
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

26

Workload Analysis in a Grid Computing Environment: A

Genetic Approach

P.K.Yadav
CSIR- Central Building

Research Institute, Roorkee

Anuradha Aggarwal
Department of Mathematics

and Statistics, Faculty of
Science, Gurukul Kangri

University, Haridwar (UK), India

M.P.Singh
Department of Mathematics

and Statistics, Faculty of
Science, Gurukul Kangri

University, Haridwar (UK), India

ABSTRACT
Grid computing is the collection of computer resources from

multiple locations to reach a common goal. The grid is a

special type of distributed system with non-interactive

workloads that involve a large number of files. Partitioning of

the application program/ software into a number of small

groups of modules among dissimilar processors is an

important parameter to determine the efficient utilization of

available resources in a grid computing environment. It also

enhances the computation speed. The task partitioning and

task allocation activities influence the distributed program/

software properties such as IPC. This paper presents a

metaheuristic model, that performs static allocation of a set of

“m” modules of distributed tasks/program considering the two

conflicting objectives i.e. minimizing the makespan time and

balanced utilization of a set of “n” available resources of a

grid computing. Experimental results using genetic algorithm

indicates that the proposed algorithm achieved these two

objectives as well as improve the dynamic heuristics

presented in literature.

Keywords
Grid computing, Task Allocation, Makespan, Execution Cost,

Inter Task (module) Communication Cost

1. INTRODUCTION

A Grid is a dynamic heterogeneous environment

agglomerating geographically distributed resources and is

defined as a process of taking scheduling decisions

concerning resources spread over various administrative

domains [1]. Users can contribute to grid resources by

submitting computing tasks to grid system. The contribution

of resources can be active or inactive within the grid. Hence it

is impossible for anyone to assign tasks to computing

resources by hand in grids. Therefore grid job scheduling [2,

3, 4] is one of the challenging issues in grid computing. Grid

scheduling system selects the resources and allocates the user

submitted tasks to appropriate resources in such a way that the

user and application requirements are met [5]. With more

applications looking for faster performance, makespan and

balanced utilization of resources are most important objectives

that scheduling algorithms challenge to optimize. Makespan is

the resource utilization time between the beginning of the first

task and the completion of the last task assigned to that

resource.

Several heuristic algorithms [6, 7, 8, 9] have been proposed

for grid job scheduling. These algorithms include genetic

algorithms [10], particle swarm optimization [11], simulated

annealing [12], ant colony optimization [13], tabu search [14],

gravitational emulation local search [15] and Firefly algorithm

[16]. Combinations of these algorithms known as hybrid

heuristics have also been reported in the literature [17, 18].

Genetic algorithm was first proposed in 1975 by John Holland

et al. [19] at Michigan University. Genetic algorithms (GAs)

have also been adopted for solving the problem and obtained

promising results. Hamed [20] proposed GA for task

allocation in heterogeneous distributed computing system. In

[21], a new evaluation algorithm, GLOA is used to solve the

problem of scheduling independent task in a grid computing

system. Simulation results show that this algorithm produces

shorter makespan.

In the previous paper [22], A GA based task allocation

problem has been discussed for multiple task allocation

without considering the task’s size. This paper considers task

allocation problem for a single task having some modules of

different sizes with the goal of minimizing the makespan time.

The experimental results reveal that the proposed algorithm

produces better module allocation than other algorithms.

2. NOTATIONS
m Total number of modules

n Total number of processors

ije Execution cost of ith module

 on processor j

cik Inter module communication cost of

communicating modules i and k

erj Execution rate of processor j

PER Processor’s Execution Rate

 Vector

MS Module Size vector

IMCCM (,) Inter Module Communication

 Cost Matrix

ECM (,) Execution Cost Matrix

TS Task Size

PS Population Size

MaxIter Maximum number of

 Iterations

si Size of module i

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

27

pm Mutation Probability

pc Crossover probability

3. PROBLEM DESCRIPTION
This paper considers a grid with an arriving task to GA for

scheduling. The task’s size has been partitioned randomly into

the small modules of different sizes. The proposed algorithm

should be efficient in finding a solution that produces the

minimum makespan. Thus, the problem is to assign these

modules to the processors with the minimum makespan.

Let m be the total number of modules to be scheduled and si ,

where i= 1,2,.......,m, be the size of each module in number of

bytes and it denoted by MS = [s1,..., sm], a module size vector.

cik is the inter module communication cost of communicating

modules due to the exchange of data units between them,

during the process of execution. This communication cost is

given in the form of Inter Module Communication Cost

Matrix, IMCCM () = [cik]m*m. Let n be the total number of

processors and erj, where j= 1, 2,, n, is the execution rate

of each processor in number of bytes per unit time and it is

denoted by PER = [er1,....., ern], processor’s execution rate

vector.

The execution cost of each module depends on the resource,

to which it is assigned and the work to be performed by each

of modules of that resource. The execution cost of each

module on all the processors is given in the form of Execution

Cost Matrix, ECM () = [ije]m*n, where ije is the execution

cost of module i on processor j. All ije can be computed as

the ratio of the coordinates of MS and PER vectors that is to

say:

(1)

jer

is
 ije

The execution and communication costs of the processor j can

be computed as below:

(2)
m

1i

n

1j
ij

X .
ij

e

jEXE

(3)

1

i

1
kl

X .
ij

X .

jl

1

m

i

m

k

k

n

l
ik

cCOMM
j

where

otherwise 0,

processor thj

 the toassigned is module thi if 1,

ij

X

otherwise ,0

processor thl

 the toassigned is module th k if 1,

kl

X

The total cost of the processor j is the sum of execution and

communication costs and can be computed as below:

(4)
j

COMM
j

EXE cos
j

tT

Makespan = Max { jtT cos } (5)

3.1 Constraints

In order to determine the proper allocation, initially the

average load of each processor must be determined.

If the execution cost of module i on processor j is ije , the

average load on each processor is as shown in equation (6)

(6)
1

)(
n

m

i
ij

e

j
avg

L

The second constraint module allocation considers balanced

utilization of a set of “n” available processors.

The number of modules to be assigned to a processor is given

by

n

m

3.2 Assumptions
 In this problem cost has been taken as time.

 If more than one module is assigned to the same

processor then IMCC between them is zero.

 Allocated modules to processors should not
 .

4. THE PROPOSED GENETIC

ALGORITHM
The representation of chromosomes is necessary for solving

the problem using genetic algorithm.

4.1 Encoding Method

Natural numbers are used for encoding the chromosomes. The

chromosomes lengths are assumed to be module numbers.

Every gene in the chromosome represents the processor.

Figure 1 gives an allocation of m modules on n processors.

m1 m2 m3 m4 m5 mm

P1 P2 P3 P4 P5 Pn

Fig 1: The module allocation in the form of chromosome

4.2 Initial Population
The initial population is created randomly.

4.3 Fitness Calculation
Fitness value is the measure based on which one can decide

the fitness of solution. In this paper the fitness of solution has

been measured in the form of makespan of that solution. The

solution with minimum makespan is the fittest solution.

4.4 Genetic Operations
Before the mutation and crossover operations apply, the

selection phase is first executed. The selection technique for

reproduction used in this paper is based on the roulette wheel

method.

4.4.1 Crossover Operation
The proposed algorithm uses a one- point crossover. The

crossover operation will perform if the crossover ratio (Pc >=

0.8) is verified. One point is selected randomly. Then combine

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

28

the genes of the first chromosome from first gene to the cut

point and the genes of second chromosome from cut point to

the last gene.

4.4.2 Mutation Operation
A point on each chromosome from the previous phase is

randomly selected and then changed to a random number

between 1 and m. In the proposed approach, the mutation

operation will perform if the mutation ratio (Pm<=0.1) is

verified.

4.5 Terminating Condition
The algorithm terminates when the maximum number of

iterations have been reached.

The mapping of the modules to processors takes place

according to the following algorithm:

1) Input: Set the parameters m, n, PER, IMCCM (,), TS,

PS, MaxIter, pm, pc.

2) Partitioning the task into modules and obtain MS.
3) Calculate ECM (,) by according to the equation (1).

4) Determine Lavg (j) on processor j according to the

equation (6).

5) Determine the number of modules to be assigned to the

processor according to .
n

m

6) Generate the initial population of random individuals as

shown in fig.1.

7) Calculate the makespan of each individual using the

equation (2), (3), (4) and (5).

8) Iter=1

9) While (Iter <= MaxIter)

10) P=1

11) While (P <= PS)

12) Genetic operations

 Reproduction

 Apply crossover according to pc (pc >= 0.8)

 Mutate the individual according to pm (pm <=

0.1)

13) Calculate the makespan of modified individual.

14) P=P+1.

15) End while.

16) Set Iter=Iter+1.

17) End while.

18) Select only those Childs which satisfy the constraint.

5. RESULTS AND COMPARISON
The effectiveness of the proposed scheduling method is

assessed and evaluated using makespan. Table 1 lists the

parameters used in the performance study of proposed

algorithm. The experiment was conducted using three

processors and a task having nine modules.

Table 1: System parameters and the corresponding value

Parameter Value

TS 2268

PS 1000

Pc 0.8

 Pm 0.1

MaxIter 200

After partitioning the task’s size (TS) randomly into nine

different parts, the obtained MS is:

m1 240

m2 300

m3 190

MS =
m4 301

m5 225

m6 255

m7 232

m8 245

m9 280

The experiment was run 10 times with different initial random

population. Each run had a fixed number of 200 iterations and

makespan value was recorded after each run.

The most suitable chromosome is 213321231 i.e. the modules

are allocated as given below:

m2, m6, m9 → p1

m1, m5, m7 → p2

m3, m4, m8 → p3

The execution and the communication costs obtained using

the proposed algorithm are given in the table below:

TABLE 2: Results

It is clear from the above table, that the makespan obtained by

the genetic algorithm is 1179.75.

Fig 2: Average makespan vs. Number of Iterations

The average makespan of the newly generated chromosomes

has been calculated after each iteration and it is observed from

the Figure 2 that with the proposed genetic algorithm, optimal

makespan is achieved.

0 20 40 60 80 100 120 140 160 180 200
1200

1250

1300

1350

1400

1450

1500

Iterations

A
v
e
ra

g
e
 M

a
k
e
s
p
a
n

processor Execution

cost

Communication

cost

Total cost

P1 488.48 663 1151.48

P2 526.93 651 1177.93

P3 499.75 680 1179.75

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

29

In this study, the performance of the proposed algorithm is

evaluated in comparison with Yadav et.al. [23]. The

comparison of makespan is shown in the table below:

Table 3: Comparison of makespan time obtained by

proposed GA and Yadav et al. [23]

 Proposed GA Yadav et al.

[23]

Module

allocation

213321231 223121133

Makespan 1179.75 1268.34

6. CONCLUSION
In this paper, a genetic algorithm has been presented which

not only minimizes the makespan time but also achieves

balanced utilization of available resources by executing

successfully a task consisting of several modules. The

algorithm was studied by conducting more number of runs

and the reason was found to be the size of population. As the

population size increases, makespan converges to optimal

makespan rapidly. Table 3 shows that the results obtained by

genetic algorithm are much better than Yadav et.al. [23]. The

present model will be validated in future through developing

the simulator for real environment.

7. REFERENCES
[1] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The

Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration”,

Technical Report, Open Grid Service Infrastructure WG,

Global Grid Forum, 2002.

[2] A. J. S. Santiago, A. J. Yuste, J. E. M. Exposito, S. G.

Galan and R. P. D. Prado,” A Multi-Criteria Meta-

Fuzzy-Scheduler for Independent Tasks in Grid

Computing”,Computing and Informatics vol. 30:1201-

1223 (2011).

[3] K. Vivekanandan and D. Ramyachitra,”A Study on

Scheduling in Grid Environment”, International Journal

on Computer Science and Engineering, vol. 3, No. 2,

Feb 2011.

[4] H. M. Lee, J.S. Su and C.H. Chung,”Resource

Allocation Analysis Model Based on Grid

Environment”, International Journal of Innovative

Computing, Information and Control, vol. 7, No. 5(A),

May 2011.

[5] S. Selvi, D. Manimegalai and A. Suruliandi,”Efficient

Job Scheduling on Computational Grid with Differential

Evolution Algorithm”, International Journal of

Computer Theory and Engineering, vol. 3, No. 2, April

2011.

[6] S. Roy and A. Rana,”Comparitive Study of Heuristics

Techniques for Resource Allocation in Grid Computing

Environment”, International Journal of Technology

vol.2, No. 2, 2012.

[7] D. Thilagavathi, and A. S. Thanamani,”A Survey on

Dynamic Job Scheduling in Grid Environment Based on

Heuristic Algorithms”, International Journal of

Computer Trends and Technology vol. 3, Issue 4, 2012.

[8] S. F. El-Zoghdy, M. Nofal, M. A. Shohla and A. El-

sawy,”An Efficient Algorithm Resource Allocation in

Parallel and Distributed Computing Systems”,

International Journal of Advanced Computer Science

and Applications, vol. 4, No. 2, 2013.

[9] S. Mandloi and H. Gupta,” A Review of Resource

Allocation and Task Scheduling for Computational

Grids based on Meta-Heuristic Function”, International

Journal of Research in Computer and Communication

Technology, vol. 2, Issue 3, March-2013.

[10] J. Kolodziej and S. U. Khan,” Multi-Level hierarchic

genetic-based scheduling of independent jobs in

dynamic heterogeneous grid environment”, Information

Sciences: An International Journal, vol. 214, pp. 1-19,

Dec. 2012.

[11] P.Y. Yin, S.S. Yu, P.P. Wang and Y.T. Wang,” Multi-

objective task allocation in distributed computing

systems by hybrid particle swarm optimization”,

Applied Mathematics and Computation vol. 184, page

no. 407-420.

[12] S. Y. Rashida and H. Navidi, “ A Bargaining based

scheduling for resources advanced reservation using

simulated annealing into grid system”, Internation

Journal of Computer Science, vol. 6, no. 9, issue 6, No.

1, Nov. 2012.

[13] R.S. Chang, J.S. Chang, and P.S. Lin (2009),”An ant

algorithm for balanced job scheduling in grids”, Future

Generation Computer Systems, 25, 1, pp. 20-27.

[14] C. Fayad, J. M. Garibaldi and D. Ouelhadj,” Fuzzy Grid

Scheduling Using Tabu Search”, IEEE, 2007

[15] Z. Pooranian, M. Shojafar, R. Tavoli, M. Singhal and A.

Abraham,” A Hybrid Metaheuristic Algorithm for Job

Scheduling on Computational Grids”, Informatica,

vol.37, no.2, 2013 June, p.157(8)

[16] A. Yousif, A. H. Abdullah, S.M. Nor and A.A.

Arbdelaziz,” Scheduling Jobs on Grid Computing Using

Firefly Algorithm”, Journal of Theoretical and Applied

Information Technology, vol. 33, No. 2, November

2011.

[17] Radha and V. Sumathy,” A Hybrid Genetic Algorithm

with Elitist Ant System in Grid Scheduling”, Life

Science Journal, 2013; 10(7s): 510-515.

[18] W. Abdulal, A. Jabas, S. Ramachandram and Omar Al

Jadaan,” Task Scheduling in Grid Environment Using

Simulated Annealing and Genetic Algorithm”, in book

Grid Computing-Technology and Applications,

Widespread Coverage and New Horizons edited by Soha

Maad, ISBN 978-953-51-0604-3, Published: May 16,

2012 , chapter 5.

[19] J. Holland, “Adaptation in Natural and Artificial

Systems,” University of Michigan Press, Ann Arbor,

ISBN: 0-262-58111-6, 1975.

[20] Y. Hamed,”Task Allocation for Maximizing Reliability

of Distributed Computing Systems Using Genetic

Algorithms”, International Journal of Computer

Networks and Wireless Communications vol. 2, No. 5,

2012.

[21] Z. Pooranian, M. Shojafar, J. H. Abawajy, and M.

Singhal,”GLOA: A New Job Scheduling Algorithm for

Grid Computing”, International Journal of Artificial

Intelligence and Interactive Multimedia, Vol.2, No. 1,

pp. 59-64, 2013.

[22] M. P. Singh, P. K. Yadav and A. Aggarwal,”Response

time optimization of a grid computing system using

genetic approach”, in conference proceeding, Dhanbad,

Jharkhand, 2013, pp. 171-179.

[23] .K. Yadav, Preet Pal Singh and P. Pradhan,”A Tasks

Allocation Algorithm for Optimum Utilization of

Processor’s in Heterogeneous Distributing Computing

Systems”, vol.2, Issue 1, 2013.

IJCATM : www.ijcaonline.org

http://www.bibsonomy.org/author/Santiago
http://www.bibsonomy.org/author/Yuste
http://www.bibsonomy.org/author/Exp%C3%B3sito
http://www.bibsonomy.org/author/Gal%C3%A1n
http://www.bibsonomy.org/author/Gal%C3%A1n
http://www.bibsonomy.org/author/de%20Prado
http://www.bibsonomy.org/bibtex/bf073205f936ed115d7d3ff6dbdf615d
http://www.bibsonomy.org/bibtex/bf073205f936ed115d7d3ff6dbdf615d
http://www.bibsonomy.org/bibtex/bf073205f936ed115d7d3ff6dbdf615d
http://www.ijimai.org/journal/biblio/author/249
http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-and-new-horizons
http://www.intechopen.com/books/grid-computing-technology-and-applications-widespread-coverage-and-new-horizons
http://www.ijimai.org/journal/biblio/author/249
http://www.ijimai.org/journal/biblio/author/250
http://www.ijimai.org/journal/biblio/author/251
http://www.ijimai.org/journal/biblio/author/251

