experimentally

that more sophisticated disk head scheduling algorithms give

higher throughput [9]. In the past work the researchers

focused mainly on two types of work. One is the synthetic

workloads in that disk requests are uniformly and randomly

distributed across the whole disk. The other is traces which is

more recent and in that all the requests to an actual are firstly

recorded and then used as a testing ground for algorithms [2].

Many researchers made little attempts for developing

algorithms which provides performance guarantees. The

access time has two components: Seek Time and Rotational

Latency. The Seek Time is the time for the disk arm to move

the head to the tracks which are containing the desired sector.

There is also an additional time called Rotational Latency

which is the time for the disk to rotate the desired sector under

the disk head. Disk bandwidth is the total no of bytes

transferred, divided by the total time between first request for

the service and completion of the last transfer [1].

In this paper efforts have been made to improve the access

time as well as bandwidth by scheduling carefully all disk I/O

requests in an optimized and good order. The request can be

serviced immediately if the disk driver and controller are

available and free. If the driver or controller is not free, new

requests for the services will be placed in a queue of the

pending requests. For a system with many processors called

multiprogramming system, the disk queue may have many

pending requests. After completing one request the operating

system needs to select the next pending requests to service.

Experiment has been carried out by considering the same

request queue for implementing the existing all six classical

disk scheduling algorithms such as and newly developed disk

scheduling algorithm. It has been analyzed that newly

developed algorithm requires less number of head movements

in order to service the disk I/O requests available in request

queue.

2. BACKGROUND AND RELATED

WORK

Many disk scheduling algorithms are there to schedule for

servicing the disk I/O requests. We illustrate all these

algorithms with a request queue (0-200): 38, 180, 130, 10, 50,

15, 190, 90, and 150. Head starts at 120.

2.1 First Come First Served Algorithm
The First Come First Served (FCFS) algorithm is simplest

form of disk scheduling algorithm. This algorithm essentially

fair, but generally does not give the fastest service compared

to other disk scheduling algorithms.

Example, consider a disk queue with requests for I/O to

blocks on tracks: Queue (0-200): 38, 180, 130, 10, 50, 15,

190, 90, and 150. Head starts at 120.

Initially the head is at track 120, it will first move from 120 to

38, then to 180, 130, 10, 50, 15, 190, 90, and finally to 150.

The scheduling is represented in Figure: 1.1.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

8

0

20

40

60

80

100

120

140

160

180

200

 Fig-1.1: FCFS Disk Scheduling Algorithm

Total Head movements = (120-38) + (180-38) + (180-130) +

(130-10) + (50-10) + (50-15) + (190-15) + (190-90) + (150-

90) = 804

The above calculation shows that if we use FCFS disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 804.

2.2 Shortest-Seek-Time-First Algorithm
In the Shortest-Seek-Time-First(SSTF) disk scheduling

algorithm head serves the request first that have minimum

seek time from the current head position. As the seek time

increases with the numbers of tracks traversed by the head,

the SSTF algorithm first chooses the pending requests close to

the current head position. SSTF scheduling is basically a form

of shortest job first (SJF) scheduling and like SJF scheduling

it is not very fair and may cause starvation of some requests.

Consider the same example: Queue: 38, 180, 130, 10, 50, 15,

190, 90, and 150. Initially the head is at 120.

Head is initially at position 120. The closest request to the

initial head position is at track 130. Once we are at 130, the

next closest request is at position 150 and so on from 150 to

180, 190, 90, 50, 38, 15 and then 10. The scheduling is

represented in Figure 1.2.

0

20

40

60

80

100

120

140

160

180

200

Fig-1.2: SSTF Disk Scheduling Algorithm

Total head Movements = (130-120) + (150-130) + (180-150)

+ (190-180) + (190-90) + (90-50) + (50-38) + (38-15) + (15-

10) = 250

The above calculation shows that if we use SSTF disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 250.
 2.3 SCAN Algorithm
In this algorithm the head starts at one end of the disk and

moves towards the other end of the disk, servicing requests as

it reaches each track, until it reach to the other end of the disk.

After reaching the other end of the disk, the direction of head

is reversed and servicing continues. It is some time called the

Elevator algorithm because in this algorithm the disk arm

behaves like an elevator.

Let as return to the same example. In this algorithm we need

to know the direction of head in addition to the current

position of the head. Let the disk arm is moving towards 0 and

initial head position is 120. Queue: 38, 180, 130, 10, 50, 15,

190, 90 and 150.

Initially the head is at 120, the head will first serve 90 and

then 50, 38, 15, 10. At track 0 direction of the arm will

reverse and start moving towards the other end of the disk and

services the requests at 130, 150, 180 and then 190. The

scheduling is represented in Figure: 1.3.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

9

0

20

40

60

80

100

120

140

160

180

200

Fig-1.3: SCAN Disk Scheduling Algorithm

 Total Head Movements = (120-90) + (90-50) + (50-38) +

(38-15) + (15-10) + (10-0) + (130-0) + (150-130) + (180-

150) + (190-180) = 310

 The above calculation shows that if we use SCAN disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 310.
2.4 C-SCAN Algorithm

This algorithm provides more uniform waiting time than the

SCAN algorithm. Like the SCAN algorithm, the disk head

moves from one end of the disk to the other end of the disk in

this algorithm, servicing requests along the way. When the

head reaches the other end of the disk, it immediately returns

back to the beginning of the disk without servicing any

requests in the return. This algorithm treats the tracks as a

circular list that warps around from the last track to the first

track.

Consider the same example. Queue: 38, 180, 130, 10, 50, 15,

190, 90, 150. The current head position is at 120 and direction

of disk head is towards the position 0. The scheduling is

shown in Figure 1.4.

Fig-1.4: C-SCAN Disk Scheduling Algorithm

 Total Head Movements = (120-90) + (90-50) + (50-38) +

(38-15) + (15-10) + (10-0) + (200-0) + (200-190) + (190-180)

+ (180-150) + (150-130) = 390

The above calculation shows that if we use C-SCAN disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 390.

2.5 LOOK ALGORITHM

Similar to the SCAN, in LOOK algorithm the disk head

sweeps across the surface of disk in both the direction

performing reads and writes. However, unlike the SCAN

algorithm in which the disk head visits the innermost and

outermost tracks in each sweep, LOOK algorithm will

reversed the direction of disk head when it reached to the last

request in the current direction of the head.

Consider an example. Queue: 38, 180, 130, 10, 50, 15, 190,

90, 150. The initial head position is at 120 and the current

direction of the disk head is towards 0. The scheduling is

shown in Figure: 1.5.

0

20

40

60

80

100

120

140

160

180

200

 Fig-1.5: LOOK Disk Scheduling Algorithm

Total Head Movements = (120-90) + (90-50) + (50-38) + (38-

15) + (15-10) + (130-10) + (150-130) + (180-150) + (190-

180) = 290

The above calculation shows that if we use LOOK disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 290.

2.6 C-LOOK ALGORITHM

C-LOOK is a version of C-SCAN algorithm in which the arm

goes only as far as last request in current direction and

immediately reverses the direction of the disk head, without

first going all the way to the end of the disk.

Consider the same example. Queue: 38, 180, 130, 10, 50, 15,

190, 90, 150. The head is initially at position 120 and current

direction of head is towards 0.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

10

0

20

40

60

80

100

120

140

160

180

200

 Fig-1.6: C-LOOK Disk Scheduling Algorithm

Total Head Movements = (120-90) + (90-50) + (50-38) + (38-

15) + (15-10) + (190-10) + (190-180) + (180-150) + (150-

130) = 350

The above calculation shows that if we use C-LOOK disk

scheduling algorithm then the total head movements require to

service the disk I/O requests are 350.

3. PROPOSED NEW OPTIMIZED REAL

 -TIME DISK SCHEDULING

 ALGORITHM

In this proposed algorithm, initially the disk head is at the

position 0 and has the direction towards the position 200. It

means initial head position and direction of head is always

same. First we sort all the cylinders input blocks by using any

sorting algorithm. Initially the head is at position 0 and

sequentially moves and reached from this block to the highest

input block number, servicing all the input request blocks in

front of the head immediately.

Procedure/Algorithm

 Assume a[] is an array containing track

 numbers and x is the position of last input

 block.

 Inialize Head position is at 0. Assume h

 denotes the current head position.

 Sort input blocks of cylinder number in

 ascending order with the help of any sorting

 algorithm.

 Initially head position h is 0.

 for(i=0; i<=x; i++)

 Service the input request in front of head

 immediately.

 Total_head_movements = x;

 Return total_head_movements;

Flowchart

Graphical Representation of Proposed Algorithm

Assumptions in flowchart are given below:

IDHP = Initial Disk Head Position

DQ = Disk Queue with requests

TR = Track Request

HP = Head Position

PLTR = Position of Last Track Request

THM = Total Head Movements

Consider the same example. Queue: 38, 180, 130, 10,

50, 15, 190, 90, 150. According to the rule of proposed
algorithm, current position of the disk head is at 0 and

direction of the disk head is towards 200. If a request arrives

in the queue just in front of the disk head, it will be serviced

immediately. Initially the disk head is at position 0 and moves

to 10 and then to 15, 38, 50, 90, 130, 150, 180, and then to

190. This scheduling is represented in Figure: 1.7.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

11

0

50

100

150

200

Fig- 1.7: New Optimized Real-Time Disk Scheduling

Algorithm

Total Head Movements = (10-0) + (15-10) + (38-15) + (50-

38) + (90-50) + (130-90) + (150-130) + (180-150) + (190-

180) = 190

Hence in new optimized real-time disk scheduling algorithm

(proposed algorithm), total head movements required to

service the disk I/O requests are 190.

4 COMPARATIVE RESULT ANALYSIS

A comparative analysis of various classical existing disks

scheduling algorithms and newly developed optimized real-

time disk scheduling algorithm has been performed and result

has been shown in Table 1.

Table 1: Comparative analysis of Results of Disk

Scheduling Algorithms

S.N Name Of Disk Scheduling

 Algorithm

Number Of Head

Movements

 1.

FCFS

804

 2.

SSTF

250

 3.

SCAN

310

 4.

C-SCAN

390

 5.

LOOK

290

 6.

C-LOOK

350

 7.

NEWLY Optimized Disk

Scheduling Algorithm

190

Comparison Graph among Proposed and Existing

Algorithms that shows performances:

It has been analyzed from above table that the newly

developed optimized real-time disk scheduling algorithm

requires minimum head movements in order to service the

disk I/O requests. There are several advantages of using this

proposed algorithm.

1. Total number of head movements are always less

 than or equal to the N, where N is the position of

 last track on the disk.

2. If all the input blocks are concentrated near the

 position 0 (means in the first half of the disk), then

 this proposed algorithm gives best result.

3. It is very simple algorithm. Calculation of total head

 movements is very simple and is always equal to the

 x, where x is the position of last input block.

5. CONCLUSIONS

In this paper, a new real-time optimized disk scheduling has

been implemented which imposes almost no performance

penalty over the non-real time optimal schedulers, when have

sufficient slack time. With the help of above experiments and

comparison of our proposed algorithm with existing

algorithms, it is clear that the proposed algorithm reduces the

total head movements. In this algorithm, sometimes the

number of head movements is equal to SSTF or LOOK

scheduling but it occurs very rarely. Worst case occurs when

all the input blocks are concentrated near the position 200 or

at the position 200. In this paper a lot of efforts have been

done to improve the performance of disk I/O access, even

there are tremendous scope for the improvement of disk I/O

access.

6. REFERENCES
[1] Operating System Principles, Silberschatz, Peter Bare

Galvin, Greg Gagne.

[2] Mordern operating system (2nd edition) Andrew S.

Tanenbaum.

[3] Operating Systems: A Concept-based Approach(2E)

D.M. Dhamdhere

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 18, May 2014

12

[4] Sandipon Saha, Md. Nasim Akhter, Mohammod Abul

Kashem, “A New Heuristic Disk Scheduling Algorithm”

International Journal of Scientific &Technology

Research Volume 2, Issue1,pp.49-53, January 2013

[5] Chang, R., Shih, W., And Chnag, R. “Real-time disk

scheduling for multimedia application with deadline-

modification scheme “International Journal of Time-

critical Computing system 19(2000), 149-168.

[6] C. Reummler and J. Wilkes. An introduction to disk

drive modeling. IEEE Computer, 27(3): 17-19, March

1994.

[7] Dees, B. Native Command queuing-advanced

performance in desktop storage. Potentials, IEEE 24,

4(2005),4-7.

[8] Huang, Y., And Huang, J. Disk scheduling on

multimedia storage servers. Computers, IEEE

Transactions on 53, 1(2004), 77-82.

[9] Reddy, A.L.N., Wyllie, J., and Wijyaratne, K.B.R. disk

scheduling in a multimedia I/O system. ACM Trans.

Multimedia Comput. Commun. Appl. 1, 1(2005), 37-59.

IJCATM : www.ijcaonline.org

