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ABSTRACT
In symbolic dynamics, the definition of a symbolic sequence from
a continuous times series depends on the use of an appropriate par-
tition of the phase space. In fact, the best way is to estimate a gen-
erating partition.
However, it is not possible to find generating partitions for most ex-
perimental observations because such partitions do not exist when
noise is present.
In this paper, different partition methods applied to stochastic and
chaotic system will be compared in order to choose one which con-
serves system entropy rate. This partition is called a Markov parti-
tion.
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1. INTRODUCTION
Symbolic dynamics approach allows to study a discrete dynamical
system equivalent to the continuous dynamics of a physical system.
This approach was pioneered by Hadamard in 1898 [12] who sug-
gested the idea to split the state space into a finite number of parts,
each part having a name (usually a number or letter of alphabet).
All the points of the phase space are given the name of the part to
which they belong.
Given a partition of the state space, associating to each point x an
infinite word describing its trajectory is a transformation from a
complex application to a simple one. But the state space becomes
more complex, it is now a set of infinite words which allows to un-
derstand the structure of the dynamics.
The main issue of symbolic dynamics is to seek for a partition of
the state space that describes the trajectories of points and verify

the constraint to represent the dynamics in a simple way. This sym-
bolic method allows to overcome the limitations of analytical ap-
proaches, while retaining some key properties in terms of the dy-
namics.
This type of partition is called a Markov partition because of its
connection to discrete time Markov processes.
In the dynamical systems literature, one typically search for a gen-
erating partition which has strong theoretical settings. Neverthe-
less, a generating partition is hardly determined on the basis of ex-
perimental data [5].
Note further that every Markov partition is generating, but the con-
verse is not necessarily true [5].
In this paper, different methods for partitioning the phase space
of a dynamic system will be presented such as methods of vector
quantification (self organizing maps [16] and K-means algorithm
[20]) and methods of numerical approximation of dynamical
systems (varcluster [1] and subdivision [7]).
These methods will be tested in chaotic and stochastic dynamic
systems to extract the best partition associated to Markov process.
This paper is organized as follows: the first section describes
various phase space partition methods, these methods will be used
in the following section to quantify discrete stochastic and chaotic
systems in order to estimate their performance and select the best
one.

2. METHODS
2.1 Different partition methods
In this paper, the phase space of each dynamical system is denoted
E .
In this space, a simulation of Ts seconds leads to a sequence of row
vectors ~e(t) = (e1(t), . . . , eN (t)) with t = 0, . . . , T −1 with T =
Ts/∆t the number of samples simulated by ∆t integration step.
The partition of E corresponds to the definition of non-overlapping
regions mi so that

⋃
imi = E and

⋂
imi = ∅. This procedure

leads to coarse grained the E space and to obtain a newM space
with ||M|| = m regions.
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2.1.1 First method: K-means. This method of clustering was in-
troduced by MacQueen [20] and its algorithm is developed by Har-
tigan and Wong 1979 [14]. This method is the simplest one that
can solve the problems of partitioning. Its seeks the easiest way to
classify the data in some m numbers region in state space [6], [21].
The idea is to represent each group by its mean centroid called c.
The steps of this algorithm are:

—Choose randomly m groups.
—Regroup centroids that are close enough.
—Recalculate the positions of the m new centroids.
—Repeat last two steps until the minimization of measurement er-

ror given by the sum of square errors calculated between each
point and each group centroid.

E =

m∑
j=1

∑
i

‖xji − cj‖2 (1)

With ‖xji − cj‖2 is the distance measured between xji points
included in jth group with cj centroid.

2.1.2 Second method: Self organizing maps. Unlike the k-means
method, the self-organizing maps (SOM) [16] allows a rapid un-
supervised learning of individuals (the states of systems in phase
space).
It relies on a neural network distributed uniformly in a space of 2
or 3 dimensions. Each neuron is defined by a vector in the space of
individuals, called weight vector. Individuals are presented succes-
sively to the network.
For each individual xk with k ∈ {1, ..., T}, the nearest neuron
(called Best Matching Unit, BMU) and its vicinity in the network
are modified so that together they are close to the individual.
This algorithm takes place mainly in three phases:

—Initialization the weights of output neurons (small random val-
ues).

—Presentation of an example of the base and determining the out-
put neuron closest to the example (BMU).
Finally, we determine the Euclidean distance between the exam-
ple and all the output neurons characterized by their weight. The
neuron i is selected:

‖wi − xk‖ ≤ ‖wj − xk‖ ∀j 6= i (2)

Euclidean distance is used to calculate the activation of each out-
put neuron as follows:

αj =
A

B + C‖wj − xk‖
(3)

With xk is the input of the map, wi is the weight of the neuron
and A, B, and C are any constants.

—Weights are adapted using:

wj(t+ 1) = wj(t) + α(t)v(j, i, t)(x− wj(t)) (4)

α(t) is learning rate and v(j, i, t) is neighbors function. Only
the weights of neurons in the vicinity of the selected one are
changed. Learning rate α(t) is a function that decreases over
time:

α(t) =
α0

1 +Kαt
(5)

The neighbors function v(j, i, t) is a Gaussian function that
evolves such as :

v(j, i, t) = exp

(
−d

2(j, i)

2σ2(t)

)
(6)

This is repeated until ε reaches a threshold. ε is defined as:

ε =

∑n
i=1 ‖wki − xi‖2

n
(7)

for n iterations.

2.1.3 Third method: Subdivision. This partitioning method is in-
troduced by Hohmann and Dellnitz [7] inspired by Ulam-Galerkin
discretization process [22]. It was used for the quantification of ran-
dom dynamical systems (stochastic oscillations of Van Der Pol)
[15], and also of chaotic systems (logistic and Hénon applications)
[8].
We start with a dynamic system given by the application f :
R→RN , the algorithm considers the partition in the first place a
rectangle Q given by:

Q = R(c, r) := {x = (xi) ∈ RN : |xi−ci| ≤ rifor i = 1, . . . ,N}
(8)

With c = (ci), r = ri ∈ Rd and a space phase of the system given
by:

AQ :=
⋂
n≥0

fn(Q) (9)

and ignoring any dynamic outside the rectangle Q.
The selection of regions is valid in the rejection of all empty rect-
angles Q that doesn’t contain an image of f (xi in phase space).

2.1.4 Fourth method: Varcluster. This approach of partition of
the state space is proposed by Allefeld et al. [1].
They defined the state space by N variables 1 (x1, x2, . . . , xN ) =
x to be discretized, resulting in a set of compound microstates
which forms the basis for further analysis.
This algorithm uses a recursive bi-partitioning approach: for a
given set of T data points M = {x(t)}, t = 1 . . . T , the direc-
tion of maximal variance is determined, i.e a unit vector e, |e| = 1,
such that varm (x(t).e) obtains its maximum value. Using the me-
dian Med of the data points’ positions along this direction as a
threshold value, the set is divided into two subsets:

M1 = {x(t)|x(t).e ≤Med} (10)

M2 = {x(t)|x(t).e > Med} (11)

The procedure is repeated for each of the resulting subsets. The
number of repetition is the number k of iteration to obtain a se-
quence of 2k symbols.

2.1.5 Comparaison between different partition methods. To ex-
tract the best partition methods to describe the dynamic system in
phase space, we used this strategy:

—Divide the phase space into m = 2k regions using one of the
partition methods explained above.

—Calculate transition matrix of the Markov chain:
The dynamics of Markov chain of order 1 is fully determined by
the transition matrix τ and stationary distribution π. Then for m
space regions, a matrix of [m x m] dimensions was established
(similar to a transfer matrix in statistical physics), whose transi-

1N is the state’s dimension
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tion elements are in general either real or complex weights.

τi,j =

{
τi ∈ R or C if the transition mj → mi is permitted,
0 else.

(12)
Here, let M(k) be an homogeneous Markov chain for partition
k, its transition matrix τ (k) = τ

(k)
ij with i, j ∈ {1 . . . 2k}; so

the transition probability between states is τ (k) = (τ
(k)
i,j ) =

(Pr(m(k)(t) = j|m(k)(t− 1) = i).

—Normalize this transition matrix:
This step is introduced by Gaveau and Shulman [9], [10], [11].
Let τ (k) be a stochastic matrix with 2k dimensions obtained af-
ter the kth iteration. To assume that τ (k) is irreducible matrix so
[10] it has only one eigenvalue of unit norm to be called λ0, and
order the other eigenvalues by decreasing modulus.
λ0 is associated with a strictly positive eigenvector; the remain-
ing 2k − 1 eigenvectors satisfy λ0 ≡ 1 > |λ1| ≥ |λ2| . . ., cor-
respond to right and left eigenvectors that are, respectively, vm
and lm, with (m ∈ 2k)regions, so:

τ (k)vm = λmvm lmτ
(k) = λmlm

lm was normalized by 〈lm|vb〉 = δmb, and v0 is naturally
normalized by

∑
i v0(i) = 1.

—Select an alphabet size of symbolic sequence
The choice of the alphabet size plays a crucial role in symbolic
time series analysis.
For example, a small value of k iteration may prove inadequate
for capturing the characteristics of the system dynamic. On the
other hand, a large value may lead to redundancy and waste of
computational resources. The selection of optimal is an area of
active research.
An entropy rate approach has been adopted for selecting the al-
phabet size [23].
Let h(M (k)) denote the entropy rate of the transition matrix for
iteration k[4].

h(M (k)) = −
∑
i,j

π
(k)
i τ

(k)
i,j log τ

(k)
i,j (13)

where the π(k) and τ (k) are both maximum likelihood estimate
of, respectively, the stationary distribution and probability of
transition and log is taken as natural logarithm.
The value of entropy rate h(M (k)) increases of iteration with k.
We choose k∗ ∈ {1, kmax} where h(M (k)) is maximal (practi-
cally kmax ≈ 10).
To further increment k > k∗ value, leads to the problem of finite
size of symbolic sequence and then the value of entropy rate de-
creases. This decrease is due to the finite size T of the symbolic
sequence.
This effect was shown in our previous work [13] by partionning
several time series of Lorenz system with different size T using
subdivision method.
Also this effect is shown analytically in calculating the entropy
rate of a given symbolic sequence M (k) of size T obtained by
using the subdivision partition and the assumption of uniform

transition probabilities. Shannon’s entropy H(M (k)) is written
as:

H(M (k)) = −
∑

m∈M(k)

τ (k)(m) log τ (k)(m)

= −2k
T

2k
log

(
T

2k

)
= −T log

(
T

2k

)
= −T (log T − k log 2)

(14)

And the entropy rate of M (k) is:

h(M (k)) = lim
k→∞

H(M (k))

k

= lim
k→∞

T

k
(k log 2− log T )

= lim
k→∞

(
T log 2− T log T

k

) (15)

In addition, for a sequence of finite size T obtained by the parti-
tion of subdivision, there will be a maximum of k iterations such
as T = 2k and k → ( logT

log 2
) and no∞, so (15) equation can be

written as:

h(M (k)) = lim
k→( logT

log2 )

(
T log 2− T log T

k

)
= 0 (16)

And the rate of entropy converges to zero for k >> k∗.

Now, different partitions process will be tested with various dynam-
ical system in order to extract the best Markov partition.

3. RESULTS
Numerical simulations were used to check the validity of the ap-
proach on systems with known properties. Multivariate indepen-
dent and identically distributed Gaussian process and deterministic
chaotic system were used to compare these different partition meth-
ods.

3.1 White noise
In this section two samples of white noise will be used, the first
is a Gaussian noise following a normal distribution with given
mean and variance and the second is a uniform noise. Two random
systems of 5 dimensions with T = 30000 points were generated.
Presume that the white noise is a realization of a random process
in which the power spectral density is the same for all frequencies,
we can deduce that the theoretical value of the entropy rate is
equal to log(2k) with 2k is the number of symbols of the sequence
obtained after each iteration k.
The estimation of the entropy rate of the transition matrix calcu-
lated from each sequence obtained is depicted in figure 1.
On this figure, the partitions of k-means, the subdivision and the
varcluster give correct values of the rate of entropy coinciding with
the theoretical values estimated by the blue line in both cases, but
the partition of the SOM gives values below the theoretical line.
On the other hand, the effect of the finite size of the sequence is
shown for k > k∗ when k∗ = 5.

3



International Journal of Computer Applications (0975 8887)
Volume 93 - No. 15, May 2014

Fig. 1. Entropy rate of the meso-scale Markov process (h(M(k))) of
white noise at each iteration (k) calculated in different partitions method.
Top: Noise uniform. Bottom: Gaussian noise.

In the next section, these discretization methods will be applied on
the phase space of a chaotic system (Lorenz attractor).

3.2 Lorenz chaotic system
The Lorenz system is a three dimensional dynamic system (topol-
ogy and metric values are well studied in [19], [17], [18], [2] et [3])
defined by three nonlinear differential equations:

.
x = σ(y − x)

.
y = Rx− y − xz

.
z = −bz + xy

(17)

It is based on three control parameters: the number of Pradtl σ, a
ratio R and a parameter b dimensional rolls. (For more details see
[17]).
The asymptotic motion in the phase space of this system is related
to a chaotic attractor representing an axial symmetry, which is
adjusted by control parameters such as σ = 10, R = 28 and
b = 8/3.
Figure 2 depicts 16 regions of Lorenz attractor obtained after four
steps of the subdivision procedure.

Figure 3 includes the values of the entropy rate calculated after a
refinement of the partition of phase space.
This figure shows the importance of this refinement that correctly
describe the dynamics following a convergence of the theoretical
value of the entropy rate (≈ 0.92 for the Lorenz attractor computed

Fig. 2. Lorenz attractor after four steps of the subdivision procedure. Each
color corresponds to one of the 16 meso-states of the system defined by
Ulam subdivision procedure.

Fig. 3. Entropy rate of the meso-scale Markov process (h(M(k))) of
Lorenz attractor at each iteration (k) calculated in different partitions
method.

with a natural logarithm).
By subdivision process, it was able to reach this theoretical value
after k∗ = 7 iterations and to obtain a discrete Markov process with
128 states.
As for the case of multivariate random process, an observation of
the finite-size effects appears for k > k∗.

4. DISCUSSION
Discretization of phase space of a dynamic system requires choos-
ing the correct partition that preserves the dynamic properties of
the system.
In this work, four partitions methods were compared among the
most used such as: k-means, SOM, varcluster and subdivision.
This work is a continuation or even a step to verify a discretization
in our previous paper [13] made to transform the microscopic space
of measuring brain activity in a mesoscopic space.
Indeed, during this task we compared only two different methods
of partition such as subdivision and varcluster and we concluded
that the subdivision allowed to obtain satisfactory results to parti-
tioning chaotic and stochastic systems.
We check here whether the methods of vector quantification can
give better results. Thus we have used in this work, two other meth-
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ods of vector quantification such as k-means and SOM. These four
methods were applied to partition the same systems. We concluded
that the subdivision method indeed gives the best results.
In fact, this comparison was based on the estimation of the entropy
rate of transition matrix of Markov chains. Adding another param-
eter of comparison is one of the perspectives of this work.
It should also be noted that the application to other dynamic sys-
tems of these partition methods is needed to further verify that the
subdivision process is among the best ways to discretize the phase
space of dynamical systems.

5. REFERENCES
[1] C. Allefeld, H. Atmanspacher, and J. Wackermann. Mental

states as macrostates emerging from brain electrical dynam-
ics. Chaos, 19:015102, 2009.

[2] Erick.M Bollt. Review of chaos communication by feed-
back control of symbolic dynamics. Bifurcation and Chaos,
13:269–285, 2003.

[3] J.P. Bouchaud and P. Doussal. Numerical study of a d-
dimensional periodic Lorentz gas with universal properties.
Statistical Physics, 41:225–248, 1985.

[4] G. Ciuperca and V. Girardin. On the estimation of the entropy
rate of finite Markov chains. Proceedings of the International
Symposium on Applied Stochastic Models and Data Analysis,
2005.

[5] J. P. Crutchfield and N. H. Packard. Symbolic dynamics of
noisy chaos. Physica D, 7:201–223, 1983.

[6] Pelleg Dan and Moore Andrew. Accelerating exact K-means
algorithms with geometric reasoning. In Surajit Chaudhuri
and David Madigan, editors, Proceedings of the Fifth Inter-
national Conference on Knowledge Discovery in Databases,
pages 277–281. AAAI Press, aug 1999.

[7] M. Dellnitz and A. Hohmann. A subdivision algorithm for
the computation of unstable manifolds and global attractors.
Numerische Mathematik, 75:293–317, 1997.

[8] Michael Dellnitz and Oliver Junge. Set oriented numerical
methods for dynamical systems, volume 2. Elsevier, 2002.

[9] B. Gaveau and L.S. Shulman. Theory of nonequilibrium first-
order phase transitions for stochastic dynamics. Mathematical
Physics, 39:1517–1533, 1997.

[10] B. Gaveau and L.S. Shulman. Dynamical distance: coarse
grains, pattern recognition, and network analysis. Sciences
Mathematiques, 129:631–642, 2005.

[11] B. Gaveau, L.S. Shulman, and L.J. Shulman. Imaging geome-
try through dynamics: the observable representation. Physics
A, 39:10307–10321, 2006.
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