
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 15, May 2014

9

A Comparative Study of Software Engineering

Techniques for Real Time Systems

Mrigank Shekhar

B. Tech Computer Science and
VIT University

Vellore

Mayank Shekhar
B. Tech Computer Science

VIT University
Vellore

Ayush Gupta
B. Tech Computer Science

VIT University
Vellore

ABSTRACT
Designing and developing software for Real-time is a

challenging task. Issues related to real-time control and

embedded system are involved in the software development

process. This type of software must be developer with proper

software methodology or well-defined development process in

order to increase the productivity and quality of the software

design and software products. This paper would examine and

compare four of the most common methodologies used in real

time software development. The methods selected for

comparison are CORE, ROOM MASCOT and UML. The

methods are compared among themselves based upon

attributes such as usability, compositionality and proper RT

(real time) notations available. The paper discusses in detail

the various notations available in every methodology and

ranks them based on their merits and de-merits. The paper

aims to reach a logical conclusion over the use of which real

time methodology results in most apt software development

General Terms

Real-time systems, Real-time software Methodology,

Comparative Study

Keywords

Real-time systems, Embedded systems, Real-time software

Methodology, CORE, ROOM, MASCOT, UML

1. INTRODUCTION
Development of real time systems i.e their analysis and

development is an intricate process. It is so critical due to the

fact that Real-time systems have different properties when

compared to other systems as they have timing constraints.

These systems are usually put under environment where

timing and scheduling are of the utmost importance. The type

of software must be developed with proper software

methodology or well defined software process. Object-

orientation is a powerful approach to managing complexity,

which has received widespread attention in the last years [14].

These systems need special timing communication and

reliability requirements which are not easily explained by the

usual methodologies. Minor changes to specification could be

very costly as real time (Embedded systems) function as a

whole and any change to one phase has a severe effect on

others. The software development for these systems is harder

because they are embedded directly into the hardware and

frequent changes may require entire re-writing of the system.

Problems occur when software engineers do not have the

correct understanding of the processors, devices and the

operating systems used.

Various methods and notations have been developed for

analysis and designing of real time systems. They differ from

the normal methods as these focus heavily on event driven

behavior, communication and timing issues while also

concentrating on the usual system properties. CORE and

MASCOT have a data driven approach i.e they focus on

traditional structured analysis and design whereas ROOM and

UML are relatively newer methodologies which use object

oriented notations [7].

2. PROBLEM STATEMENT
Due to the availability of a wide variety of methodologies

there is no standardization as to which methodology yields the

best software engineering techniques. All of the available

methodologies focus on one particular aspect of software

engineering. This leads to inconsistency among the quality of

various phases of the process. Usage of standards, procedures

and consistent methods should be followed throughout

various phases to produce the highest quality software.

Problems appear in a way as

 CORE focuses more on the needs of the requirement

rather than providing a complete solution.

 ROOM involves a CASE tool called ObjectTime

which limit many of design choices like multiple

inheritance.

 MASCOT relies heavily on directly building a

model and has very less support for requirement

analysis.

 UML due to its simplified and informal nature is not

good for managing a software development process.

3. PROPOSED SOLUTION
The paper will look to provide a feasible solution as to which

methodology would provide an optimal software engineering

process. It will compare the aforementioned methods based on

usability, compositionality and the real time notations

available and give an analysis of which method is better from

the other and on which basis. The paper should give an

indication over how a methodology fairs against the other.

4. EXPLANATION OF METHODS

4.1 Controlled Requirements Expression
CORE is one of the many software engineering techniques

available with heavy focus on the gathering of requirements

and how are they formulated. Originated for use in avionic

industries the requirement analysis phase is of prime

importance and the project is divided into subtasks based on

viewpoints. I) Problem and requirement definition, II)

gathering of data, III) development of detailed models for

each viewpoint and v) combination of single viewpoints

into a composite one. CORE defines the steps in the

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 15, May 2014

10

production of a requirement specification with particular

emphasis on startup and link between steps. It can be used in

conjunction with object oriented analysis and mainly works

for gathering of requirements with informal block diagrams

[3]. CORE is basically a systematic expression of the

requirements that are needed for real time analysis and design.

The focus is mainly on requirements rather than design.

The main limitations of CORE are that: i) timing,

concurrency and synchronization issues are not properly

explained and therefore forgoes the whole aim for usage with

critical real-time systems. ii) it is unsuitable for architectural

design iii) it is rigidly focused on several steps [8].

4.2 Real Time Object Oriented Modeling
ROOM is another methodology followed in real time system

development which lays heavy focus on development of the

project by concentrating more towards the physical design of

the project. ROOM at it’s core utilizes simple state charts

much like UML and also uses ROOM chart diagram based on

the ‘actor’ concept. The state charts help in the final

formulation of the code as the state chart itself is a graphical

representation of different parts of the code and how the

control flows through them. ROOM has very limited

resources to formulate the initial requirement phase and is

also very limited because its implementation need the use of a

particular CASE tool called ‘ObjectTime’ [6]. The actor

initiates a sequence of events. Ports are used for

communication, threads control behavior [7]. Limitations of

ROOM are: i) tied with one particular CASE tool called

‘ObjectTime’ ii) a limited number of diagrams showing

only certain views are available [8].

4.3 Modular Approach to Software

Construction Operation and Test

Mainly used for avionics and in the military field,

MASCOT is a highly modular rigorous approach based on

hierarchical decomposition to lower levels. Based on

processes and activities, it strives to achieve highly interactive

real-time systems in a structured way. It heavily focuses on

communication between different components and needs the

specification to be fully completed at every level. Highly

detailed interfacing between modules helps maintaining

concurrency and synchronization. The main steps include i)

describing the overall internal functions and external

connections of the system into a network ii) The network is

decomposed into lower-level components, iii) Components

are coded in terms of algorithms and data structures [5].

Rules which are followed include the limitation of direct data

communication between processes, communication

occurrence only through specified channels and well defined

info exchange areas must be used for exchange, storage and

communication of data.

Its limitations include-i) No direct support for requirement

analysis and the process is directly followed into model

creation. ii) Not suitable for prototyping or rapid development

cycles. iii) Very expensive to apply [9].

4.4 Unified Modeling Language
UML as the name suggests is a unification of all the popular

and effective software engineering techniques available like

ROOM, CODARTS etc. UML state diagrams are simplified

STDs, communication diagrams are found elsewhere as

interaction diagrams, sequence diagrams are derived from

Message sequence charts. It builds on the functionalities

lacking in other methodologies and improves them in the

fields on which they lacked by standardizing them. It has a

wide support with a variety of CASE tools and can be

implemented without formal knowledge. Two main system

views can be categorized into i) static ii) behavioral. UML, as

is, is not a proper software development tool and is usually

combined with other software tools [7].

5. METHOD COMPARISION
The methods have been compared using four fundamental

issues these are i) usability, ii) compositionality, iii) Proper

RT notations available and iv) ranking score.

5.1 Usability
Usability explains the ease of use of the method, CASE tool

support. This is important because methods that are easy to

use are preferred to those that are more complex. Certain

notations are better to describe activities. Other notations are

more suitable for explaining communication between

components [7].

5.2 Compositionality Score
Compositionality describes how the notations in the method

fit together. It also describes the overall structural

composition. This is important because this structure will be

used to construct the final system. This is based on the

number of diagrams / notations used. The more notations

there are the more difficult it becomes to keep consistency.

There is recursion which in this case implies the

existence of techniques to refine the final design, this

involves abstraction and information hiding. There is the

possibility to obtain full specifications from recursion or

decomposition. This is known as graphical to textual

conversion. There is the issue of cross-references

between notations. Poor cross-references could imply a

problem. Good cross-references imply good consistency

between the method’s notations [7].

5.3 Proper RT Notations Availability
Proper real time notations imply how well a method

describes issues like concurrency, synchronization, event

handling and message communication. Real time systems

depend on triggers and communication issues. Support

for communication constructs includes support for

concurrency, synchronization, mutual exclusion, signaling,

communication control, ports and abstraction [7].

6. RANKING SCORE
These methods have been compared using detailed

observations and experience. To compare the methods a score

from 1 to 4 was given for the relevant attribute. The score is

as follows 1-poor, 2-average, 3-good, 4-very good and 5-

excellent

6.1 CORE
CORE has compared to others moderate ease of access as

breaking of the project into various viewpoints takes formal

approach. The diagrams and notations facilitated by CORE

are very clear and easy to understand as the project is properly

broken into layered structure with well-defined boundaries.

The notations are not at all confusing. As it is widely used in

avionics industry thus it has good CaseTool support also.

Diagram consistency, due to the nature of the methodology of

only supporting the requirement phase, is pretty high as there

are not so many notations that the consistency is lost due to

muddle up. Graphical to textual conversion is very bad as we

know that core supports only the requirement phase properly

and therefore the conversion of the graphical methods to full

specification is not properly achieved [7]. Cross reference is

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 15, May 2014

11

pretty good in this methodology as the notations are closely

inter related and cross referable as they are only working on

one part of documentation usually. Core, when coming to

notation support, is very bad. With all the specialization it has

over the requirement phase, it does very poorly in supporting

RT notations. Message Comm., Resource Management

,Timing Requirement notations are very bad and have almost

no support. Although special event type does have decent

backing.

6.2 ROOM
ROOM although has simple state charts as its basic units of

diagrammatic representation, still the usage of actors concept

makes it very tricky to implement and therefore has very low

ease of use. Clarity of diagrammatic notations is fairly good

as the diagrams clearly depict how the flow of control occurs

in the code. Tool support, although flexible due to direct

implementation through C++ code, is still very limited as

‘ObjectTime’ is the only main tool available. Diagram

consistency, due to the nature of the methodology and its

constraint in the OO domain, is pretty high as there are not so

many notations that the consistency is lost as state charts are

the only dominant notations. Graphical to textual conversion

is exceptionally good as ROOM specializes with its tool in the

conversion of graphical notation to implementable code and

therefore the conversion of the graphical methods to full

specification is properly achieved [7]. Cross reference is

decent in this methodology as the notations are only working

for the state charts and the actors so as to facilitate easy

referencing. ROOM, when coming to notation support, has

good support. Message Communication has enough support to

be implemented without hassle while, Resource Management

and Timing Requirement notations have individual and well

detailed notations which give ROOM an edge over others in

RT system implementation. Although special event type do

not have downright individual notations, still the support

exists to a satisfactory level.

6.3 MASCOT
Ease of use under MASCOT is very bad as the requirements

are very strict for proper implementation of the project so as

to keep the real time requirements like timing and sync under

control. The specification at every level needs to be completed

so as to proceed to another level leading to very steep learning

curve. For similar reasons, clarity is not achieved in notations

as the diagrams are very complex layered structure. Also tool

support is very scanty as very few tools actually support the

methodology. Diagram consistency, as due to various

restrictions applied at each level of the designing , is pretty

high as there are no conflicts or lack of information at any

level to have inconsistency and all the connections at every

level, whether internal or external to a module, are well

implemented. Graphical to textual conversion is very good as

MASCOT has in its stages the production of a network

diagram which links all the modules and there functions and

these can be decomposed to lower level components which

can be coded in terms of algorithms and data structures and

therefore the conversion of the graphical methods to full

specification is properly achieved [7]. Cross reference is

decent in this methodology as the notations are closely bound

together by a set of specifications which always need to be

fulfilled and thereby cross referencing is very decent.

Message Communication due to the closely wound structure

is very good and the notation availability is pretty high. Also

resource management is also very high as the specifications

are clearly known and need to be compulsorily fulfilled in

order to proceed and thereby managing the resources

properly. Timing requirements although having good support

are not supported to the extent as others. Special event support

is very high as all of these are carefully covered through the

different specification levels.

6.4 UML
UML provides a large variety of informal notations and

diagrams which gives it an advantage over other

methodologies used for Real time software development. No

training is required to develop software using UML because

of its clear and simple nature. It provides Object-oriented way

of software development with no strict formal structure or

terminology. UML has brilliant tool support due to wide use

in the industry across various disciplines. Diagram

consistency, due to too many notations and diagrams is very

low because keeping track of each and every notations and

diagrams in a large project diagrams is a difficult task and

requires effort. UML lacks support for graphical to textual

conversion since UML has a graphic notation for each and

process and activity and representing them in a textual way is

very difficult and time consuming [7]. Cross reference is

pathetic in this methodology due to too many notations used

which leads to ambiguity. Message communication, is very

nominal due to no standardization. It has almost negligible

support for Real time resource management and Timing

requirement because Real-time systems are, by definition,

constrained by some aspect of time [15]. It is critical to

capture this timing information while modeling the system to

specify a reasonable system design which is difficult when

using UML methodology [15].

Table 1. Usability Score

Method
Ease Of

Use

Clarity Of

Diagrams/Nota

tions

Case Tools

Support

CORE 3 4 4

ROOM 2 3 3

MASCOT 1 2 1

UML 5 4 5

Table 2. Compositionality Score

Method
Diagram

Consistency

Support for

Graphical to

Textual

Conversion

Cross

References

CORE 3 2 4

ROOM 4 4 3

MASCOT 4 4 4

UML 1 2 1

Table 3. Proper Real-Time Notation Score

Method

Messag

e

Commu

nication

Support

for RT

resource

manageme

nt

Support

for

Timing

Require

ments

Support

for special

event

types

CORE 1 1 1
4

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 15, May 2014

12

ROOM 3 4 4
3

MASC

OT
4 4 2

4

UML 2 1 1
1

7. RESULTS
The usability results indicate that UML is the best usable

method followed by CORE. The compositionality results

indicate that method MASCOT has better compositionality.

This is because of good cross-referencing between notations.

There is also the fact that this method support proper

graphical to textual conversion in detail. This is not so with

the UML. The comparison of the real time notations,

indicate that some RT methods seem to have better

notations and compositionality than others. This is

possible because these methods and its notations have been

refined over a number of years. These results just give an

indication of some attributes. It is possible to derive other

combinations if there are certain requirements.

8. CONCLUSION
The final conclusion is that there is no single method that is

overall the best method on all attributes. It is evident that the

UML and modern methods cannot solve certain issues tackled

by data driven methods that were designed precisely for real

time(like MASCOT). The UML is a more general language

that tries to cover many different types of systems and

scenarios at the expense of certain detail. Solutions to this

could be to extend UML via stereotypes like allowing the

designing to follow a pattern similar to that of MASCOT of

forced specification fulfillment at every stage. Another

advantage of UML is that some UML diagrams are applied in

a MDA approach. The UML has the advantage of gaining

widespread use and a lot of work is being done to

improve UML continuously. UML does not have proper

control flow diagrams similar to those found in ROOM or

MASCOT. These are important for designing command and

control and embedded system tasks. UML instead uses

activity diagrams or communication diagrams. Activity

diagrams are more adequate for business analysis,

communication diagrams lack some detail and need

modification on the other hand control flow diagrams are

oriented to task management, reactive behavior and

control. This could indicate that UML is more oriented

towards building soft- real time systems like those used

in e-commerce, agent architectures, workflow systems, etc.

The UML has given the initiative to create other modeling

concepts and methods like AGILE and FMCs(

Fundamental modeling concepts). Methods like MASCOT

and ROOM have been directly designed for hard real time

systems like avionics, cruise control, etc. These are quite

rigorously demanding and require the use of specific

constructs and possibly even languages. MASCOT,

ROOM and UML-RT whilst being suitable for describing

complex RT systems, unfortunately lack widespread

support of many CASE tools and require time to master. A

practical approach is suggested. It does not make sense to

restrict use to a single method. This is that when using

one particular method one should possibly also consider

using notations from another method as is required by the

nature of the problem. Depending on the nature of the

system being modeled a method should be selected. Some

methods are more suitable for business workflow systems.

Others are more suitable for hard event-driven real time

systems like those used in avionics and control systems.

Therefore the optimal software engineering methodology for

RT systems will only be achieved by grouping together the

functionality of UML with the hard real time constraints of

MASCOT.

9. REFERENCES
[1] Formal methods and notations applicable to

telecommunications, IEEE Tutorial colloquium, pp 5/1-

5/4.

[2] Applicable Modeling, Verification and analysis for real-

time systems, p 2/1-2/4.

[3] CORE - A method for controlled requirement

specification g.p.mullery.

[4] www.drdobbs.com/real-time-object-oriented

modeling/184410342.

[5] MASCOT as a design tool (software engineering

education) , IEEE Colloquium, 6/1 - 6/4.

[6] Automatic Implementation of Real-Time Object-

Oriented Models and Schedulability IssuesSaehwa Kim,

Sukjae Cho, and Seongsoo Hong.

[7] A Comparison of Software Analysis and Design

Methods for Real Time Systems Anthony Spiteri Staines

International Journal of Computer, Information Science

and Engineering Vol:1 No:3, 2007

[8] An Efficient Object-Oriented Variation of the Statecharts

Formalism for Distributed Real-Time Systems by Bran

Selic.

[9] Mascot 3: an informal introductory tutorial, IEEE

Tutorial colloquium.

[10] Real-Time Systems : Design Principles for Distributed

Embedded Applications By Hermann Kopets 1997.

[11] Experimentation in Software Engineering By Claes

Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson,

Björn Regnell, Anders Wesslén.

[12] 14. A Lightweight, Component-Based Approach to

Engineering Reconfigurable Embedded Real-Time

Control Software by Jagun Kwon ; Univ. Coll. London,

London, UK ; Hailes, S.

[13] Embedded systems in real time applications, design &

architecture August 2005 by A. L. Suseela, V. Lalith

Kumar.

[14] REAL-TIME OBJECT-ORIENTED DESIGNAND

FORMAL METHODS Juan Antonio de la Puente.

[15] Werner Van Belle, Tom Toutenel, Viviane Jonckers;

Real Time UML; SEESCOA Deliverable d2.1; 26 pages;

April,2000.

IJCATM : www.ijcaonline.org

