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ABSTRACT 
Reversible logic plays an important role in emerging low 

power designs and quantum computing. This paper presents 

an efficient way to realize reversible arithmetic circuits 

especially targeting toward reversible arithmetic logic unit 

(RALU). In literature for reversible logic, not a significant 

advancement is found in integrating both logical and 

arithmetical functions, commonly known as arithmetic logic 

unit (ALU), a key feature of any computing system 

architecture. Here, this work presents a novel reversible 

arithmetic logic unit (ALU) performing basic functions 

similar to classical ALU such as addition, subtraction, AND, 

OR and XOR operations. Additional functions such as, 

NAND, NOR, XNOR and logical functions with single input 

inverted, overflow detection and comparison can also be 

performed with this design. The integration of these 

operations in single module using less number of control 

signals is not available in any of existing approaches. The 

design and analysis based on different parameters of 

reversible circuits – number of gates, garbage bits and 

quantum cost as well as simulation results are presented here. 

The proposed design offers efficient programmability and 

more flexibility than other methods. 

General Terms 

Arithmetic design and logic structures. 

Keywords 

Arithmetic logic unit, Reversible logic, Reversible controlled 

adder/subtractor, Quantum cost. 

1. INTRODUCTION 
Recently, reversible circuit synthesis has started to emerge as 

an important topic, bringing alternative solutions to classical 

networks. The motivation behind reversible computation 

comes from its theoretical abilities to address burning issues 

of modern circuit designs such as power consumption and 

emerging new technologies. Namely, reversible circuits 

dissipate less energy, and are closely related to quantum 

circuits, which, in the near future, could become a competitor 

to current classical circuits. In 1961, Landauer showed that 

irreversible circuits regardless of the underlying technology 

always consume power, and consequently dissipate heat at the 

rate of at least kTln2 for each bit of information erase. In the 

above equation k is Boltzmann’s constant and T is the 

temperature [1]. Further, Bennett showed that, in principle, 

arbitrarily small or zero energy dissipation is only possible if 

no information is lost during computation [2]. This holds for 

reversible circuits as input and output data is processed 

without losing any of the original information. Further, as 

every quantum operation is inherently reversible, reversible 

circuits constitute a subclass of quantum circuits [3]. Thus, 

any development in this domain can be directly applied to 

future technologies. Finally, the use of reversible circuits is 

already found in low power CMOS designs, adiabatic circuits 

[4, 5], cryptography [6], optical computing [7] and digital 

signal processing [8, 9] requiring that all the information 

encoded in the inputs be preserved in outputs. 

A reversible function realizes a unique one-to-one mapping of 

inputs to outputs with equal number of bits. The irreversible 

nature of most of the original algorithms makes the synthesis 

of reversible circuits from irreversible specifications a 

challenging task. A large part of the existing algorithms, 

although optimized in garbage bits and gate counts, are 

restricted to small functions, while some approaches 

successfully address large functions but are costly in terms of 

gate count, additional lines and quantum cost [10-14]. A 

synthesis solution for large reversible circuits is presented in 

[15] by avoiding ancilla bits. A recent survey enlightened the 

key features, motivation and developments in the area of 

reversible logic synthesis [16]. 

In addition to the reversible realization of logical functions, a 

great deal of work has been done aiming to implement the 

basic reversible arithmetic units such as adders, subtractors  

and multipliers by finding a direct translation from classical 

truth table to reversible forms using basic standard reversible 

gates as well as dedicated newly proposed gates [17-24]. Apart 

from that we also see quantum/reversible circuits for arithmetic 

operations from addition to multiplication and modular 

exponentiation [25-28], playing an important role in quantum 

Shor’s algorithm.  

 In this work, an efficient and versatile reversible arithmetic 

logic unit (RALU) is presented, which is very close to its 

classical counterpart. Integration of logical functions or 

arithmetic units or both is still a challenge. However, a 

reversible computing architecture with the instruction set, 

control logic and address calculation has been demonstrated in 

recent work [29]. An integrated logic unit using approach in 

[12] performs eight logic functions. In benchmark circuits 

[30] performing several logic and arithmetic functions in one 

module can be found. One such example is a unit, which 

performs AND, OR and XOR only. The other benchmark 

circuit named mini ALU using BDD-based method [14] 

includes OR, AND and addition operation. Some designs 

generated from SyRec programming language incorporate 

multiplication and division too [30]. An arithmetic unit 

proposed in [31] performs ADD and SUBTRACT operations 

as well as increment and decrement of the input by one. A V-

shaped low power reversible ALU is developed in [32] for 

programmable reversible/quantum computing, which 

performs modular arithmetic like addition, subtraction, 

negative subtraction, XOR and no operation (NOP). However, 

the modular arithmetic result does not reflect the overflow 

(carry out) of arithmetic operations. Moreover, this design 

does not include logic functions more common to classical 

ALU such as AND/NAND or OR/NOR. Recently a reversible 
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ALU design is proposed in [33] which include many 

operations close to classical ALU design. 

In this work, a new integrated module of a RALU is 

introduced, which encapsulates most of the operations in 

classical realization with less number of control lines. This 

module intends to perform the basic mathematical operations 

of addition, subtraction, as well as logic operations AND and 

OR. Further, an XOR function (not available in classical 

ALU), which is very useful in reversible circuits, is also 

included here. Finally, some negated logical functions such as 

NAND, NOR and XNOR including implication are realized in 

this design. 

In this approach, the basic RALU operates on single-bit data, 

which is capable to realize various arithmetic functions, and 

can be cascaded into an n-bit design. Later the modifications 

are added to the RALU to detect overflow and to perform 

comparison (set-less-than) operation to detect whether a 

number is less than another number. Thus the proposed design 

includes more functions with less number of lines and 

acceptable quantum cost.  

2. BACKGROUND 
Definition 1: An nxn reversible circuit realizes an n-input/n-

output function where each input vector maps bijectively to an 

output vector. The reversible circuits allow no fan-outs and no 

feedback paths.  

Hence, the iterative cascading preserving the rules listed in 

Def. 1 can be applied to building any reversible circuit using 

reversible gates. Reversible synthesis of irreversible 

specification aims on embedding an arbitrary (irreversible) 

function with I inputs and O outputs (generally IO) to a 

reversible implementation constructed solely from reversible 

gates. Often extra I/O signals must be added, where the extra A 

inputs are referred as ancilla bits, while the additional G 

outputs are garbage bits. 

The cost of a reversible circuit is determined in terms of gate 

counts, number of garbage bits and overall quantum cost. In 

fact, the quantum cost plays an important role from the 

technological viewpoint. 

Definition 2: A quantum cost of a reversible gate T is defined 

as a number of elementary quantum operations performed by 

NOT, CNOT and controlled V or V+ gates in order to realize 

this gate. 

Many reversible gates have been proposed over the years such 

as basic NOT, CNOT, Toffoli [34], as well as Fredkin [35] and 

Peres [36]. Recently, some new reversible gates targeting 

specific implementations such as adder, subtractor, multiplier 

etc. have been introduced [17-24]. In this work basic reversible 

gates such as CNOT, Peres and Fredkin gates are used for the 

construction of basic RALU design. A brief introduction of 

some standard reversible gates is presented below. 

 A CNOT gate shown in Fig.1 is a 2x2 gate with a single 

control input A, which inverts the second input B when its 

value is true. This gate is also known as a Feynman gate. A  

multiple-control Toffoli gate has a single target line C that is 

inverted if all the control lines are set to 1, Fig.1. The quantum 

cost of 3x3 Toffoli gate is 5, Fig.2. A  Toffoli gate implements 

a function Z= ABC with two control inputs A and B, which 

are copied at the outputs X and Y. That way, they can fan-out 

signals A and B to the rest of the circuit. Otherwise, if values of 

X and Y are not used at other places of the circuit, they are 

treated as garbage outputs. 

A 3x3 Toffoli gate is universal since any reversible function 

can be realized by cascading this gate only. For example, 

AND, NOT, XOR can be obtained from Toffoli gate T 

(A,B,C): 

AND



XOR
A multiple controlled 3x3 Fredkin gate [35], Fig.3, is a 

controlled swap gate with two target lines. This gate realizes 

the mapping of the inputs (A, B, C) to the outputs (X= A, Y= 

A’B+AC, Z= AB+A’C). Note, that the values of the target lines 

are interchanged if the control lines are set to 1. The quantum 

cost of this gate is 5 as assumed in [31].The Fredkin gate is an 

important part of many arithmetic circuit designs.  

Another gate commonly used in reversible implementations, is 

the 3x3 Peres gate, Fig.4. This gate implements the mapping of 

the inputs (A, B, C) to (X =A, Y= AB, Z= ABC). Its quantum 

cost is 4, which is lower than the two gates previously 

presented. The main advantage of a Peres gate is its capability 

to implement a half adder functions using only one instance of 

the gate  when C=0 . 

3.  REVERSIBLE ARITHMETIC AND 

LOGICAL OPERATION BASICS 
An ALU is an integral module of multiple one- and two-input 

arithmetic and logic functions. Instead of constructing several 

single-function circuits this integrated module offers 

programmability with less gate cost. However, the 

incorporation of several functions into a single unit requires 

additional control lines and circuit resources. In this paper, the 
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implementation of a reversible version of a conventional 

irreversible ALU is presented. For the ALU design special 

attention should be made on including as many arithmetic and 

logic operations as possible in a simple design with maximum 

efficiency and minimum possible cost. Hence, the reversible 

ALU presented in this paper includes most operations available 

in conventional irreversible ALU. The stepwise development 

of the proposed RALU is described next.  

3.1 The Logical Operations 

 In a classical design the most common logical functions 

included in basic ALU are AND and OR. In proposed RALU 

the reversible equivalent of these two functions are AND: (A, 

B, ‘0’ →A, B, 0⨁AB) implemented with single Toffoli gate 

and OR: (A, B, ‘0’ → A, B, 0⨁A⨁B⨁AB) implemented with 

one Toffoli gate and two CNOT gates. However, to ensure 

reversibility the AND and OR embeddings require some extra 

signals as garbage outputs. Another important logical 

operation, i.e., the bitwise exclusive-OR (XOR), which is 

elementary in reversible logic is also added. Extending ALU 

by this operation is obvious, and increases the flexibility and 

applicability of RALU. Moreover, suitable control signal 

facilitates performing NAND, NOR and XNOR operations too. 

For example, for the implemented function 0⨁A⨁B⨁Cnt, 

when control Cnt is false then it performs bitwise XOR and 

when Cnt is true then we get XNOR operation. 

3.2 The Arithmetic Operations: 
The two basic arithmetic operations included in any ALU are 

an addition and a subtraction of two binary numbers. The main 

problem in designing reversible adder or subtractor is that the 

function is not bijective, and hence like other designs in 

literature, it is important to find proper reversible embedding 

with the aid of extra signals. In proposed RALU, an adder and 

a subtractor are implemented in a single module with a control 

signal. The structure of the reversible controlled 

adder/subtractor (RCAS) module presented in next section is 

realized in reversible embedding, performing 2’s Complement 

computation, and execute addition or subtraction based on a 

control signal.  

An adder/subtractor block is a combinational circuit, which 

adds or subtracts two binary numbers X and Y depending on 

the value of the input control signal. For addition, a general full 

adder block adds three bits X, Y, Z and generates two outputs: 

sum(S) and carry-out (Co) according to the logic equations S= 

XYZ and Co = XYZ(XY). A subtractor performs a 

subtraction on three bits X (minuend), Y (subtrahend) and Z 

(subtrahend), and results in a difference D and a borrow Bo 

calculated according to the logic equations D= XYZ and 

Bo= X’YZ(XY)’ [24].  

3.3  Reversible Controlled adder/subtractor  
The concept of reversible controlled adder/subtractor presented 

here is based on the use of an adder circuit to perform 

subtraction instead of having a dedicated subtractor. Hence, the 

operation X-Y is implemented as X+Y’+1, i.e., 2’s 

Complement. The block diagram of a general irreversible 

controlled adder/subtractor is shown in Fig.5. 

Note, that as a classical adder/subtractor module has 4 inputs 

(A/S, Cin, X and Y) and 2 outputs (S/D and Cout), its 

input/output count is unequal, and hence the original form 

cannot be used directly as a reversible element. Therefore, to 

create a cascadable reversible CAS module, some garbage bits 

must be added to the original irreversible CAS structure. A 

second issue, addressed in the reversible CAS construction is 

the lack of support for fan-out signals in reversible designs. In 

the classical adder/subtractor implementations, the same 

control signal A/S is fanned-out to all CAS blocks, Fig.5 (b). 

To overcome this shortcoming, one of the garbage bits, i.e., 

A/Sg, is used to provide a copy of a control signal from one 

module to the next. 

With the questions of fan-outs and I/O count compatibility 

resolved, the reversible controlled adder/subtractor (RCAS) 

block is constructed using reversible gates. The full adder is 

implemented by cascading two Peres gates (highlighted), 

which results in generating the target outputs S/D  and Cout 

where S/D = A/S⨁Y⨁X⨁Cin and Cout= 

X(A/S⨁Y)⨁Cin(A/S⨁Y⨁X), in addition to garbage outputs 

A/Sg, g1 and g2, Fig. 6 [37]. When A/S is set to 0, then CNOT 

(first gate, Fig. 6) passes the true copy of Y while A/Sg acts as a 

garbage output. When A/S is 1 then Y’ is available at the output 

of CNOT, and the full adder adds X, Y’ and Cin (which is set to 

1 for subtraction). The garbage output A/Sg of a given RCAS 

block is reused for a control signal fed to the consecutive 

RCAS block. The quantum cost of the RCAS module is 9 (8 

for two Peres plus 1 for CNOT gate). 

RCAS blocks can be cascaded to construct an n-bit 

adder/subtractor. In the proposed architecture, the A/Sg and Cout 

outputs of a previous stage propagate to the input control signal 

A/S and the Cin of the next RCAS. For a 2’s Complement 

subtraction X+Y’+1, an extra value 1 needs to be added to the 

least significant bit position (LSB) of the result. Hence, the 

original LSB block is modified by adding a CNOT gate 

between A/S and a constant ‘0’ ancilla bit. Note that when A/S 

is set to 0 for an addition, a value 0 is passed through the 

CNOT gate to the RCAS0 resulting in the addition of X0 and Y0 

only. When A/S is set to 1 for the subtraction, a value 1 is 

added to X0+Y0’ as required by a 2’s Complement notation. 

The addition of CNOT gate increases quantum cost by 1. 

If a result of an n-bit addition/subtraction does not fall within 

the allowed range, then an arithmetic overflow occurs. 

Although, when adding unsigned numbers, the output carry-

out Cout signal coming from the most significant RCAS block 

serves as an overflow indicator, for the signed numbers the 

carry-out at the sign-bit position is not sufficient. In the case of 

signed numbers the overflow can occur, when adding two 

FULL 

ADDER

Y X
A/S

CINCOUT/

BOUT

S/D

CAS

Y3 X3 A/S

S3/D3

CAS

Y2 X2 A/S

S2/D2

CAS

Y1 X1 A/S

S1/D1

CAS

Y0 X0 A/S

S0/D0

COUT/

BOUT CIN

(a) (b)

Figure 5:  Simple adder/subtractor design  

A/Sg

g1=x

g2=A/S⊕Y⊕X

A/S⊕Y⊕X⊕Cin

X(A/S⊕Y)⊕CIN(X⊕A/S⊕Y)

A/S

X

Y

CIN

0

Peres gate Peres gate

(a)

 

Figure 6: Reversible Implementation of controlled 

adder/subtractor 

 

0
X0

g g

A/ S

0
RCASn-1

0

g g

0

g g

A/ Sg

0
Ovf

0

g g

0

g g

Cn

RCASn-2 RCAS2 RCAS1 RCAS0

Y0X1X2Xn-2Xn-1 Y1Yn-2 Y2Yn-1

S
0
/D

0

S
1
/D

1

S
2
/D

2

S
n

-2
/D

n
-2

S
n

-1
/D

n
-1

Figure 7: Reversible Implementation of controlled 

adder/subtractor with overflow detection 



International Journal of Computer Applications (0975 – 8887)  

Volume 93 – No 14, May 2014 

9 

numbers of the same sign with the carry out signal from the 

MSB position being 0, i.e., not indicating the overflow. 

When considering the 2’s Complement addition (subtraction), 

the overflow occurs if the carry-in (borrow-in) to the most 

significant RCAS is the different than the carry-out (borrow-

out) generated by that block, i.e., Ovf =Cn-1⨁Cn. To implement 

the above check  two additional CNOT gates at the outputs of 

the two most significant RCAS modules are added. The first 

CNOT gate placed at the Cout of RCASn-2 block provides a 

copy of carry input Cn-1 to the RCASn-1. The second CNOT 

performs XOR of Cn and Cn-1, where Cn is the carry output 

from an nth bit RCAS. If Ovf is equal to 1, then the addition is 

incorrect, falling outside the assumed range. An n-bit signed 

numbers (2’s Complement) reversible adder/subtractor with 

overflow detector is given in Fig. 7. 

The proposed reversible n-bit adder/subtractor requires 3n+1 

gate (Peres and CNOT), 2n+1 garbage bits, and has the 

quantum cost of 9n+1. Table 1 summarizes the comparison of 

the proposed 16-bit design with binary adder/subtractors 

presented in [24]. These are three designs constructed from 

Fredkin, Peres and TR gates, and differ in the number of 

reversible gates, garbage outputs, ancilla inputs and quantum 

cost. As the Add/Sub- Design III implemented with Peres and 

CNOT gates clearly outperforms the Design I (Fredkin and 

CNOT), and the Design II (TR and CNOT gates) [24], the 

Design III is mainly considered for comparison with proposed 

designs (n-bit adder/subtractor with/without the overflow 

detector). The design presented in this work is better than 

adder/subtractor circuits [24] in terms of reversible gates, 

garbage outputs and the quantum cost. For example, for an n-

bit Design III [24] the quantum cost is 10(n-1)+6 =10n-4 with 

(n-1) full adder/subtractor each contributing 10 to the quantum 

cost, and one LSB half adder/subtractor with quantum cost of 

6. In contrast, the proposed n-bit design has a cost of 9n+1.  

Hence, the improvement in the quantum cost of this design is 

n-3 for n> 3. The gain grows with increasing size of the 

adder/subtractor. 

4.  REVERSIBLE ARITHMETIC LOGIC 

UNIT 
In proposed reversible ALU design the arithmetic and logical 

operations are first performed in parallel, and then the desired 

result is selected by a multiplexer (MUX)- a circuit that 

chooses one out of several inputs depending on a control. The 

two steps of the design are defined as: function generation and 

function selection, Fig. 8.  

4.1 Function Generator:  
The first module of the proposed reversible ALU generates 

four arithmetic-logic functions in parallel as well as transmits 

an input X unchanged. Another operand Y is controlled by a 

control signal AS, which determines the inverted operation or 

a subtraction. The implementation of this generator block is 

presented in Fig. 9. The control signal Cpn defines the 

functionality of AND and OR when Cpn=0), otherwise NAND 

or NOR function is performed. Next if the control signal AS is 

‘0’ then the device performs the following operations 

simultaneously: AND/NAND, OR/NOR, addition and XOR. 

On the other hand, if the control signal AS is ‘1’ then results 

for AND/NAND with single input inverted, OR/NOR with 

single input inverted, Subtraction and XNOR are generated, 

Table 2. 

The RCAS in Fig. 6 is used for arithmetic operations. 

However, in order to implement with fewer number of gates 

for extended functions AND, OR and XOR,  two CNOT gates 

in between two Peres gates (AND and XOR) and one extra 

CNOT gate after the 2nd Peres gate are added, Fig. 9.The 

quantum cost of this function generator is 12. 

4.2 Function Selector 
To select a desired function output a 4:1 reversible 

multiplexer shown in Fig. 10 is proposed in this work based 

on embedded reversible specification and is realized using 

Positive Davio expansion, which confirms minimum number 

of lines i.e. 

Result=(F1⨁Ctl1(F1⨁F2))⨁Ctl2(F1⨁Ctl1(F1⨁F2)⨁F3⨁Ctl1(

F3⨁F4)).The number of reversible gates for this MUX is 6, 

while number of lines is 6. No ancilla bit is added. The 

quantum cost is 18. 

Another implementation of a function generator is obtained by 

using Fredkin gates. A Fredkin gate itself is a reversible 

equivalent of 2:1 MUX. Hence, an alternative to 4:1 MUX 

proposed in the previous paragraph is to use three 2:1 MUXs 

Table 2: RALU Operations with control inputs 

Cpn AS Ctl2 Ctl1 Operation 

0 0 0 0 AND 

0 0 0 1 OR 

0 0 1 0 ADD 

0 0 1 1 XOR 

1 0 0 0 NAND 

1 0 0 1 NOR 

0 1 0 0 XY’ 

0 1 0 1 Y->X 

1 1 0 0 X->Y 

0 1 1 0 SUB 

0 1 1 1 XNOR 
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Figure 8: Reversible ALU two steps  block diagram  
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Table 1 Comparison of different adder/subtractor 

Designs 
Reversible 

gates 
Garbage 
outputs 

ancilla 
Quantum 

cost 

Add/Sub- I [24] 124 78 47 327 

Add/Sub- II [24] 63 47 16 218 

Add/Sub- III [24] 63 47 16 156 

Proposed Design 49 33 17 145 

With overflow 51 33 18 147 
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(Fredkin gates). The advantage of having a Fredkin gate 

multiplexer lies in a smaller quantum cost (15) as well as less 

logic depth. Further, a Fredkin gate generates the selected 

function as well as other functions available in the outputs. 

For example in Fig. 11, if the controls are set as Ctl1=’0’ and 

Ctl2 =’1’ then Fredkin1 gate selects F1 in line 2 while F2 is 

also available at line 3. Similarly Fredkin2 selects F3 in line 4 

and F4 in line 5. The final Fredkin3 gate selects F3 as a 

resulting output while F1 is also available as garbage output 

Gr. Thus, though it selects only one function as a result in 

target line, the rest of the functions can be obtained from its 

garbage outputs. 

4.3 1-bit Reversible Arithmetic Logic Unit 

(RALU): 
Two designs of reversible arithmetic logic unit for single bit 

are proposed in this section, one with 4:1 MUX and another 

using Fredkin selector. The design 1 of a 1-bit RALU is 

shown in Fig. 12. The circuit comprising 4:1 multiplexer 

requires two Peres gates, 3 Toffoli gates and 7 CNOT gates 

(total 12 reversible gates). The number of lines is 9 and 

overall quantum cost is 30. On the other hand, the design 2 

with Fredkin multiplexer, Fig. 13, requires two Peres gates, 4 

CNOT gates and three Fredkin gates (9 gates in total) with 

overall quantum cost 27.  In Fig. 13(b) all outputs as well as 

target function output (XOR) are available to monitor and the 

garbage outputs (AND, SUM and OR) for control inputs 

Ctl1g=1 and Ctl2g=1 are also shown.  

Note, that all RALU blocks when placed in an n-bit reversible 

arithmetic logic unit in reversible embedding must comply 

with reversibility properties, Def. 1, while preserving the 

correctness of the execution of the arithmetic and logical 

operations.  

4.4 n-bit RALU: 
In the proposed circuit, cascading a number of the 1-bit 

RALU modules, it is possible to construct RALU of any size. 

The copy of all control signals (AS, Ctl2, Ctl1) available at the 

module outputs are utilized for the next stage ALU operation. 

Thus RALU guarantees the generation of all required fan-out 

signals for controlling the selection of functions through 

garbage signals and thus offers the minimal cost of the 

implementation. 

A 4-bit reversible arithmetic logic unit with inputs X3X2X1X0 

and Y3Y2Y1Y0 is presented in Fig. 14 (b). The basic block, i.e., 

the RALU module is shown in Fig. 14(a). Control signal AS 

transmits the true or inverted copy of input signal Y as well as 

defines the addition or subtraction operation. The other input 

X is transmitted unchanged at the output as garbage Gx. All 

the functions outputs are available at each RALU module 

outputs as Gao, Gsx and Gr. The output Result presents the 

desired function selected by the control signals. While 

cascading for the addition or subtraction operations, the carry 

out Cout of a previous stage is propagated to the next stage. 

Thus four outputs are reused to provide next stage signals. 

This is a minimization of garbage outputs. Hence, a 4-bit 

reversible implementation of arithmetic logic unit requires 24 

lines. Note that for subtraction operation the input carry in Cin 

should be set to ‘1’. 

4.5 Analysis and Comparisons of circuit 

parameters for n-bit RALU: 
By cascading RALU blocks the same way as in Fig. 14 any 

size of the arithmetic logic operation can be easily realized. 

The n-bit RALU with five basic arithmetic-logical operations 

requires elementary reversible logic gates (Peres, Toffoli, 

Feynman gates). Each RALU module with a 4:1 MUX 

requires 12 gates with quantum cost 30. Hence, for the n-bit 

realization the number of gates is 12n, and the quantum cost is 

30n. On the other hand, with Fredkin multiplexer, the number 

of reversible gates for an n-bit design is 9n, and quantum cost 

is 27n. The number of garbage bits is also linear in the size of 

inputs (5n+4). Note, that the addition of the control and the 

combination of multiple functions do not necessarily require a 

large number of gates and ancilla. 
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Figure 11: Reversible ALU function selector using 

Fredkin gates 
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Figure 14: 4-bit RALU  
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Figure 13: RALU design II ( using Fredkin selector) 

 

Table 1 Comparison of 1-bit ALU 

Circuit Operation # of 

lines 

# of 

gates 

QC 

Logic Unit, 

Gupta [12] 

AND, OR,  
NAND, NOR, 

XOR, const. 

5 18 114 

Mini ALU 

[30] 

AND, OR, ADD, 

no-op. 
10 20 60 

Proposed 

Design 

AND, OR, 
XOR,NAND, 

NOR, AND/OR 

with inverted 
input,  ADD, SUB 

9 9 27 
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Figure 15: Proposed RALU comparable to [32] 

In literature, there are different realizations of logic or 

arithmetic units as benchmark circuits [30] implementing 

different operations. Table 3 compares various reversible 

circuit parameters of proposed design with existing 

realizations for a 1-bit RALU. Table 4 presents a summary of 

existing 32-bit reversible ALU or LU realizations with the 

proposed design. Note that the operations performed by each 

method are not the same; hence a solid comparison is not 

possible. The multiplication or division operations are not 

included as the complexity of the design increases and that’s 

why in CMOS design usually these operations are not 

integrated in ALU. Thus, the proposed implementation is 

very close to the classical ALU with acceptable cost. For a 

32-bit realization, this design is better than Logic Unit, which 

does not even include arithmetic operations. 

The V-shape design [32] is more economical and efficient for 

programmable reversible computing. From Table 4 it can be 

observed that the design contrast the proposed RALU in 

many operations. For example, the method in [32] calculates 

a modular addition and subtraction, so no carry output is 

considered, while the design presented in this work calculates 

complete result having a sum and carry output to indicate 

arithmetic overflow condition. Moreover, the proposed  

RALU includes more logic operations such as AND/NAND, 

OR/NOR. This requires an extra circuitry, which is absent in 

method [32]. To present a meaningful comparison a 

modification to original reversible ALU is performed to 

include the operations performed in [32], and the extra logic 

functions in this new design are discarded. In Fig. 15, the new 

design consisting of original reversible controlled 

adder/subtractor (RCAS: quantum cost 9, one CNOT and two 

Peres gates), one Toffoli, one CNOT and one Fredkin gate is 

presented. The functions with different control signals are 

presented in Table 5. The overall quantum cost is 20. Hence, 

the quantum cost for 32-bit design 640, which is less than the 

V-shaped design (QC= 694]. 

Recently two designs of reversible ALU were presented in 

[33] based on two newly proposed gates MRG and Peres-

AND-OR (PAOG). These designs perform similar arithmetic 

and logical functions to ours. For example, a reversible ALU 

with MRG and HNG gates perform OR, NOR, XOR, XNOR, 

ADD, SUB operations, and a reversible ALU with PAOG and 

HNG gates perform AND, NAND, OR, NOR, ADD and SUB 

operation. Note that the first design excludes AND, NAND 

operation while the 2nd design excludes XOR/XNOR 

operations. However, our RALU integrates all the functions of 

these two designs. The total cost of an n-bit ALU in [33] is 

26n-2. To make a fair comparison, the excess functions 

(AND/NAND or XOR/XNOR) are not considered, and then 

the total quantum cost is calculated as 21n for a design with a 

Fredkin selector and 23n for a design with a multiplexer. For a 

32-bit reversible ALU proposed design has a quantum cost of 

672, while the design in [33] has quantum cost 830. 

Moreover, for a 1-bit ALU the design in [33] requires 10 lines 

whereas this new RALU needs 9 lines (actually 8 lines if one 

function is not considered for a proper comparison). Thus 2 

lines are saved per bit of an RALU. Thus, proposed RALU is 

more economical than other methods.  

4.6 RALU with overflow detector and set-

less-than function  
When RALU performs an addition or a subtraction operation, 

one should consider the allowed range for the given number 

representation used. This means that it is important to check 

whether the result is within the acceptable range. For an 

unsigned number, the Cout output represents the overflow of 

the operation. However, in case of signed numbers’ operations 

(2’s Complement Computation) a controlled adder/subtractor 

requires an extra circuit to monitor an overflow. Similar to the 

RCAS design with the overflow detector, Fig. 8, the proposed 

RALU is modified at the most significant bit position. A copy 

Table 4: Different 32-bit reversible ALU realizations 

Circuit Operations Ancilla Gates used Lines Gates QC 

Logic Unit [30] AND, OR, XOR 
yes CNOT,  Generalized 

Toffoli 

299 571 1223 

no 203 385 6562 

ALU SyReC [30] ADD, SUB, MULT, DIV 
yes CNOT, Generalized 

Toffoli 

331 15950 1336477 

no 235 15764 1851487 

Simple ALU 

SyRec [30] 
ADD, SUB, MULT, XOR 

yes CNOT, Generalized 

Toffoli 

331 4413 27009 

no 235 4227 152852 

V-Shape [32] 
Modular arithmetic (ADD, SUB, 

NSUB), XOR,  no-op 
no 

CNOT, Toffoli  and 

Fredkin 
69 190 694 

ALU [33] 
ADD, SUB, OR, NOR, AND/NAND (or 

XOR/XNOR) 
yes 

CNOT, Fredkin, HNG, 

MRG/POAG 
196 254 830 

Proposed design 
AND, NAND, OR, NOR, ADD, SUB, 

XOR, XNOR, implication 
yes 

CNOT, Peres, Fredkin, 

Toffoli 
164 288 864 

 

Table 5: RALU (Fig. 15) operations with control 

inputs  (X is unchanged) 

Cres Csns Cnop AS Ccarry ALU Operation 

1 0 0 0 0 Y +n X      ADD 

1 1 0 1 0 Y –nX      SUB 

1 0 0 1 1 X –nY      NSUB 

0 0 0 0 0 Y ⨁X      XOR 

0 0 1 0 0 Y            NOP 

0 0 1 1 0    

0 0 0 1 0  ⨁         

1 0 0 0 1 Y +n X +n1 

1 0 0 1 0 X –nY –n1 
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Figure 16: Modified 4-bit RALU with overflow 

detection and set-less-than operation  

of a carry-input of the RALU block is obtained using a 

CNOTin gate, and the carry-in is XOR-ed with carry output of 

the block (CNOTovf) to detect overflow, Fig.16. 

This overflow detector can be employed to add another 

operation to original RALU. The set-less-than is usually 

available in classical arithmetic logic unit, and is used to 

compare if a number X is less than the number Y (X<Y). As 

discussed earlier, during the subtraction of two signed 

numbers, i.e., X-Y, the sign of the result XOR-ed with the 

overflow signal indicates whether X is smaller than Y. The 

copy of a sign bit (most significant digit of a difference) is 

obtained with CNOTsign gate. The set-less-than output Slt is 

generated by the CNOTslt gate, Fig. 16. The overall quantum 

cost is increased only by 4 with the inclusion of two 

functions: the overflow detection and comparison. 

5. SIMULATION RESULT 

The reversible functionality of all designs is verified through 

simulations, i.e 1-bit RALU blocks (Fig. 17), 4-bit reversible 

arithmetic logic circuits (Fig.18) with Fredkin selector and 

finally RALU with overflow detector and set-less-than 

operation (Fig. 19). All of the above designs were 

implemented in VHDL and simulated using Quartus II 9.1 sp1 

web edition [39]. The RCAS module is modeled in the 

behavioral manner, while the remaining designs are 

implemented using structural code with RCAS block as 

component. 

Fig. 17 shows the simulations of a 1-bit RALU using a 

Fredkin multiplexer. Note that every input combination has an 

expected (unique) output pattern. For each control inputs 

combination, we simulate 4-input patterns of X and Y. The 

highlighted ‘Result’ represents correct function output values 

for corresponding control signals. Moreover, the  non-selected 

outputs are available at garbage outputs Gao, Gsx and Gr. 

Fig. 18 presents the simulation results of a 4-bit RALU using 

Fredkin gates, with 24 inputs and 24 outputs. As before, the 

two random values are the inputs X and Y, the output ‘Result’. 

The time interval 0-20ns represents bit-wise AND (XY), 20-

40ns bit-wise OR, 40-60ns Sum, 60-80ns XOR, 80-100ns 

AND with Y inverted (XY’), 100-120ns OR with Y inverted 

(X+Y’), 120-140ns Subtraction and finally 140-160ns XNOR 

operation. The garbage outputs Gx, ASout, Gc1 and Gc0 are 

the copies of inputs X, AS, Ctl1 and Ctl0 respectively.  The 

garbage outputs Gao, Gsx and Gr represent non-selected 

outputs (AND/OR for values of Ctl0), (Sum/XOR according to 

Ctl0) and AND/Sum or OR/XOR (based onCtl1), which is not 

selected by ‘Result’. 

The simulation results of RALU with the overflow detector 

and the set-less-than function are shown in Fig. 19. The node 

‘Result’ shows the outputs according to the control signals for 

some random values of inputs set by the simulator.  

 

Figure 17: Simulation result of 1-bit RALU using Fredkin MUX 

 

Figure 18: Simulation result of RALU_Fredkin_4bit 

 

Figure 19: Simulation result of 4-bit RALU with overflow and Set less than 
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6. CONCLUSION 
Reversible logic is considered to be compatible with future 

computing technologies, which dissipate less energy. Finding 

an efficient reversible implementation of classical computer 

arithmetic especially the arithmetic logic unit is still a 

challenging issue. In this paper, the reversible architectures of 

computer arithmetic logic unit are presented which offer 

smaller overhead than designs proposed by other authors. 

Starting with the basic RCAS module, a complete and new 

RALU is constructed, which is similar to the basic classical 

ALU. Two different realizations are proposed and then 

analyzed their effectiveness. This integrated module is better 

than any existing reversible arithmetic logic unit incorporating 

more operations. The modular structure of the proposed n-bit 

RALU offers economical and acceptable values of reversible 

circuit parameters comparable to other benchmark circuits. 
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