
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

20

Pipelined Execution of LTE Algorithms

Ankur Krishna Gautam

Indian Institute of Technology,
BHU

 Roya Alizadeh
Ecole polytechnique De

Montreal
Montreal, Quebec

ABSTRACT

To study the latest cellular mobile communication standard

and protocols, there should be a publicly available simulation

environment to support researchers of the world to do testing,

reformulation of the existing technologies and optimization on

a common well known platform [1],[2],[3]. A possible

solution is offered by open source simulation environment

from TUWIEN that supports link and system level

simulations of the Universal Mobile Telecommunication

System (UMTS) Long-Term Evolution (LTE) and which is

specifically designed to accentuate reproducibility [1]. In this

paper, we pipelined execution of the LTE algorithms on blade

servers to achieve minimum latency caused during

communication [4]. And then the pipeline model is compared

in different context including a single (multi-core) processor,

multiple processors on a single board, multiple processors on

different boards on a single server and multiple processors on

two different servers and etc. Moreover, we obtained the ratio

of the communication and the computation time in the

execution of LTE algorithms in the TUWIEN simulator by

profiling which provides the best preferable configuration for

the LTE algorithms. Finally, LTE processes are distributed to

desirable processors by using OpenMPI to decrease latency.

General Term

openMPI,profiling,blade servers

Keywords

Pipeline model, TUWIEN LTE simulator

1. INTRODUCTION
TUWIEN System level simulator will be the standard

platform for our work. The simulator can be used as a

reference to validation of algorithms, generate LTE signals,

analyze the LTE algorithms. To keep the code maintainable

and well functional, the simulator is coded in Matlab though

there is no compromise with the computational power and

execution time as the simulator uses MEX files for highly

computational and repetitive tasks which are not easy to

vectorized along with that it is based on the Parallel

Computing Toolbox of Matlab which further helps to provide

parallelization to some more extent. But still due to the

overhead of the high level language like Matlab, it is very

exciting to think in terms of parallel models and configuration

for the distribution of LTE algorithms.

So, as a preliminary part of the big umbrella, our work will be

analysis and profiling of the Matlab code to obtain the

representative amount of time and data transfer and then

visualize the various LTE steps or algorithms only with the

concerned processing time and the data transfer. And once we

have the involved data and time, we can do create models

based on parallelization using Inter Processing

Communication (IPC) and can test our model on various

configurations including single (multi-core) processor,

multiple processors on same socket, processors on different

sockets, cluster of server and etc. and the This will further

make us able to compare the processing time of various

models on various configurations. Furthermore, we can know

the actual latencies, overhead and compromises involved in

distributing the LTE algorithms. Moreover, we can compare

the communication and the computation time in the overall

execution time on different configurations, and we can also

find a relation between communication time and amount of

data transferred.

Though there has been lot of work on implementing

components of LTE on GPUs [5] and implementation of LTE

parts on multi core platforms [7],[8],[9].Our work is unique in

the sense as it directly focuses on latencies cause while

distributing the LTE algorithms on various configurations. We

have access to two blade servers having 160 cores each (8

sockets each having 10 cores and hyper threading enabled).

We also propose the best and the worst case sceneries with

respect to the Non Uniform Memory Access (NUMA)

architecture and the variation in the execution time. At the end

of the paper we provide detailed results of the profiling in

terms of the computation and communication time.

The structure of the paper is as follows: The section 2 is

aimed for the purpose of building a comprehensible platform

with the current technologies. In subsection 2.1 we define the

features of LTE in general and put TUWIEN LTE simulator

in light along with description of its components. Subsection

2.2 describes the Message Passing Interface, the required

library and the way of distributing processes to desirable

processors. In section 3 we describe our contribution.

Subsection 3.1 consists of our approach to do profiling of the

Matlab based TUWIEN simulator and in subsection 3.2 we

define the pipeline scheme in detail. Subsection 3.3 deals

significantly with NUMA and rank file in OpenMPI to

distribute processes on processors. Section 4 shows

conclusions of our work along with the future directions.

Section 5, 6 stands for the acknowledgement and references

respectively.

2. BACKGROUND

2.1 Introduction to LTE

LTE is a standard for wireless communication of high speed

data for mobile phones and data terminals. It is based on the

GSM/EDGE and UMTS/HSPA network technologies,

increasing the capacity and speed using a different ratio

interface together with core network improvements based on

the feedback from user side.

Peak download/upload data transfer rates, low latency over

handover and connection set up time, improved support for

mobility, OFDMA, SC-FDMA, simplified architecture,

packet switched radio interface, MIMO data processing, user's

feedback utilization, scheduling at base station to improve

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

21

channel quality, appropriate level of security are some of the

main features of LTE. The low latency, improved coverage,

flexible spectrum deployment, scalable bandwidth, co-

existence with 3GPP Radio Access Technologies, low cost,

improved services are some of the motivation factor behind

the development of the LTE.

To provide a standard testing platform to the researchers

TUWIEN developed LTE simulator available with non-

commercial academic use license and written in Matlab and

requires the following packages: Matlab 7.8.0 (2009a),

statistics toolbox, image toolbox, mapping toolbox. The

Matlab simulator is available for both System level and link

level supporting both uplink and downlink. Higher order of

optimization has been done using MEX library to perform

operations in the C/C++ environment,vectorization,

parallelization using Matlab Parallel Computing toolbox,

calculating and saving the result for some repetitive tasks such

as ENodeB-dependent large scale pathloss maps, site

dependent shadow fading maps and time dependent small

scale fading maps which highly reduces the computational

load.In the development and standardization of LTE, as well

as in the implementation process of equipment manufacturers,

simulations are necessary to test and optimize algorithms and

procedures. This has to be carried out on the physical layer

(link level) and in the network (system level) context.

2.1 Link level simulator:

It focuses on channel estimation, tracking and predicting

algorithms as well as synchronous algorithms [10, 11], MIMO

gains, adaptive modulation and coding. Receiver structure

neglects inter-cell interference and impact of scheduling as

this increases simulation complexity and execution time to the

larger extent. This simulator also deals with modeling of

channel encoding and decoding.

2.2 System level simulator:

It focuses more on network related issues such as resource

allocation and scheduling, multi user handling, mobility

management, admission control, interference management

and network planning optimization. It also calculate different

types of fading maps including shadow fading, path loss and

micro scale fading maps.

We will mainly be dealing with the system level simulator for

our testing and profiling purpose. We will divide the whole

source code into 31 steps and then will do the profiling of

each step to obtain the equivalent amount of time and amount

of data transferred.

2.3 Introduction to MPI

MPI primarily addresses the message-passing parallel

programming model. Data is moved from the address space of

one process to other process through cooperative operations

on each process. This interface attempts to be practical,

portable, efficient and flexible. MPICH2 and OpenMPI are

two biggest implementation of MPI.Figure 1 illustrates the

structure of an OpenMPI program

There are 2 types of communication routines in MPI:

I. Point to point communications routines :

MPI point-to-point operation typically involves message

passing between two, and only two, different MPI tasks. One

send is performing a send operation and the other task is

performing a matching receive operation.

openMPI supports different mechanism for the send and

receive functions including synchronous send, blocking

send/receive, on-blocking send/receive, buffered send,

combined send /receive, ready send etc. A blocking send

routine will only return its execution after it is safe to modify

the application buffer for reuse or in other words data has

arrived and is ready for use by the program. A blocking send

may be synchronous or asynchronous depending upon the fact

that if it is waiting for the handshaking with the receive task

or using a system buffer to hold the data for eventual delivery

respectively.

II.Collective communication :

It involves more than two processes at the same time. Any

collective communication routine must involve all process

within the scope of a communicator. Figure 2 illustrates

collective communication in OpenMPI.

Fig 2 Collective communication in openMPI[11]

3. OUR CONTRIBUTION
We will define our contribution in 3 terms. First we will

consider TUWIEN Matlab System level simulator as the

standard for testing LTE algorithms then start profiling the

Fig 1 Structure of an openMPI program [11]

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

22

large Matlab source code. Since the source code is larger

enough, it is not easy to analyze as a whole and to divide the

source code in various algorithms or the functional calls that

we call a STEP seems logical. We divide the System Level

source code in 31 steps in which some steps occurred more

than once depending upon if they are called in a loop

construct. Once we have steps, we can start thinking in terms

of different steps connected via a sequential pipeline.

Profiling comes into the picture when we need to have the

execution time of the every step and data transferred for the

steps to be executed which is equivalent to the summation of

input and output size, if the step is considered as a function

call.

The system Level simulator is divided into following steps:

 Load Params

 Load Default Params

 Load BLER curves

 Generated enodeB network

 Get neighbor nodes in a loop construct

 Generate shadow fading

 Determine cell capacity

 Generate users

 Calculate small scale fast fading

 SINR averaging algorithm

 Trace, attach users to sectors , Downlink models

 Main simulation loop

3.1 Profiling of the simulator
Execution time of the steps :

There are three approaches for determining the execution time

of a step

1. We can count the number of instructions or operators in the

step and can divide by IPS (Instruction per Second) to get the

time elapsed during the execution. The best way to count the

instruction is to use some extra variables and counters .But

since the Matlab code has a huge overhead even for each

instruction, the time taken in using variables and counters

throughout the code of the step will be significant.

2. We can use inbuilt profiling functions of Matlab by

executing profiling on and then profile viewer after the

execution. Profiling will record all the information related to

processing time for each function call, it encounters. A step

needs not to be a function call every time .It might be a file

loading call or some computational instruction set other than

that the lesser flexibility option makes the method less

appropriate.

3. Using clock() to get the difference in time between the code

starts and code end.

In Matlab , we are provided with the very user friendly

functions tic[to start clock] and toc[to take elapsed time at a

given interval]

%test program to measure execution time
step=tic;
t_start=toc(step);
s;
t_finish=toc(step);

Where s is a piece of source code .
One problem is that the overhead in computing test_time is

not taken into account. This overhead involves at least the

time of two calls to the clock function (which in our case are

tic & toc) and the assignments to t_start & t_finish. The

overhead can be found by running the following control

program.

%control program
step=tic;
t_start=toc(step);
% this line is empty.It is a null program
t_finish=toc(step);

Then actual running time of s is then the difference

Some other source of inaccuracy is due to interferences from

the underlying operating system. Disabling interrupts during a

timing run will assure that no operating systems tasks preempt

the test or control tasks. However, it is always not possible to

disable all system interrupts.
For example, the clock itself is often driven by periodic tick

interrupts.
Finally, there are significant errors due to the tick granularity

and accuracy of the clock.

Let be the time returned from the clock function, be the

tick period or tick interval, and be the perfect real time

(without overhead).

If the clock is called at real-time , then the time
returned will satisfy the relation

Consider now the difference obtained from two calls of

clock:

 , 1.5

Thus the difference between two clocks times will have an

error bounded by .The s_time from equation 1.3 will then

have a maximum error of 2 , since it is the difference

between two differences.
To overcome these problems, to execute the piece of code

many times seems a good option.

%test program 2
step=tic;
t_start=toc(step);
for i=1:n
s;% piece of code to be analyzed
end
t_finish=toc(step);
test_time=t_finish-t_start;

And hence,

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

23

 1.6

 Or,

And if the loop count is sufficiently

large, the error term can be ignored.

[12]

Data transfer between steps :

To list the used variables in Matlab workspace, with sizes and

types, there is a function provided with name

Whos(variable_name).
So if we consider a step to be more generally like a function,

data transfer will be equivalent to the size of inputs and

outputs of the function.
e.g. consider the step of loading parameters for the simulators.

function LTE_config

=LTE_load_params(varargin,param)

%saperately consider the case of fixed

number of inputs
%inputs and variable number of inputs

s1=whos('varargin');
s2=whos('param');
inputsize=s1.bytes-nargin*112+s2.bytes;
% set the return value i.e. LTE_config
s3=whos('LTE_config');
outputsize=s3.bytes;

end

And the overall code is modified in such a way that a text file

having the details of execution time and data transferred is

generated for each simulation.
And once we have the details, we can start thinking in terms

of virtual computation and communication. For each step,

3.1 Pipeline model
Once we have the text file as a result of simulation, having

data transferred & execution detail of each step, we can

visualize the source code with the computational sleep for the

representative amount of time and virtual transfer of the

represented amount of data. We can use some models using

Inter Process Communication to distribute the steps between

different processors. We can also use core & socket affinity

for any particular step using some flags during the

command. We can think of these models while writing c

program: The text file generated from the simulation is

accessed by all the processes to get the execution time and

corresponding data transfer for each step (they are 31 in

number).

Root processes initiate the pipeline and other processes

propagate by doing the corresponding computational sleep

and receiving, sending the data.

If the execution times of different processes are in

order of the rank, the overall latency can be found by

 .And we can repeat the flow of execution to get the

high accuracy of the latency per execution.

This scheme is implemented by maintaining two integers left

& right which governs the direction of data transfer such that

each process have to receive data from the process with rank

equal to the left and send data to the process with rank equal

to the right .And root process starts its task by first making a

sleep and sending data to the next process (i.e. process with

rank 1) and other processes propagates similarly.

Socket/core affinity:
Since all the cores present in a socket are connected by a

memory pipeline, it is more convenient to transfer data

between the processes executing on the cores of a same socket

.Hence there could be a high variation depending upon the

availability of processes to cores & sockets.

We are provided several functionalities in openMPI to choose

the core and socket affinity for a particular step depending

upon the characteristics. We can use a rankfile to define the

affinity for each process.

When there are 4 processes

Where host1, host2 are the addresses of the blade servers.
If we are running the program on same server, we can define

localhost at the place of name of the host. Slot 1:0 means the

core 0 of the socket 1.

Running on cluster:
A computer cluster consists of a set of loosely connected or

tightly connected computers that work together so that in

many respects they can be viewed as a single system.SSH is

used as the basis of communication between the computers.

Later we used to NUMA aspects to distinguish between the

distribution of the processes to the processors.

OpenMPI supports execution of program on cluster using

a hostfile.

hostfile
The Hostfile for Open MPI
The master node, 'slots=160' is used

because it has 160 cores.
Srvgrm04 slots=160
The following are the slave nodes
Srvgrm06 slots=160

Rank 1

Next request

Fig 3 Pipeline model

Rank 2 Rank 3 Rank 31 Rank 1

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

24

Once we set the password less ssh between the servers, we are

ready to taste out MPI program on cluster. And we also have

these functionalities in openMPI implementation to distribute

processes among the processors of each server independently.

-npernode, --npernode <#pernode>

On each node, launch this many processes.
-pernode, --pernode

On each node, launch one process -- equivalent to -

npernode 1.

To map processes to nodes:

-loadbalance, --loadbalance
Uniform distribution of ranks across all nodes.

-nolocal, --nolocal
Do not run any copies of the launched application

on the same node as orterun is running. This option

will override listing the localhost with --host or any

other host-specifying mechanism.
-nooversubscribe, --nooversubscribe

Do not oversubscribe any nodes; error (without

starting any processes) if the requested number of

processes would cause oversubscription. This option

implicitly sets "max_slots" equal to the "slots" value

for each node.
-bynode, --bynode

Launch processes one per node, cycling by node in

a round-robin fashion. This spreads processes

evenly among nodes and assigns ranks in a round-

robin, "by node" manner.

3.3 Introduction to NUMA
Non-Uniform Memory Access (NUMA) is a computer

memory design used in multiprocessing, where the memory

access time depends on the memory location relative to a

processor. Under NUMA, a processor can access its own local

memory faster than non-local memory (memory local to

another processor or memory shared between processors).

Architecture of NUMA could be like this. The processor

connected to the bus or crossbar by connections of varying

thickness/number. This shows that different CPUs have

different access priorities to memory based on their relative

location.

System's architecture can be examined using the lstopo utility,

part of the hwloc library, which comes with Open MPI.

Unfortunately lstopo cannot tell you how fast each memory

channel is and how fast/latent the links between the NUMA

nodes are. Since it is dependent on the relative location,

thinking in terms of the processor/socket affinity becomes

crucial . And it drives us to know the worst case and best

scenario of our pipeline scheme. Server has 8 sockets each

having 10 cores .When all the processors of all sockets of the

blade server are used or all the processes are going to be

executed on the processors of a single socket are worst case

and best case scenarios respectively.

Best case:
 : This will result in the distribution of

processes on cores in a sequence.

So during the whole scheme very less data transfer will be

occurred between the processes executing on two different

sockets.

Worst case
 This will result in

distribution of process on sockets such that each data transfer

will be occurred between the processes executing on two

different sockets.

For seeing the binding of processes and processors, there is a

function being provided in openMPI implementation

i.e –

Other possible cases include

 –

4. CONCLUSION/RESULTS
For our pipeline model we make the code sleep for the

representative amount of time as a computational task and

send virtual data equal to the representative amount of data

transferred in the step as a communication task. We run our

pipeline scheme on several configurations and note the overall

processing time and to measure the latency. Detailed Result of

the profiling of the simulator can be seen in the files generated

as the result of the execution of the modified simulator. We

introduce two new terms is the time elapsed in data

transfer while denoted the sleep time.

Table 1 Processing time on various configurations

Configuration Execution time

A single (multi-core)

processor

72.0325

Multiple processors on a

single board

72.0684

Processors on different

boards in a single server

72.2783

Processors on two different

server

74.1627

We can compare the best and worst case of processor/socket

affinity:

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 16, May 2014

25

Table 2 Best/worst case scenarios

Case (sec) (sec)

Best 48.23 24.0116

Worst 48.86 24.0052

Based on the above results, below conclusion can be made.

1. There is a linear relation between the communication time

(time taken in transferring data) and amount of data. The

relation can be expressed like this,

Where and are constants for the relation.

And the values are:

2. Error induced and the overhead by using clock() in Matlab

profiling can be minimized to the minimum level by

considering the time taken in calling the clock() and by

running too many instances of the same code.

3. There is a latency of 0.19 seconds in distributing LTE

algorithms on multiple sockets.

5. ACKNOWLEDGEMENT
I am also very thankful to MITACS organization for funding

and the priceless guidance from my mentor Mr. Normand

Bélanger must be appreciated heartily. I especially like to

acknowledge the motivational environment and the limit less

support of all the members of GRM Lab. Special Thanks to

Prof.O.P.Singh for timeless encouragement.

 The source code of the modified simulator /makefiles/results

can be found at http://sourceforge.net/projects/pipelinelte/

6. REFERENCES
[1] Christian Mehlführer, Josep Colom Colom Ikuno, Michal

Šimko, Stefan Schwarz, Martin Wrulich and Markus

Rupp2011. The Vienna LTE simulators – Enabling

reproducibility in wireless communications research

[2] Markus S ima , amila M ussen , reno

 s ndola1 , Tadeu N. Ferreira2 , 3,1 Wallace A.

Martins , Paulo S. R. Diniz1.OPEN-SOURCE

PHYSICAL-LAYER SIMULATOR FOR LTE

SYSTEMS in 2012

[3] Bum-Gon Choi, Jun Suk Kim, and Min Young

Chung.Development of a System-Level Simulator for

Evaluating Performance of Device-to-Device

Communication Underlaying LTE-Advanced Networks

in 2012

[4] Inkeun Cho*, Tomasz Patykt, David Guevorkian+, Jarmo

Takala§, and Shuvra Bhauacharyya.Pipelined FFT for

Wireless Communications Supporting 128-2048 / 1536 -

Point Transforms

[5] Dipl.-Ing Michal Šimko,Di l -Ing. Mag. Dr.techn.

Sebastian Caban, March 2011. Implementation of LTE

mini receiver on GPUs. .

[6] Agilent Technologies,2009.3GPP Long Term

Evolution,System overview,product development and

test challenges.

[7] Agilent Technologies,2009.Introducing LTE-Advanced

[8] Julien Heulot , Jani Boutellier , Maxime Pelcat , Jean-

Franc ois Nezan , Slaheddine Aridhi.Applying the

Adaptive Hybrid Flow-Shop Scheduling Method to

Schedule a 3GPP LTE Physical Layer Algorithm onto

Many-Core Digital Signal Processors in 2013

[9] Maofei He, Jiajie Zhang, Wenhua Fan, Zhiyi Yu*,

Xiaoyang Zeng.A Channel Estimator for LTE Downlink

Mapped on a Multi-Core Processor Platform

[10] Anas Showk ,Attila Bilgic .A Novel Scheduling

Methodology Based on SDL Process Migration for the

LTE Higher Layer Protocol on Multi-Core Mobile

Terminals

[11] Messaging passing Interface Tutorial,

https://computing.llnl.gov/tutorials/mpi/

[12] Real-Time Systems and Software by Alan C. Shaw

IJCATM : www.ijcaonline.org

