
International Journal of Computer Applications (0975 - 8887)
Volume 93 - No. 17, May 2014

Linux based Operating System Proposal for the
Acquisition and Processing of Data in Embedded

Devices

M.Eng. Roberto Alejandro Espí Muñoz
Digital Medical Technology ICID

202 and 17 Playa, La Habana, Cuba

ABSTRACT
The current work presents a proposal for a data acquisition base us-
ing the CID 300/9 device, an industrial motherboard developed at
ICID Cuba. In the beginning a brief view on the necessity of using
novelty techniques in the support of medical software is presented.
The design guidelines in the optimization of the Linux based oper-
ating system are presented as well as the architecture for a Middle-
ware variant for the target device running specific software projects
that must execute in medical attention and monitorization environ-
ments. Ending the report, measurements and tests to the developed
components in the boot up sequence as well as the Middleware
layer are presented, thus validating the presented proposal.

Keywords:
Communication, embedded devices, Linux, medical equipment,
micro-controllers

1. INTRODUCTION
In the medical equipments field there are a considerable number
of projects and enterprises specialized in the development of inte-
gral solutions with a high degree of added value capable of pro-
viding coverage to specific fields in the treatment and diagnosis of
pathologies as well as intensive care.

The Digital Medical Technology Enterprise ICID in Cuba provides
a group of solutions that span throughout a wide spectrum of med-
ical disciplines. Among them, one can find equipment specialized
in cardiovascular, pulmonary and muscular conditions as well as
intensive care, primary attention and critical attention to mention a
few. The majority of these solutions must acquire data from medi-
cal sensors, send data or control signals to acting devices and make
some type of processing to the handled information. The term used
for this type of software is Middleware [1].

In a brief outline, Figure 1 shows the idea.

Middleware logic is currently integrated in devices developed by
the ICID Medical Enterprise such as the following:

—CardioDef :: Stationary defibrillator
—Doctus :: Medical parameters monitor
—CardioCID :: Electrocardiography monitor

Fig. 1. Parameter values are measured from underlying sensors to a middle
communication layer, they are processed and displayed to the user at a later
time.

—HiperMax :: Non-invasive pressure meter
—CardiHogar :: Remote monitor of cardiac parameters

This design however is not exclusive to medical equipment, it
comes, in part, from solutions found in Supervision Control and
Data Acquisition (SCADA) software[2], which focus in providing
automation and control in industrial processes.

In the year 2009 ICID developed a processing base (industrial
motherboard) from a native design. It has provided the devices the
company develops with a processing unit. In Figure 2 an image of
said device is portrayed.

2. METHODS AND MATERIALS
The structure of the software layer in the CID 300/9 can be visu-
alized as a chain of components by which the devices have to pass
by until they arrive to the point where their upper layer application
can be executed. In Figure 3 these components are displayed. Due
to the inherent design of computing devices, every component in
order for it to be executed must be copied from a storage medium
to RAM where the processor will execute every one of it’s instruc-
tions. Thus a key strategy in the design and construction of operat-
ing systems for embedded devices is the reduction of their size or
weight in storage.

Bootloader
Among the existing bootloaders, barebox[3] is one of the more
customizable and efficient there is. It’s capable of booting Linux

1



International Journal of Computer Applications (0975 - 8887)
Volume 93 - No. 17, May 2014

Fig. 2. CID 300/9 industrial motherboard. µC: ARM-920T, CPU: 400
MHz, Ports: 4 USB, 1 Ethernet, 2 Serial, RAM: 128MB, Audio: 2 3.5mm
input/output, SD Card: 1 port, Video: Touchscreen and LDVS port, OS:
Linux based

Fig. 3. Boot chain of a Linux based operating system.

CONFIG_ARCH_S3C24xx=y
CONFIG_MACH_CID300_9=y
CONFIG_S3C_NAND_BOOT=y
CONFIG_AEABI=y
# CONFIG_CMD_ARM_CPUINFO
# CONFIG_ARM_EXCEPTIONS
# CONFIG_CMD_MEMORY
# CONFIG_LOCALVERSION_AUTO
# CONFIG_BANNER
CONFIG_TEXT_BASE=0x33F80000
CONFIG_BROKEN=y
CONFIG_MALLOC_TLSF=y
CONFIG_PROMPT="X:/> "
CONFIG_CBSIZE=256
CONFIG_GLOB=y
CONFIG_HUSH_GETOPT=y
CONFIG_CMDLINE_EDITING=y

CONFIG_AUTO_COMPLETE=y
CONFIG_DYNAMIC_CRC_TABLE
# CONFIG_ERRNO_MESSAGES
# CONFIG_TIMESTAMP
CONFIG_CMD_EDIT=y
CONFIG_CMD_SLEEP=y
CONFIG_CMD_LOADENV=y
CONFIG_CMD_EXPORT=y
CONFIG_CMD_PRINTENV=y
CONFIG_CMD_READLINE=y
# CONFIG_CMD_LS
# CONFIG_CMD_RM
# CONFIG_CMD_CAT
# CONFIG_CMD_MKDIR
# CONFIG_CMD_RMDIR
# CONFIG_CMD_CP
# CONFIG_CMD_PWD

# CONFIG_CMD_CD
# CONFIG_CMD_MOUNT
# CONFIG_CMD_UMOUNT
# CONFIG_CMD_BOOTZ
CONFIG_CMD_TIMEOUT=y
CONFIG_CMD_PARTITION=y
# CONFIG_CMD_HELP
# CONFIG_CMD_DEVINFO
# CONFIG_SPI
# CONFIG_MTD_WRITE
CONFIG_MTD_RAW_DEVICE=y
# CONFIG_UBI
# CONFIG_DISK
# CONFIG_USB
# CONFIG_VIDEO
# CONFIG_MCI

Fig. 4. Proposed configuration options for barebox. Options starting with
# are removed. Options ending with y are included.

based operating systems and allows running basic tasks for using
the system such as working with files, modifying environment vari-
ables, running applications and interacting with devices.

Generally a bootloader must be configured to make a direct and
quick jump to the next step in the boot chain: the Linux kernel.
It’s not of much use that when booting a device there’s a delay
waiting for user confirmation for a predictable, well established and
recurring next step. A candidate configuration for the execution of
this type is shown in Figure 4.

In the proposal one can observe how unnecessary functions at boot
time are removed.

Linux
The Linux kernel is a project actively maintained by a vast com-
munity of users worldwide. It supports 24 known architectures and
a greater number of micro-architectures[4]. It can be configured
and optimized for different scenarios (embedded devices, desktop
computers, servers, laptops). Linux can insert new functionality via

#!/bin/sh

# Start all init scripts in /etc/init.d
# executing them in numerical order. #

cd /opt/elasticnodes
./elasticnodes -qws &

modprobe ohci-hcd
modprobe usb_storage
modprobe usbserial
modprobe evdev

exit 0

Fig. 5. Start script of an example application based on Qt 4.8.1 framework.
In turn services and applications are initialized. It starts with the visual ap-
plication (elasticnodes), and then execution is forked “&”. At the end the
necessary modules are loaded in the kernel.

modules at runtime. In order for it to be configured a configuration
menu is provided similar to that of the bootloader.

Some of the chosen configuration options are:

—CONFIG_PRINTK is not set : Disables printing messages on
screen.

—CONFIG_SLAB=y : This way of handling objects in memory
is the fastest after analyzing test results.

—quiet : Disables all messages printed by the kernel.
—lpj=xxxxxx : Sets a calculated value every time the kernel starts.

Specifying it removes the necessity for the kernel to generate it.

Fs + services
Choosing the correct type of filesystem influences notably in boot
time and execution of the operating system. Two candidates were
identified:

—External media (SD Card, HDD, USB Flash)
The recommended choice for this type of media is a system with-
out journaling such as ext2.

—Internal media (NAND, NOR)
The recommended filesystem for these cases is UBIFS.

In the service layer a strategy for reducing the number of services
that are instantiated in order, is establishing a single script file with
a set of instructions that are to be executed, and also running in par-
allel the loading of less prioritized devices. The example in Figure
5 shows this desing guideline.

Applications
The most notable optimization in the application layer of an oper-
ating system is the inclusion of it’s dependencies inside the exe-
cutable. Normally in an operating system a group of programs co-
exist which depend heavily between them sharing functionality and
libraries. In Windows systems these are known as .dll. In Linux the
same principle exists. When executing an application, if it is com-
piled with the shared libraries option, it’s start up becomes slower
as well as the execution of it’s internal functions since it has to
search for sources outside the binary. This scenario is known as
dynamic linkage[5].

The counterpart of this scenario is known as static compilation.
It allows the inclusion of all provided functions and dependencies
within the same codebase removing the necessity of external calls.

2



International Journal of Computer Applications (0975 - 8887)
Volume 93 - No. 17, May 2014

Fig. 6. Binary reordering. To the left the unordered location of start up
functions are portrayed in green. To the right the same functions are dis-
played according to the final location.

typedef boost::mpl::vector<
row<byte0, has_sync1, byte1, &self::procByte1>,
row<byte1, is_any, byte2, &self::procByte2>,
row<byte2, is_any, byte3, &self::procByte3>,
row<byte3, has_sync2, byte4, &self::procByte4>,
row<byte4, has_sync2, byte5, &self::procByte5>,
row<byte5, has_sync2, byte0, &self::procByte6>

> transition_table;

Fig. 8. Equivalent code for the data stream. C++ code for working with
the data stream is shown. Each row specifies a certain byte in the stream
which calls a unique function upon validation.

The following are two examples on building binaries with static
linkage:

—Applications built using autotools:
./configure --enable-static --disable-shared

—Applications built using the Qt framework:
QMAKE_LFLAGS = -Xlinker -Bstatic $$QMAKE_LFLAGS

Application load time can also be improved using a technique
called reordering[6] that allows changing the internal structure of
a binary in a way that in the first bytes the necessary functions for
displaying the visual application are located. Graphically reorder-
ing could be shown as Figure 6.

Middleware
As a solution to the communication layer for the CID 300/9 a Mid-
dleware is proposed taking into account design aspects such as:

—Obtaining data from multiple sources

—Data handling using variable data streams and protocols

—Dispatch to multiple interested object

—Variable batch handling

—Efficiency in transmission

Device
The Middleware concept closest to the connected sensors and actu-
ators is the device. A device is capable of executing 4 basic func-
tions: open, read, write and close.

StateMachine
Is an abstract interface to various types of state machines. Each
specific type carries with it an intrinsic protocol analyzer for each
type of received data stream. Internally it uses a concept known as
finite state filters[7]. An example showing how a 6 byte EKG data
stream can be analyzed by the filter is provided in Figure 8.

Table 1. Size of the components
component without optimizations optimized
barebox 191.6 KB 85.2 KB
Linux 2.03 MB 964.8 KB
fs 39 MB 16.8 MB

Table 2. Boot time for ICID projects
project base system time in seconds
T50 CID 300/9 13.4
Doctus 9 CID 300/9 28
CardioDef 2 CID 300/9 9
Doctus VII MS Windows Embedded 33
Proposal CID 300/9 4.4

Dispatcher
This component is in charge of notifying interested objects upon
arrival of a new value from devices. It uses the same event for
dispatching to each object the new value as opposed to other ap-
proaches of using separate events.

3. RESULTS AND DISCUSSIONS
With the objective of validating the proposal a group of tests to
measure the operating parameters of the base system were de-
signed. In Table 1 the size of the optimized components are dis-
played.
Measurements were conducted regarding the boot times of the
Linux kernel of various projects using the CID 300/9 motherboard
and were later compared with the times offered by this proposal. In
Figure 9 the boot times for the internal subsystems of the kernel are
displayed.
The proposal offers reduced times in the 0.26s range. Boot times for
each project can be summarized in the following way: T50 (7.2s),
Doctus 9 (9.3s), Cardiodef 2 (2.59s).
Measurements to the total boot time to various ICID projects were
also conducted, most of which use the CID 300/9 motherboard as
their processing base. Results are showed in Table 2.
The design and implementation for the middleware communication
protocol was also tested. A test case scenario was designed consist-
ing in a server acquiring data at a constant rate of 6 bytes for every 5
milliseconds (data stream generation time) for over 20 hours. The
test was conducted on two different architectures, one in PC and
the other one in the CID 300/9 device. The results are displayed in
Table 3.

Table 3. Middleware performance results.
parameters PC-x86 CID 300/9-ARM
Execution time 23h 40min 28h 30min
Data stream size 6 bytes 6 bytes
Recolected data 100641809 bytes 103734325 bytes
Correct data 100640782 bytes 103716583 bytes
Discarded data 1027 bytes 17742 bytes
Accepted samples 16773634 17286097
Discarded samples 171 2957
Algorithm efficiency % 99.99 % 99.99%

4. CONCLUSIONS
The identified optimization techniques applied to the bootloader,
kernel, filesystem and applications greatly reduce the boot time of

3



International Journal of Computer Applications (0975 - 8887)
Volume 93 - No. 17, May 2014

Fig. 7. Proposed Middleware architecture. A device represents a physical sensor to which the Middleware is connected. A threadWorker in a given period
of time obtains a sample from a device and processes it with a stateMachine. The disassembled value is notified to all interested graphical objects via a
dispatcher.

Fig. 9. Measurements to the boot times of the Linux kernel.

the operating system in general and increase the execution speed
of each application in particular. The work with each component
showed a notable reduction in the size of the executable thanks to
the removal of driver support and unnecessary functionalities in ev-
ery phase of the boot chain. Linux based operating systems are reli-
able candidates for the development of critical execution embedded
applications.

5. REFERENCES
[1] “ObjectWeb - what’s middleware,” 2013. [Online]. Available:

http://middleware.objectweb.org
[2] “SCADA system SIMATIC WinCC,” 2012. [Online].

Available: http://www.automation.siemens.com/mcms/
human-machine-interface/en/visualization-software/scada/
pages/default.aspx

[3] “start [barebox].” [Online]. Available: http://wiki.barebox.org/
doku.php

[4] “What is linux: An overview of the linux op-
erating system | linux.com.” [Online]. Avail-
able: https://www.linux.com/learn/new-user-guides/
376-linux-is-everywhere-an-overview-of-the-linux-operating-system

[5] “Shared libraries.” [Online]. Available: http://www.iecc.com/
linker/linker09.html

[6] M. Kim and O. Kokachev, “Instant startup for application using
reduced relocation time and rearranged functions,” Apr. 2008.

[7] “Boost.Iostreams.” [Online]. Available: http://www.boost.org/

4

http://middleware.objectweb.org
http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/pages/default.aspx
http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/pages/default.aspx
http://www.automation.siemens.com/mcms/human-machine-interface/en/visualization-software/scada/pages/default.aspx
http://wiki.barebox.org/doku.php
http://wiki.barebox.org/doku.php
https://www.linux.com/learn/new-user-guides/376-linux-is-everywhere-an-overview-of-the-linux-operating-system
https://www.linux.com/learn/new-user-guides/376-linux-is-everywhere-an-overview-of-the-linux-operating-system
http://www.iecc.com/linker/linker09.html
http://www.iecc.com/linker/linker09.html
http://www.boost.org/

	Introduction
	Methods and Materials
	Results and discussions
	Conclusions
	References

