
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

6

Reversible Architecture of Computer Arithmetic
Sayeeda Sultana

Department of Electrical and Computer
Engineering

McGill University
Montreal, Canada

Katarzyna Radecka
Department of Electrical and Computer

Engineering
McGill University
Montreal, Canada

ABSTRACT
Reversible logic plays an important role in emerging low

power designs and quantum computing. This paper presents

an efficient way to realize reversible arithmetic circuits

especially targeting toward reversible arithmetic logic unit

(RALU). In literature for reversible logic, not a significant

advancement is found in integrating both logical and

arithmetical functions, commonly known as arithmetic logic

unit (ALU), a key feature of any computing system

architecture. Here, this work presents a novel reversible

arithmetic logic unit (ALU) performing basic functions

similar to classical ALU such as addition, subtraction, AND,

OR and XOR operations. Additional functions such as,

NAND, NOR, XNOR and logical functions with single input

inverted, overflow detection and comparison can also be

performed with this design. The integration of these

operations in single module using less number of control

signals is not available in any of existing approaches. The

design and analysis based on different parameters of

reversible circuits – number of gates, garbage bits and

quantum cost as well as simulation results are presented here.

The proposed design offers efficient programmability and

more flexibility than other methods.

General Terms

Arithmetic design and logic structures.

Keywords

Arithmetic logic unit, Reversible logic, Reversible controlled

adder/subtractor, Quantum cost.

1. INTRODUCTION
Recently, reversible circuit synthesis has started to emerge as

an important topic, bringing alternative solutions to classical

networks. The motivation behind reversible computation

comes from its theoretical abilities to address burning issues

of modern circuit designs such as power consumption and

emerging new technologies. Namely, reversible circuits

dissipate less energy, and are closely related to quantum

circuits, which, in the near future, could become a competitor

to current classical circuits. In 1961, Landauer showed that

irreversible circuits regardless of the underlying technology

always consume power, and consequently dissipate heat at the

rate of at least kTln2 for each bit of information erase. In the

above equation k is Boltzmann’s constant and T is the

temperature [1]. Further, Bennett showed that, in principle,

arbitrarily small or zero energy dissipation is only possible if

no information is lost during computation [2]. This holds for

reversible circuits as input and output data is processed

without losing any of the original information. Further, as

every quantum operation is inherently reversible, reversible

circuits constitute a subclass of quantum circuits [3]. Thus,

any development in this domain can be directly applied to

future technologies. Finally, the use of reversible circuits is

already found in low power CMOS designs, adiabatic circuits

[4, 5], cryptography [6], optical computing [7] and digital

signal processing [8, 9] requiring that all the information

encoded in the inputs be preserved in outputs.

A reversible function realizes a unique one-to-one mapping of

inputs to outputs with equal number of bits. The irreversible

nature of most of the original algorithms makes the synthesis

of reversible circuits from irreversible specifications a

challenging task. A large part of the existing algorithms,

although optimized in garbage bits and gate counts, are

restricted to small functions, while some approaches

successfully address large functions but are costly in terms of

gate count, additional lines and quantum cost [10-14]. A

synthesis solution for large reversible circuits is presented in

[15] by avoiding ancilla bits. A recent survey enlightened the

key features, motivation and developments in the area of

reversible logic synthesis [16].

In addition to the reversible realization of logical functions, a

great deal of work has been done aiming to implement the

basic reversible arithmetic units such as adders, subtractors

and multipliers by finding a direct translation from classical

truth table to reversible forms using basic standard reversible

gates as well as dedicated newly proposed gates [17-24]. Apart

from that we also see quantum/reversible circuits for arithmetic

operations from addition to multiplication and modular

exponentiation [25-28], playing an important role in quantum

Shor’s algorithm.

 In this work, an efficient and versatile reversible arithmetic

logic unit (RALU) is presented, which is very close to its

classical counterpart. Integration of logical functions or

arithmetic units or both is still a challenge. However, a

reversible computing architecture with the instruction set,

control logic and address calculation has been demonstrated in

recent work [29]. An integrated logic unit using approach in

[12] performs eight logic functions. In benchmark circuits

[30] performing several logic and arithmetic functions in one

module can be found. One such example is a unit, which

performs AND, OR and XOR only. The other benchmark

circuit named mini ALU using BDD-based method [14]

includes OR, AND and addition operation. Some designs

generated from SyRec programming language incorporate

multiplication and division too [30]. An arithmetic unit

proposed in [31] performs ADD and SUBTRACT operations

as well as increment and decrement of the input by one. A V-

shaped low power reversible ALU is developed in [32] for

programmable reversible/quantum computing, which

performs modular arithmetic like addition, subtraction,

negative subtraction, XOR and no operation (NOP). However,

the modular arithmetic result does not reflect the overflow

(carry out) of arithmetic operations. Moreover, this design

does not include logic functions more common to classical

ALU such as AND/NAND or OR/NOR. Recently a reversible

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

7

ALU design is proposed in [33] which include many

operations close to classical ALU design.

In this work, a new integrated module of a RALU is

introduced, which encapsulates most of the operations in

classical realization with less number of control lines. This

module intends to perform the basic mathematical operations

of addition, subtraction, as well as logic operations AND and

OR. Further, an XOR function (not available in classical

ALU), which is very useful in reversible circuits, is also

included here. Finally, some negated logical functions such as

NAND, NOR and XNOR including implication are realized in

this design.

In this approach, the basic RALU operates on single-bit data,

which is capable to realize various arithmetic functions, and

can be cascaded into an n-bit design. Later the modifications

are added to the RALU to detect overflow and to perform

comparison (set-less-than) operation to detect whether a

number is less than another number. Thus the proposed design

includes more functions with less number of lines and

acceptable quantum cost.

2. BACKGROUND
Definition 1: An nxn reversible circuit realizes an n-input/n-

output function where each input vector maps bijectively to an

output vector. The reversible circuits allow no fan-outs and no

feedback paths.

Hence, the iterative cascading preserving the rules listed in

Def. 1 can be applied to building any reversible circuit using

reversible gates. Reversible synthesis of irreversible

specification aims on embedding an arbitrary (irreversible)

function with I inputs and O outputs (generally IO) to a

reversible implementation constructed solely from reversible

gates. Often extra I/O signals must be added, where the extra A

inputs are referred as ancilla bits, while the additional G

outputs are garbage bits.

The cost of a reversible circuit is determined in terms of gate

counts, number of garbage bits and overall quantum cost. In

fact, the quantum cost plays an important role from the

technological viewpoint.

Definition 2: A quantum cost of a reversible gate T is defined

as a number of elementary quantum operations performed by

NOT, CNOT and controlled V or V+ gates in order to realize

this gate.

Many reversible gates have been proposed over the years such

as basic NOT, CNOT, Toffoli [34], as well as Fredkin [35] and

Peres [36]. Recently, some new reversible gates targeting

specific implementations such as adder, subtractor, multiplier

etc. have been introduced [17-24]. In this work basic reversible

gates such as CNOT, Peres and Fredkin gates are used for the

construction of basic RALU design. A brief introduction of

some standard reversible gates is presented below.

 A CNOT gate shown in Fig.1 is a 2x2 gate with a single

control input A, which inverts the second input B when its

value is true. This gate is also known as a Feynman gate. A

multiple-control Toffoli gate has a single target line C that is

inverted if all the control lines are set to 1, Fig.1. The quantum

cost of 3x3 Toffoli gate is 5, Fig.2. A Toffoli gate implements

a function Z= ABC with two control inputs A and B, which

are copied at the outputs X and Y. That way, they can fan-out

signals A and B to the rest of the circuit. Otherwise, if values of

X and Y are not used at other places of the circuit, they are

treated as garbage outputs.

A 3x3 Toffoli gate is universal since any reversible function

can be realized by cascading this gate only. For example,

AND, NOT, XOR can be obtained from Toffoli gate T

(A,B,C):

AND



XOR
A multiple controlled 3x3 Fredkin gate [35], Fig.3, is a

controlled swap gate with two target lines. This gate realizes

the mapping of the inputs (A, B, C) to the outputs (X= A, Y=

A’B+AC, Z= AB+A’C). Note, that the values of the target lines

are interchanged if the control lines are set to 1. The quantum

cost of this gate is 5 as assumed in [31].The Fredkin gate is an

important part of many arithmetic circuit designs.

Another gate commonly used in reversible implementations, is

the 3x3 Peres gate, Fig.4. This gate implements the mapping of

the inputs (A, B, C) to (X =A, Y= AB, Z= ABC). Its quantum

cost is 4, which is lower than the two gates previously

presented. The main advantage of a Peres gate is its capability

to implement a half adder functions using only one instance of

the gate when C=0 .

3. REVERSIBLE ARITHMETIC AND

LOGICAL OPERATION BASICS
An ALU is an integral module of multiple one- and two-input

arithmetic and logic functions. Instead of constructing several

single-function circuits this integrated module offers

programmability with less gate cost. However, the

incorporation of several functions into a single unit requires

additional control lines and circuit resources. In this paper, the

Figure 3: Fredkin gate

F
A

B

C

X=A

Y=A’B+AC

Z=AB+A’C

A

B

C

V
+

V V

X=A

Y=A’B+AC

Z=AB+A’C(a)

(b)

PG
A

B

C

X=A

Y=A⊕B

Z=AB⊕C

A

B

C V
+(a)

(b)

V V

X=A

Y=A⊕B

Z=AB⊕C

Figure 4: Peres gate

V V V
+

A

B

C

X=A

Y=B

Z=A·B⊕C

Figure 2: Quantum Implementation of Toffoli gate

A

A

B

A

B

C

X

X=A

X=A

Y=BNOT

CNOT

Y= Toffoli

Z=C



Figure 1: Standard reversible gates

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

8

implementation of a reversible version of a conventional

irreversible ALU is presented. For the ALU design special

attention should be made on including as many arithmetic and

logic operations as possible in a simple design with maximum

efficiency and minimum possible cost. Hence, the reversible

ALU presented in this paper includes most operations available

in conventional irreversible ALU. The stepwise development

of the proposed RALU is described next.

3.1 The Logical Operations

 In a classical design the most common logical functions

included in basic ALU are AND and OR. In proposed RALU

the reversible equivalent of these two functions are AND: (A,

B, ‘0’ →A, B, 0⨁AB) implemented with single Toffoli gate

and OR: (A, B, ‘0’ → A, B, 0⨁A⨁B⨁AB) implemented with

one Toffoli gate and two CNOT gates. However, to ensure

reversibility the AND and OR embeddings require some extra

signals as garbage outputs. Another important logical

operation, i.e., the bitwise exclusive-OR (XOR), which is

elementary in reversible logic is also added. Extending ALU

by this operation is obvious, and increases the flexibility and

applicability of RALU. Moreover, suitable control signal

facilitates performing NAND, NOR and XNOR operations too.

For example, for the implemented function 0⨁A⨁B⨁Cnt,

when control Cnt is false then it performs bitwise XOR and

when Cnt is true then we get XNOR operation.

3.2 The Arithmetic Operations:
The two basic arithmetic operations included in any ALU are

an addition and a subtraction of two binary numbers. The main

problem in designing reversible adder or subtractor is that the

function is not bijective, and hence like other designs in

literature, it is important to find proper reversible embedding

with the aid of extra signals. In proposed RALU, an adder and

a subtractor are implemented in a single module with a control

signal. The structure of the reversible controlled

adder/subtractor (RCAS) module presented in next section is

realized in reversible embedding, performing 2’s Complement

computation, and execute addition or subtraction based on a

control signal.

An adder/subtractor block is a combinational circuit, which

adds or subtracts two binary numbers X and Y depending on

the value of the input control signal. For addition, a general full

adder block adds three bits X, Y, Z and generates two outputs:

sum(S) and carry-out (Co) according to the logic equations S=

XYZ and Co = XYZ(XY). A subtractor performs a

subtraction on three bits X (minuend), Y (subtrahend) and Z

(subtrahend), and results in a difference D and a borrow Bo

calculated according to the logic equations D= XYZ and

Bo= X’YZ(XY)’ [24].

3.3 Reversible Controlled adder/subtractor
The concept of reversible controlled adder/subtractor presented

here is based on the use of an adder circuit to perform

subtraction instead of having a dedicated subtractor. Hence, the

operation X-Y is implemented as X+Y’+1, i.e., 2’s

Complement. The block diagram of a general irreversible

controlled adder/subtractor is shown in Fig.5.

Note, that as a classical adder/subtractor module has 4 inputs

(A/S, Cin, X and Y) and 2 outputs (S/D and Cout), its

input/output count is unequal, and hence the original form

cannot be used directly as a reversible element. Therefore, to

create a cascadable reversible CAS module, some garbage bits

must be added to the original irreversible CAS structure. A

second issue, addressed in the reversible CAS construction is

the lack of support for fan-out signals in reversible designs. In

the classical adder/subtractor implementations, the same

control signal A/S is fanned-out to all CAS blocks, Fig.5 (b).

To overcome this shortcoming, one of the garbage bits, i.e.,

A/Sg, is used to provide a copy of a control signal from one

module to the next.

With the questions of fan-outs and I/O count compatibility

resolved, the reversible controlled adder/subtractor (RCAS)

block is constructed using reversible gates. The full adder is

implemented by cascading two Peres gates (highlighted),

which results in generating the target outputs S/D and Cout

where S/D = A/S⨁Y⨁X⨁Cin and Cout=

X(A/S⨁Y)⨁Cin(A/S⨁Y⨁X), in addition to garbage outputs

A/Sg, g1 and g2, Fig. 6 [37]. When A/S is set to 0, then CNOT

(first gate, Fig. 6) passes the true copy of Y while A/Sg acts as a

garbage output. When A/S is 1 then Y’ is available at the output

of CNOT, and the full adder adds X, Y’ and Cin (which is set to

1 for subtraction). The garbage output A/Sg of a given RCAS

block is reused for a control signal fed to the consecutive

RCAS block. The quantum cost of the RCAS module is 9 (8

for two Peres plus 1 for CNOT gate).

RCAS blocks can be cascaded to construct an n-bit

adder/subtractor. In the proposed architecture, the A/Sg and Cout

outputs of a previous stage propagate to the input control signal

A/S and the Cin of the next RCAS. For a 2’s Complement

subtraction X+Y’+1, an extra value 1 needs to be added to the

least significant bit position (LSB) of the result. Hence, the

original LSB block is modified by adding a CNOT gate

between A/S and a constant ‘0’ ancilla bit. Note that when A/S

is set to 0 for an addition, a value 0 is passed through the

CNOT gate to the RCAS0 resulting in the addition of X0 and Y0

only. When A/S is set to 1 for the subtraction, a value 1 is

added to X0+Y0’ as required by a 2’s Complement notation.

The addition of CNOT gate increases quantum cost by 1.

If a result of an n-bit addition/subtraction does not fall within

the allowed range, then an arithmetic overflow occurs.

Although, when adding unsigned numbers, the output carry-

out Cout signal coming from the most significant RCAS block

serves as an overflow indicator, for the signed numbers the

carry-out at the sign-bit position is not sufficient. In the case of

signed numbers the overflow can occur, when adding two

FULL

ADDER

Y X
A/S

CINCOUT/

BOUT

S/D

CAS

Y3 X3 A/S

S3/D3

CAS

Y2 X2 A/S

S2/D2

CAS

Y1 X1 A/S

S1/D1

CAS

Y0 X0 A/S

S0/D0

COUT/

BOUT CIN

(a) (b)

Figure 5: Simple adder/subtractor design

A/Sg

g1=x

g2=A/S⊕Y⊕X

A/S⊕Y⊕X⊕Cin

X(A/S⊕Y)⊕CIN(X⊕A/S⊕Y)

A/S

X

Y

CIN

0

Peres gate Peres gate

(a)

Figure 6: Reversible Implementation of controlled

adder/subtractor

0
X0

g g

A/ S

0
RCASn-1

0

g g

0

g g

A/ Sg

0
Ovf

0

g g

0

g g

Cn

RCASn-2 RCAS2 RCAS1 RCAS0

Y0X1X2Xn-2Xn-1 Y1Yn-2 Y2Yn-1

S
0
/D

0

S
1
/D

1

S
2
/D

2

S
n

-2
/D

n
-2

S
n

-1
/D

n
-1

Figure 7: Reversible Implementation of controlled

adder/subtractor with overflow detection

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

9

numbers of the same sign with the carry out signal from the

MSB position being 0, i.e., not indicating the overflow.

When considering the 2’s Complement addition (subtraction),

the overflow occurs if the carry-in (borrow-in) to the most

significant RCAS is the different than the carry-out (borrow-

out) generated by that block, i.e., Ovf =Cn-1⨁Cn. To implement

the above check two additional CNOT gates at the outputs of

the two most significant RCAS modules are added. The first

CNOT gate placed at the Cout of RCASn-2 block provides a

copy of carry input Cn-1 to the RCASn-1. The second CNOT

performs XOR of Cn and Cn-1, where Cn is the carry output

from an nth bit RCAS. If Ovf is equal to 1, then the addition is

incorrect, falling outside the assumed range. An n-bit signed

numbers (2’s Complement) reversible adder/subtractor with

overflow detector is given in Fig. 7.

The proposed reversible n-bit adder/subtractor requires 3n+1

gate (Peres and CNOT), 2n+1 garbage bits, and has the

quantum cost of 9n+1. Table 1 summarizes the comparison of

the proposed 16-bit design with binary adder/subtractors

presented in [24]. These are three designs constructed from

Fredkin, Peres and TR gates, and differ in the number of

reversible gates, garbage outputs, ancilla inputs and quantum

cost. As the Add/Sub- Design III implemented with Peres and

CNOT gates clearly outperforms the Design I (Fredkin and

CNOT), and the Design II (TR and CNOT gates) [24], the

Design III is mainly considered for comparison with proposed

designs (n-bit adder/subtractor with/without the overflow

detector). The design presented in this work is better than

adder/subtractor circuits [24] in terms of reversible gates,

garbage outputs and the quantum cost. For example, for an n-

bit Design III [24] the quantum cost is 10(n-1)+6 =10n-4 with

(n-1) full adder/subtractor each contributing 10 to the quantum

cost, and one LSB half adder/subtractor with quantum cost of

6. In contrast, the proposed n-bit design has a cost of 9n+1.

Hence, the improvement in the quantum cost of this design is

n-3 for n> 3. The gain grows with increasing size of the

adder/subtractor.

4. REVERSIBLE ARITHMETIC LOGIC

UNIT
In proposed reversible ALU design the arithmetic and logical

operations are first performed in parallel, and then the desired

result is selected by a multiplexer (MUX)- a circuit that

chooses one out of several inputs depending on a control. The

two steps of the design are defined as: function generation and

function selection, Fig. 8.

4.1 Function Generator:
The first module of the proposed reversible ALU generates

four arithmetic-logic functions in parallel as well as transmits

an input X unchanged. Another operand Y is controlled by a

control signal AS, which determines the inverted operation or

a subtraction. The implementation of this generator block is

presented in Fig. 9. The control signal Cpn defines the

functionality of AND and OR when Cpn=0), otherwise NAND

or NOR function is performed. Next if the control signal AS is

‘0’ then the device performs the following operations

simultaneously: AND/NAND, OR/NOR, addition and XOR.

On the other hand, if the control signal AS is ‘1’ then results

for AND/NAND with single input inverted, OR/NOR with

single input inverted, Subtraction and XNOR are generated,

Table 2.

The RCAS in Fig. 6 is used for arithmetic operations.

However, in order to implement with fewer number of gates

for extended functions AND, OR and XOR, two CNOT gates

in between two Peres gates (AND and XOR) and one extra

CNOT gate after the 2nd Peres gate are added, Fig. 9.The

quantum cost of this function generator is 12.

4.2 Function Selector
To select a desired function output a 4:1 reversible

multiplexer shown in Fig. 10 is proposed in this work based

on embedded reversible specification and is realized using

Positive Davio expansion, which confirms minimum number

of lines i.e.

Result=(F1⨁Ctl1(F1⨁F2))⨁Ctl2(F1⨁Ctl1(F1⨁F2)⨁F3⨁Ctl1(

F3⨁F4)).The number of reversible gates for this MUX is 6,

while number of lines is 6. No ancilla bit is added. The

quantum cost is 18.

Another implementation of a function generator is obtained by

using Fredkin gates. A Fredkin gate itself is a reversible

equivalent of 2:1 MUX. Hence, an alternative to 4:1 MUX

proposed in the previous paragraph is to use three 2:1 MUXs

Table 2: RALU Operations with control inputs

Cpn AS Ctl2 Ctl1 Operation

0 0 0 0 AND

0 0 0 1 OR

0 0 1 0 ADD

0 0 1 1 XOR

1 0 0 0 NAND

1 0 0 1 NOR

0 1 0 0 XY’

0 1 0 1 Y->X

1 1 0 0 X->Y

0 1 1 0 SUB

0 1 1 1 XNOR

AND (XY/XῩ)

OR (XY/XῩ)

ADD/Subtract

XOR/XNOR

AS Ctl1 Ctl2

Result

X
Y

F
u

n
c

ti
o

n

G
e

n
e

ra
to

r

4
:1

 M
U

X

Figure 8: Reversible ALU two steps block diagram

AS ASout

X

Y

Cin

0

Cpn

0

g1=X

OR=0⊕X⊕(Y⊕AS)⊕X(Y⊕AS)⊕Cpn

Sum/Diff = X⊕(Y⊕AS)⊕Cin

Cout

AND=(Y⊕AS)X⊕Cpn

XOR/XNOR=X⊕Y⊕AS

Figure 9: Reversible ALU function generator

F1

F2

Ctl1
Ctl2

Result

g1

F3

F4

g2

g3

g4=Ctl1g

g5=Ctl2g

Figure 10: Reversible ALU function selector (MUX)

Table 1 Comparison of different adder/subtractor

Designs
Reversible

gates
Garbage
outputs

ancilla
Quantum

cost

Add/Sub- I [24] 124 78 47 327

Add/Sub- II [24] 63 47 16 218

Add/Sub- III [24] 63 47 16 156

Proposed Design 49 33 17 145

With overflow 51 33 18 147

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

10

(Fredkin gates). The advantage of having a Fredkin gate

multiplexer lies in a smaller quantum cost (15) as well as less

logic depth. Further, a Fredkin gate generates the selected

function as well as other functions available in the outputs.

For example in Fig. 11, if the controls are set as Ctl1=’0’ and

Ctl2 =’1’ then Fredkin1 gate selects F1 in line 2 while F2 is

also available at line 3. Similarly Fredkin2 selects F3 in line 4

and F4 in line 5. The final Fredkin3 gate selects F3 as a

resulting output while F1 is also available as garbage output

Gr. Thus, though it selects only one function as a result in

target line, the rest of the functions can be obtained from its

garbage outputs.

4.3 1-bit Reversible Arithmetic Logic Unit

(RALU):
Two designs of reversible arithmetic logic unit for single bit

are proposed in this section, one with 4:1 MUX and another

using Fredkin selector. The design 1 of a 1-bit RALU is

shown in Fig. 12. The circuit comprising 4:1 multiplexer

requires two Peres gates, 3 Toffoli gates and 7 CNOT gates

(total 12 reversible gates). The number of lines is 9 and

overall quantum cost is 30. On the other hand, the design 2

with Fredkin multiplexer, Fig. 13, requires two Peres gates, 4

CNOT gates and three Fredkin gates (9 gates in total) with

overall quantum cost 27. In Fig. 13(b) all outputs as well as

target function output (XOR) are available to monitor and the

garbage outputs (AND, SUM and OR) for control inputs

Ctl1g=1 and Ctl2g=1 are also shown.

Note, that all RALU blocks when placed in an n-bit reversible

arithmetic logic unit in reversible embedding must comply

with reversibility properties, Def. 1, while preserving the

correctness of the execution of the arithmetic and logical

operations.

4.4 n-bit RALU:
In the proposed circuit, cascading a number of the 1-bit

RALU modules, it is possible to construct RALU of any size.

The copy of all control signals (AS, Ctl2, Ctl1) available at the

module outputs are utilized for the next stage ALU operation.

Thus RALU guarantees the generation of all required fan-out

signals for controlling the selection of functions through

garbage signals and thus offers the minimal cost of the

implementation.

A 4-bit reversible arithmetic logic unit with inputs X3X2X1X0

and Y3Y2Y1Y0 is presented in Fig. 14 (b). The basic block, i.e.,

the RALU module is shown in Fig. 14(a). Control signal AS

transmits the true or inverted copy of input signal Y as well as

defines the addition or subtraction operation. The other input

X is transmitted unchanged at the output as garbage Gx. All

the functions outputs are available at each RALU module

outputs as Gao, Gsx and Gr. The output Result presents the

desired function selected by the control signals. While

cascading for the addition or subtraction operations, the carry

out Cout of a previous stage is propagated to the next stage.

Thus four outputs are reused to provide next stage signals.

This is a minimization of garbage outputs. Hence, a 4-bit

reversible implementation of arithmetic logic unit requires 24

lines. Note that for subtraction operation the input carry in Cin

should be set to ‘1’.

4.5 Analysis and Comparisons of circuit

parameters for n-bit RALU:
By cascading RALU blocks the same way as in Fig. 14 any

size of the arithmetic logic operation can be easily realized.

The n-bit RALU with five basic arithmetic-logical operations

requires elementary reversible logic gates (Peres, Toffoli,

Feynman gates). Each RALU module with a 4:1 MUX

requires 12 gates with quantum cost 30. Hence, for the n-bit

realization the number of gates is 12n, and the quantum cost is

30n. On the other hand, with Fredkin multiplexer, the number

of reversible gates for an n-bit design is 9n, and quantum cost

is 27n. The number of garbage bits is also linear in the size of

inputs (5n+4). Note, that the addition of the control and the

combination of multiple functions do not necessarily require a

large number of gates and ancilla.

Ctl1
F1

F2

F3

F4

Ctl1

C
tl

2

Ctl2
Result
Gr

Ctl1g

Ctl1'.F1+Ctlg'.F2

Ctl1'.F3+Ctl1.F4

Ctl1'.F1+Ctl1.F2

Ctl1.F3+Ctl1.F4

F
re

d
1

F
re

d
2

F
re

d
3

F1/F2

F3/F4

Figure 11: Reversible ALU function selector using

Fredkin gates

AS

X
Y

Cin

0
0

0

ASout

GX

G1

G2out

Cout

Result

G3

g4=Ctl1g

g5=Ctl2g

Ctl1
Ctl2

Figure 12: Reversible ALU design I (4:1 MUX)

AS

X0

Y0

Cin

Ctl1
Ctl2

ASout

GX3

Cout

GC1

Result3

GC0

Gr0Gsx0
Gao0

0 0 0

R
A

L
U

0

Gr1Gsx1
Gao1

0 0 0

R
A

L
U

1

Gr2Gsx2
Gao2

0 0 0

R
A

L
U

2

Gr3Gsx3
Gao3

0 0 0

R
A

L
U

3

GX0

Result0

GX1

Result1

GX2

Result2

AS

X
Y

Cin

Ctl1
Ctl2

ASout

GX

Cout

GCtl2

Result

GCtl1

GrGsxGao

0 0 0

R
A

L
U

(a)

(b)

X1

Y1

X2

Y2

X3

Y3

Figure 14: 4-bit RALU

ASoutAS

X
Y

Cin

0
0

0

F
re

d
1

F
re

d
2

F
re

d
3

Ctl1
Ctl2

GX

Cout

Ctl2g

Result
Gr

Ctl2g

Gsx

Gro

1

1

1
AND

XOR

OR

SUM

OR

XOR

F
1

F
2

F
3

Ctl1g=1

Ctl2g=1

OR

AND

SUM

XOR

(b)

Figure 13: RALU design II (using Fredkin selector)

Table 1 Comparison of 1-bit ALU

Circuit Operation # of

lines

of

gates

QC

Logic Unit,

Gupta [12]

AND, OR,
NAND, NOR,

XOR, const.

5 18 114

Mini ALU

[30]

AND, OR, ADD,

no-op.
10 20 60

Proposed

Design

AND, OR,
XOR,NAND,

NOR, AND/OR

with inverted
input, ADD, SUB

9 9 27

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

11

A/S

X

Y

Ccarry

0

Peres gate Peres gate

Cnop

Csns

Cres

F

Csns

Cnop

Cres

X

A/Sg

Result

Cout

S/D g

Figure 15: Proposed RALU comparable to [32]

In literature, there are different realizations of logic or

arithmetic units as benchmark circuits [30] implementing

different operations. Table 3 compares various reversible

circuit parameters of proposed design with existing

realizations for a 1-bit RALU. Table 4 presents a summary of

existing 32-bit reversible ALU or LU realizations with the

proposed design. Note that the operations performed by each

method are not the same; hence a solid comparison is not

possible. The multiplication or division operations are not

included as the complexity of the design increases and that’s

why in CMOS design usually these operations are not

integrated in ALU. Thus, the proposed implementation is

very close to the classical ALU with acceptable cost. For a

32-bit realization, this design is better than Logic Unit, which

does not even include arithmetic operations.

The V-shape design [32] is more economical and efficient for

programmable reversible computing. From Table 4 it can be

observed that the design contrast the proposed RALU in

many operations. For example, the method in [32] calculates

a modular addition and subtraction, so no carry output is

considered, while the design presented in this work calculates

complete result having a sum and carry output to indicate

arithmetic overflow condition. Moreover, the proposed

RALU includes more logic operations such as AND/NAND,

OR/NOR. This requires an extra circuitry, which is absent in

method [32]. To present a meaningful comparison a

modification to original reversible ALU is performed to

include the operations performed in [32], and the extra logic

functions in this new design are discarded. In Fig. 15, the new

design consisting of original reversible controlled

adder/subtractor (RCAS: quantum cost 9, one CNOT and two

Peres gates), one Toffoli, one CNOT and one Fredkin gate is

presented. The functions with different control signals are

presented in Table 5. The overall quantum cost is 20. Hence,

the quantum cost for 32-bit design 640, which is less than the

V-shaped design (QC= 694].

Recently two designs of reversible ALU were presented in

[33] based on two newly proposed gates MRG and Peres-

AND-OR (PAOG). These designs perform similar arithmetic

and logical functions to ours. For example, a reversible ALU

with MRG and HNG gates perform OR, NOR, XOR, XNOR,

ADD, SUB operations, and a reversible ALU with PAOG and

HNG gates perform AND, NAND, OR, NOR, ADD and SUB

operation. Note that the first design excludes AND, NAND

operation while the 2nd design excludes XOR/XNOR

operations. However, our RALU integrates all the functions of

these two designs. The total cost of an n-bit ALU in [33] is

26n-2. To make a fair comparison, the excess functions

(AND/NAND or XOR/XNOR) are not considered, and then

the total quantum cost is calculated as 21n for a design with a

Fredkin selector and 23n for a design with a multiplexer. For a

32-bit reversible ALU proposed design has a quantum cost of

672, while the design in [33] has quantum cost 830.

Moreover, for a 1-bit ALU the design in [33] requires 10 lines

whereas this new RALU needs 9 lines (actually 8 lines if one

function is not considered for a proper comparison). Thus 2

lines are saved per bit of an RALU. Thus, proposed RALU is

more economical than other methods.

4.6 RALU with overflow detector and set-

less-than function
When RALU performs an addition or a subtraction operation,

one should consider the allowed range for the given number

representation used. This means that it is important to check

whether the result is within the acceptable range. For an

unsigned number, the Cout output represents the overflow of

the operation. However, in case of signed numbers’ operations

(2’s Complement Computation) a controlled adder/subtractor

requires an extra circuit to monitor an overflow. Similar to the

RCAS design with the overflow detector, Fig. 8, the proposed

RALU is modified at the most significant bit position. A copy

Table 4: Different 32-bit reversible ALU realizations

Circuit Operations Ancilla Gates used Lines Gates QC

Logic Unit [30] AND, OR, XOR
yes CNOT, Generalized

Toffoli

299 571 1223

no 203 385 6562

ALU SyReC [30] ADD, SUB, MULT, DIV
yes CNOT, Generalized

Toffoli

331 15950 1336477

no 235 15764 1851487

Simple ALU

SyRec [30]
ADD, SUB, MULT, XOR

yes CNOT, Generalized

Toffoli

331 4413 27009

no 235 4227 152852

V-Shape [32]
Modular arithmetic (ADD, SUB,

NSUB), XOR, no-op
no

CNOT, Toffoli and

Fredkin
69 190 694

ALU [33]
ADD, SUB, OR, NOR, AND/NAND (or

XOR/XNOR)
yes

CNOT, Fredkin, HNG,

MRG/POAG
196 254 830

Proposed design
AND, NAND, OR, NOR, ADD, SUB,

XOR, XNOR, implication
yes

CNOT, Peres, Fredkin,

Toffoli
164 288 864

Table 5: RALU (Fig. 15) operations with control

inputs (X is unchanged)

Cres Csns Cnop AS Ccarry ALU Operation

1 0 0 0 0 Y +n X ADD

1 1 0 1 0 Y –nX SUB

1 0 0 1 1 X –nY NSUB

0 0 0 0 0 Y ⨁X XOR

0 0 1 0 0 Y NOP

0 0 1 1 0

0 0 0 1 0 ⨁

1 0 0 0 1 Y +n X +n1

1 0 0 1 0 X –nY –n1

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

12

AS

X0

Y0

Cin

Ctl1
Ctl2

ASout

GX3

Cout

GC1

Result3

GC0

Gr0Gsx0
Gao0

0 0 0

R
A

L
U

0

Gr1Gsx1
Gao1

0 0 0

R
A

L
U

1

Gr2Gsx2
Gao2

0 0 0

R
A

L
U

2

G rr3Gsx3
Gao3

0 0 0

R
A

L
U

3

GX0

Result
0

GX1

Result
1

GX2

Result2

Gr

X1

Y1

X2

Y2

X3

Y3

Cout2

0

0

Slt

Ovflow

C
N

O
T

in

C
N

O
T

s
ig

n

C
N

O
T

o
v

f

C
N

O
T

s
lt

Figure 16: Modified 4-bit RALU with overflow

detection and set-less-than operation

of a carry-input of the RALU block is obtained using a

CNOTin gate, and the carry-in is XOR-ed with carry output of

the block (CNOTovf) to detect overflow, Fig.16.

This overflow detector can be employed to add another

operation to original RALU. The set-less-than is usually

available in classical arithmetic logic unit, and is used to

compare if a number X is less than the number Y (X<Y). As

discussed earlier, during the subtraction of two signed

numbers, i.e., X-Y, the sign of the result XOR-ed with the

overflow signal indicates whether X is smaller than Y. The

copy of a sign bit (most significant digit of a difference) is

obtained with CNOTsign gate. The set-less-than output Slt is

generated by the CNOTslt gate, Fig. 16. The overall quantum

cost is increased only by 4 with the inclusion of two

functions: the overflow detection and comparison.

5. SIMULATION RESULT

The reversible functionality of all designs is verified through

simulations, i.e 1-bit RALU blocks (Fig. 17), 4-bit reversible

arithmetic logic circuits (Fig.18) with Fredkin selector and

finally RALU with overflow detector and set-less-than

operation (Fig. 19). All of the above designs were

implemented in VHDL and simulated using Quartus II 9.1 sp1

web edition [39]. The RCAS module is modeled in the

behavioral manner, while the remaining designs are

implemented using structural code with RCAS block as

component.

Fig. 17 shows the simulations of a 1-bit RALU using a

Fredkin multiplexer. Note that every input combination has an

expected (unique) output pattern. For each control inputs

combination, we simulate 4-input patterns of X and Y. The

highlighted ‘Result’ represents correct function output values

for corresponding control signals. Moreover, the non-selected

outputs are available at garbage outputs Gao, Gsx and Gr.

Fig. 18 presents the simulation results of a 4-bit RALU using

Fredkin gates, with 24 inputs and 24 outputs. As before, the

two random values are the inputs X and Y, the output ‘Result’.

The time interval 0-20ns represents bit-wise AND (XY), 20-

40ns bit-wise OR, 40-60ns Sum, 60-80ns XOR, 80-100ns

AND with Y inverted (XY’), 100-120ns OR with Y inverted

(X+Y’), 120-140ns Subtraction and finally 140-160ns XNOR

operation. The garbage outputs Gx, ASout, Gc1 and Gc0 are

the copies of inputs X, AS, Ctl1 and Ctl0 respectively. The

garbage outputs Gao, Gsx and Gr represent non-selected

outputs (AND/OR for values of Ctl0), (Sum/XOR according to

Ctl0) and AND/Sum or OR/XOR (based onCtl1), which is not

selected by ‘Result’.

The simulation results of RALU with the overflow detector

and the set-less-than function are shown in Fig. 19. The node

‘Result’ shows the outputs according to the control signals for

some random values of inputs set by the simulator.

Figure 17: Simulation result of 1-bit RALU using Fredkin MUX

Figure 18: Simulation result of RALU_Fredkin_4bit

Figure 19: Simulation result of 4-bit RALU with overflow and Set less than

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

13

6. CONCLUSION
Reversible logic is considered to be compatible with future

computing technologies, which dissipate less energy. Finding

an efficient reversible implementation of classical computer

arithmetic especially the arithmetic logic unit is still a

challenging issue. In this paper, the reversible architectures of

computer arithmetic logic unit are presented which offer

smaller overhead than designs proposed by other authors.

Starting with the basic RCAS module, a complete and new

RALU is constructed, which is similar to the basic classical

ALU. Two different realizations are proposed and then

analyzed their effectiveness. This integrated module is better

than any existing reversible arithmetic logic unit incorporating

more operations. The modular structure of the proposed n-bit

RALU offers economical and acceptable values of reversible

circuit parameters comparable to other benchmark circuits.

7. REFERENCES

[1] R. Landauer, “Irreversibility and heat generation in the

computational process”. IBM Journal of Research and

Development, 1961. 5(3): pp. 183-191.

[2] C. H. Bennett, “Logical reversibility of computation”,

IBM Journal of Research and Development, 1973. 17(6):

pp. 525-532.

[3] M. A. Nielsen, I. L. Chuang, “Quantum Computation and

Quantum Information”, Cambridge University Press,

2000.

[4] W. C. Athas and L.J. Svensson, “Reversible Logic Issues

in Adiabatic CMOS”, Workshop on Physics and

Computation, 1994, pp. 111-118.

[5] S. Burignat and A.D. Vos, “Test of a Majority-based

Reversible (Quantum) 4-bits Ripple Carry Adder in

Adiabatic Calculation”, 18th International Conference on

Mixed Design of Integrated Circuits and Systems, 2011,

pp. 368-373.

[6] H. Thapliyal and M. Zwolinski, “Reversible Logic to

Cryptographic Hardware: a New Paradigm”,

CoRRabs/cs/0610089, 2006.

[7] H. Thapliyal and N. Ranganathan, “Mach-Zehnder

interferometer based design of all optical reversible

binary adder”, Design, Automation and Test in Europe,

2012.

[8] M. Skoneczny, Y van Rentergem and A. D. Vos,

“Reversible Fourier Transform Chip”, 15th International

Conference on Mixed Design of Integrated Circuits and

Systems, 2008.

[9] A. D. Vos, S. Burignat and M. K. Thomsen, “ Reversible

Implementation of a discrete Integer Linear

Transformation”, Journal of Multiple-Valued Logic and

Soft Computing, vol. 18, no. 1, pp. 25-35, 2012.

[10] D. Maslov, G.W. Dueck and D. M. Miller, “Techniques

for the Synthesis of Reversible Toffoli Networks”, ACM

Trans. on Design Automation of Electronic System, Vol.

12, No.4, pp. 42:1-42:28, Sept.2007.

[11] D. Grobe, R.Wille, G. Dueck and R. Drechsler, “Exact

Multiple Control Toffoli Network Synthesis with SAT

Techniques”, IEEE Trans. On CAD, vol.28, no.5, pp.

703-715, 2009.

[12] P. Gupta, A. Agrawal and N.K. Jha, “An Algorithm for

Synthesis of Reversible logic Circuits”, IEEE Trans. on

CAD of Integrated Circuits and Sys.vol. 25, no.11, 2006.

[13] V. Shende, A. K. Prasad, I. L. Markov, and J. P. Hayes.

“Synthesis of reversible logic circuits”, IEEE Trans. on

CAD, 22(6):710–722, 2003.

[14] R. Wille, R. Drechsler,” BDD-based Synthesis of

Reversible logic for Large Functions” Design

Automation Conf., 2009.

[15] N. Alhagi, M. Hawash, M. A. Perkowski, “Synthesis of

Reversible Circuits with No Ancilla Bits for Large

Reversible Functions Specified with Bit Equations”,

Proc. of the 40th IEEE International Symp. on Multiple-

Valued Logic, pp. 39-45, 2010.

[16] M. Saeedi and I. L. Markov, “ Synthesis and

Optimization of Reversible Circuits- A Survey”, ACM

Computing Surveys 2012.

[17] L. Ni, Z. Guan and W. Zhu, “A General method of

Constructing the Reversible Full Adder”, 3rd Intl. Symp.

on Intelligent Inf. Technology and Security Informatics,

pp. 109-113, 2010.

[18] H. Thapliyal and M.B Srinivas, “Novel Design and

Reversible Logic Synthesis of Multiplexer Based Full

Adder and Multipliers”, 48th Midwest Symp.on Circuits

and Systems, vol. 2, pp. 1593-1596, 2006.

[19] H. Thapliyal, M.B Srinivas, “Novel Reversible TSG gate

and its application for designing reversible carry look

ahead adder and other adder architectures”, Proc. of 10th

Asia-pacific computer system architecture Conference,

3740, 2005.

[20] M. Haghparast and K. Navi, “Design of a novel

reversible multiplier circuit using HNG gate in

nanotechnology”, Am. J. Applied Sci., vol.5, 2008, 282.

[21] M. Ehsanpour, P. Moallem, A. Vafaei, “Design of a

Novel Reversible Multiplier Circuit Using Modified Full

Adder”, 2010 Intl. Conf. on Computer Design and

Applications, vol.3 .

[22] H. Thapliyal, M.B Srinivas and H.R. Arabnia,

“Reversible Logic Synthesis of Half, Full and Parallel

Subtractors”, Proc. of Intl. Conf. on embedded Sys. and

App., June 2005, Las Vegas, pp. 165-181.

[23] H. Thapliyal and N. Ranganathan, “Design of Efficient

Binary Subtractors Based on a New Reversible Gate”,

Proc. of 2009 IEEE Computer Society Annual Symp. on

VLSI, pp. 229-234.

[24] H. G. Rangaraju, U. Venugopal, K.N. Muralidhara and

K. B. Raja, “ Low Power Reversible Parallel Binary

Adder/Subtractor”, Intl. J. of VLSI design & Comm. Sys.

(VLSICS), Vol. 1, no. 3, 2010, pp 23-34.

[25] V. Vedral, A. Barenco and A Ekert, “ Quantum

Networks for Elementary Arithmetic Operations”, Phys.

Rev. A, vol. 54, no. 1, pp. 147-153, 1996.

[26] S. A. Cuccaro, T. G. Draper, S. A. Kutin and D. P.

Moulton, “ A new Quantum Ripple-Carry Addition

Circuit,” quant-ph/0410184, 2004.

[27] Y. Takahashi, S. Tani and N. Kunihiro, “ Quantum

Addition Circuits and Unbounded Fan-out, “ Quantum

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 14, May 2014

14

Information and Computation, vol. 10, no. 9&10, pp.

872-890, 2010.

[28] I. L. Markov and M. Saeedi, “Constant-Optimized

Quantum Circuits for Modular Multiplication and

Exponentiation”, Quantum Information and

Computation, vol. 1. no. 5&6, pp. 872-890, 2012.

[29] M. K. Thomsen, H. B. Axelsen and R. Gluck, “ A

Reversible Processor Architecture and its Reversible

Logic Design”, Reversible Computation, Lecture Notes

in Computer Science, vol. 7165, 2012, pp 30-42.

[30] Benchmark circuits. http://www.revlib.org

[31] R. Aradhaya, K. N. Muralidhara, B. Kumar, “ Design of

Low Power Arithmetic Unit Based on Reversible Logic”,

International Journal of VLSI and Signal Processing

Applications, vol. 1, no. 1, pp. 30-38, 2011.

[32] M. K. Thomsen, R. Gluck, H. B. Axelsen, “Reversible

arithmetic logic unit for quantum arithmetic”, J. Phys. A:

Math. Theor., vol. 43, no. 38, 2010.

[33] M. Morrison and N. Ranganathan, “ Design of a

Reversible ALU based on Novel Programmable

Reversible Logic Gate Structures”, IEEE Computer

Society Annual Symposium on VLSI, 2011, pp. 126-131.

[34] T. Toffoli, “ Reversible Computing”, Technical Memo,

MIT/LCS/TM-151, Boston 1980.

[35] E. Fredkin, T. Toffoli, “Conservative Logic”, Int. J.

Theor. Physics, vol. 21, no. 3-4, pp. 219-253, 1982.

[36] A. Peres, “ Reversible logic and quantum computers,”

Phys. Rev. A, Gen. Phys., vol 32, no. 6, pp. 3266-3276,

Dec. 1985.

[37] S. Sultana, K. Radecka, “ Reversible adder/subtractor

with overflow detector”, Intl. Midwest Symp. on Circuits

and Systems (MWSCAS 2011), pages 1- 4.

[38] V. Carl Hamacher, Safwat G. Zaky and Zvonko G.

Vranesic, Computer Organization” New York : McGraw-

Hill, ©1984, ISBN: 0072320869.

[39] https://www.altera.com/download/software/quartus-ii-

we/9.

IJCATM : www.ijcaonline.org

http://link.springer.com/book/10.1007/978-3-642-29517-1
http://link.springer.com/bookseries/558
http://link.springer.com/bookseries/558
http://www.revlib.org/
http://www.amazon.ca/Computer-Organization-V-Carl-Hamacher/dp/007025883X/ref=sr_1_3?s=books&ie=UTF8&qid=1299547768&sr=1-3

