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ABSTRACT 
Grid computing is the collection of computer resources from 

multiple locations to reach a common goal. The grid is a 

special type of distributed system with non-interactive 

workloads that involve a large number of files. Partitioning of 

the application program/ software into a number of small 

groups of modules among dissimilar processors is an 

important parameter to determine the efficient utilization of 

available resources in a grid computing environment. It also 

enhances the computation speed. The task partitioning and 

task allocation activities influence the distributed program/ 

software properties such as IPC. This paper presents a 

metaheuristic model, that performs static allocation of a set of 

“m” modules of distributed tasks/program considering the two 

conflicting objectives i.e. minimizing the makespan time and 

balanced utilization of a set of “n” available resources of a 

grid computing. Experimental results using genetic algorithm 

indicates that the proposed algorithm achieved these two 

objectives as well as improve the dynamic heuristics 

presented in literature. 
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1. INTRODUCTION 

A Grid is a dynamic heterogeneous environment 

agglomerating geographically distributed resources and is 

defined as a process of taking scheduling decisions 

concerning resources spread over various administrative 

domains [1]. Users can contribute to grid resources by 

submitting computing tasks to grid system. The contribution 

of resources can be active or inactive within the grid. Hence it 

is impossible for anyone to assign tasks to computing 

resources by hand in grids. Therefore grid job scheduling [2, 

3, 4] is one of the challenging issues in grid computing. Grid 

scheduling system selects the resources and allocates the user 

submitted tasks to appropriate resources in such a way that the 

user and application requirements are met [5]. With more 

applications looking for faster performance, makespan and 

balanced utilization of resources are most important objectives 

that scheduling algorithms challenge to optimize. Makespan is 

the resource utilization time between the beginning of the first 

task and the completion of the last task assigned to that 

resource.  

Several heuristic algorithms [6, 7, 8, 9] have been proposed 

for grid job scheduling. These algorithms include genetic 

algorithms [10], particle swarm optimization [11], simulated 

annealing [12], ant colony optimization [13], tabu search [14], 

gravitational emulation local search [15] and Firefly algorithm 

[16]. Combinations of these algorithms known as hybrid 

heuristics have also been reported in the literature [17, 18]. 

Genetic algorithm was first proposed in 1975 by John Holland 

et al. [19] at Michigan University. Genetic algorithms (GAs) 

have also been adopted for solving the problem and obtained 

promising results. Hamed [20] proposed GA for task 

allocation in heterogeneous distributed computing system. In 

[21], a new evaluation algorithm, GLOA is used to solve the 

problem of scheduling independent task in a grid computing 

system. Simulation results show that this algorithm produces 

shorter makespan. 

In the previous paper [22], A GA based task allocation 

problem has been discussed for multiple task allocation 

without considering the task’s size. This paper considers task 

allocation problem for a single task having some modules of 

different sizes with the goal of minimizing the makespan time. 

The experimental results reveal that the proposed algorithm 

produces better module allocation than other algorithms. 

2.  NOTATIONS 
m                Total number of modules 

n                Total number of processors 

ije            Execution cost of ith module        

                       on processor j                                                

cik                        Inter module communication cost of                              

communicating modules i and k 

erj                        Execution rate of processor j 

PER            Processor’s Execution Rate      

                 Vector 

MS             Module Size vector 

IMCCM (,)    Inter Module Communication  

           Cost Matrix 

ECM (,)          Execution Cost Matrix 

TS                  Task Size  

PS                   Population Size 

MaxIter          Maximum number of 

                       Iterations 

si                          Size of module i 
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pm                        Mutation Probability 

pc                   Crossover probability 

3.  PROBLEM DESCRIPTION 
This paper considers a grid with an arriving task to GA for 

scheduling. The task’s size has been partitioned randomly into 

the small modules of different sizes. The proposed algorithm 

should be efficient in finding a solution that produces the 

minimum makespan. Thus, the problem is to assign these 

modules to the processors with the minimum makespan.     

Let m be the total number of modules to be scheduled and si , 

where i= 1,2,.......,m, be the size of each module in number of 

bytes and it  denoted by MS = [s1,..., sm], a module size vector. 

cik is the inter module communication cost of communicating 

modules due to the exchange of data units between them, 

during the process of execution. This communication cost is 

given in the form of Inter Module Communication Cost 

Matrix, IMCCM () = [cik]m*m. Let n be the total number of 

processors and erj, where j= 1, 2, ....., n, is the execution rate 

of each processor in number of bytes per unit time and it is 

denoted by PER = [ er1,....., ern], processor’s execution rate 

vector.  

The execution cost of each module depends on the resource, 

to which it is assigned and the work to be performed by each 

of modules of that resource. The execution cost of each 

module on all the processors is given in the form of Execution 

Cost Matrix, ECM () = [ ije ]m*n, where ije  is the execution 

cost of module i on processor j. All ije  can be computed as 

the ratio of the coordinates of MS and PER vectors that is to 

say: 

(1)                                                                       

jer

is
  ije  

The execution and communication costs of the processor j can 

be computed as below: 
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The total cost of the processor j is the sum of execution and 

communication costs and can be computed as below: 

(4)                                 
j

COMM  
j

EXE cos 
j

tT  

Makespan = Max { jtT cos }                              (5) 

 

3.1 Constraints 

In order to determine the proper allocation, initially the 

average load of each processor must be determined. 

If the execution cost of module i on processor j is ije , the 

average load on each processor is as shown in equation (6) 

(6)                                             
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The second constraint module allocation considers balanced 

utilization of a set of “n” available processors. 

The number of modules to be assigned to a processor is given 

by  

                                      
n

                  






m

 

3.2 Assumptions 
 In this problem cost has been taken as time. 

 If more than one module is assigned to the same 

processor then IMCC between them is zero. 

 Allocated modules to processors should not   
     . 
 

4. THE PROPOSED GENETIC                     

ALGORITHM 
The representation of chromosomes is necessary for solving 

the problem using genetic algorithm.  

4.1 Encoding Method 

Natural numbers are used for encoding the chromosomes. The 

chromosomes lengths are assumed to be module numbers. 

Every gene in the chromosome represents the processor. 

Figure 1 gives an allocation of m modules on n processors. 

m1 m2 m3 m4 m5 ... ... ... ... mm 

P1 P2 P3 P4 P5 ... ... ... ... Pn 

Fig 1: The module allocation in the form of chromosome  

4.2 Initial Population 
The initial population is created randomly. 

4.3 Fitness Calculation 
Fitness value is the measure based on which one can decide 

the fitness of solution. In this paper the fitness of solution has 

been measured in the form of makespan of that solution. The 

solution with minimum makespan is the fittest solution. 

4.4 Genetic Operations  
Before the mutation and crossover operations apply, the 

selection phase is first executed. The selection technique for 

reproduction used in this paper is based on the roulette wheel 

method.  

4.4.1 Crossover Operation  
The proposed algorithm uses a one- point crossover. The 

crossover operation will perform if the crossover ratio (Pc >= 

0.8) is verified. One point is selected randomly. Then combine 
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the genes of the first chromosome from first gene to the cut 

point and the genes of second chromosome from cut point to 

the last gene.    

4.4.2 Mutation Operation 
A point on each chromosome from the previous phase is 

randomly selected and then changed to a random number 

between 1 and m. In the proposed approach, the mutation 

operation will perform if the mutation ratio (Pm<=0.1) is 

verified.  

4.5 Terminating Condition  
The algorithm terminates when the maximum number of 

iterations have been reached. 

The mapping of the modules to processors takes place 

according to the following algorithm: 

1) Input: Set the parameters m, n, PER, IMCCM (,), TS,     

PS, MaxIter, pm, pc. 

2)   Partitioning the task into modules and obtain MS. 
3) Calculate ECM (,) by according to the equation (1). 

4) Determine Lavg (j) on processor j according to the 

equation (6). 

5) Determine the number of modules to be assigned to the 

processor according to                                   .    
n

                  






m
 

6) Generate the initial population of random individuals as 

shown in fig.1. 

7) Calculate the makespan of each individual using the 

equation (2), (3), (4) and (5). 

8)  Iter=1 

9) While (Iter <= MaxIter)  

10) P=1 

11) While (P <= PS) 

12)  Genetic operations 

 Reproduction 

 Apply crossover according to pc ( pc >= 0.8) 

 Mutate the individual according to pm ( pm <= 

0.1) 

13) Calculate the makespan of modified individual. 

14) P=P+1. 

15) End while. 

16) Set Iter=Iter+1. 

17) End while. 

18) Select only those Childs which satisfy the constraint. 

5. RESULTS AND COMPARISON 
The effectiveness of the proposed scheduling method is 

assessed and evaluated using makespan. Table 1 lists the 

parameters used in the performance study of proposed 

algorithm. The experiment was conducted using three 

processors and a task having nine modules. 

Table 1: System parameters and the corresponding value  

Parameter Value 

TS 2268 

PS 1000 

Pc 0.8 

      Pm 0.1 

MaxIter 200 

 

After partitioning the task’s size (TS) randomly into nine 

different parts, the obtained MS is: 

 

m1 240 

 

m2 300 

 

m3 190 

MS  =  
m4 301 

 

m5 225 

 

m6 255 

 

m7 232 

 

m8 245 

 

m9 280 

 

The experiment was run 10 times with different initial random 

population. Each run had a fixed number of 200 iterations and 

makespan value was recorded after each run. 

The most suitable chromosome is 213321231 i.e. the modules 

are allocated as given below: 

m2, m6, m9            →               p1 

m1, m5, m7                 →               p2 

m3, m4, m8                 →               p3 

The execution and the communication costs obtained using 

the proposed algorithm are given in the table below: 

TABLE 2: Results 

 

It is clear from the above table, that the makespan obtained by 

the genetic algorithm is 1179.75. 

 

Fig 2: Average makespan vs. Number of Iterations 

The average makespan of the newly generated chromosomes 

has been calculated after each iteration and it is observed from 

the Figure 2 that with the proposed genetic algorithm, optimal 

makespan is achieved.  
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In this study, the performance of the proposed algorithm is 

evaluated in comparison with Yadav et.al. [23]. The 

comparison of makespan is shown in the table below: 

Table 3: Comparison of makespan time obtained by 

proposed GA and Yadav et al. [23] 

 Proposed GA Yadav et al. 

[23]  

Module 

allocation 

213321231 223121133 

Makespan 1179.75 1268.34 

6. CONCLUSION 
In this paper, a genetic algorithm has been presented which 

not only minimizes the makespan time but also achieves 

balanced utilization of available resources by executing 

successfully a task consisting of several modules. The 

algorithm was studied by conducting more number of runs 

and the reason was found to be the size of population. As the 

population size increases, makespan converges to optimal 

makespan rapidly. Table 3 shows that the results obtained by 

genetic algorithm are much better than Yadav et.al. [23]. The 

present model will be validated in future through developing 

the simulator for real environment. 
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