
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

31

Optimization of Horizontal Aggregation in SQL

by using C4.5 Algorithm

Priti Phalak

Lecturer, TSEC

Mumbai, India

Rekha Sharma
HOD & Associate Professor TCET

Mumbai, India

ABSTRACT

For efficient analysis of some data mining system and

algorithms, data is required in the horizontal aggregated

format. In a relational database, datasets are highly

normalized and major efforts are required to compute

aggregation when they are expected in horizontal form which

is suitable for some data mining, statistical and machine

learning algorithm. Query optimization techniques used for

vertical (standard) aggregation is not suitable for horizontal

aggregation. That’s why we propose an optimization

technique for horizontal aggregation. To optimize horizontal

aggregation we are using C4.5 classification algorithm and

query evaluation methods. Horizontal Aggregation represents

a template to generate SQL code which automates writing

SQL queries, optimizing them, and testing them for

correctness. It also reduces manual work in the data

preparation phase in a data mining. There are various

applications where the horizontal aggregation is used such as

electrical billing, banks, hospital management system,

pharmacy and online library etc.

General Terms

Data Mining, Aggregation Function, Classification, SQL,

Query execution methods

Keywords

Horizontal Aggregation, C4.5 Algorithm, OLAP, PIVOT,

CASE, SPJ

1. INTRODUCTION
In the current era of database management system, there is

wide availability of huge amounts of data and it is

forthcoming need to turn such data into useful information

and knowledge. This can be achieved by using data mining

techniques. Data mining is the process of mining knowledge,

examining data from a different view and sums it up into

useful information. Data mining uses the data warehouse as

the source of information for knowledge discovery [4]. In

Data warehouse, Online Analytical processing (OLAP) has

the capability to provide summarized data from multiple and

dynamic view which is a solid foundation for successful data

mining.

In general, datasets come from Online Transaction Processing

(OLTP) systems and are stored in a relational database (or a

data warehouse) where database schemas are highly

normalized. Some data mining and machine learning

algorithm generally require aggregated data in a summarized

format. Major effort is required to compute aggregation when

they are expected in horizontal tabular layout. Horizontal

aggregation is a method which generates SQL code to return

aggregated columns in the horizontal tabular layout. It returns

a set of numbers instead of one number per row. There are

number of in-built aggregation functions in SQL provided as

relational operations, for grouping and aggregation purpose,

such as minimum, maximum, average, count, and sum. Data

mining and OLAP tools are the data summarization/

aggregation tool. These tools are used with some OLAP

operation for transposition (pivoting) of results retrieved by

data mining.

In literature, horizontal aggregation has been successfully

used to prepare dataset. In Ordonez and Chen’s paper [1] they

have given the fundamental idea of horizontal aggregation and

how it can be used to prepare dataset. They have proposed

three query evaluation methods to evaluate horizontal

aggregation: SPJ, CASE and PIVOT. They conclude that

CASE method has similar speed to the PIVOT operator and it

is much faster than the SPJ method. In general, the CASE and

PIVOT methods exhibit linear scalability, whereas the SPJ

method does not. The PIVOT and UNPIVOT complementary

data manipulation operators or method which is used to

exchange the role of rows and columns in a relational table.

Pivot transforms a series of rows into a series of fewer rows

with additional columns. Unpivot provides the inverse

operation, removing a number of columns and creating

additional rows that capture the column names and values

from the wide form has described by Cunningham, Galindo-

Legaria, Graefe [2]. How the K-means clustering algorithm is

used to partition data sets after horizontal aggregations and a

small description about the horizontal aggregation methods

which returns set of numbers instead of one number per row

has discussed in paper [3]

In this paper, three query evaluation methods are used with

some aggregation function to operate horizontal aggregation

of data sets.

Decision Tree C4.5 algorithms [3][8] is used to optimize the

horizontal aggregation in SQL. For efficient retrieval of

datasets, C4.5 algorithm classifies the transaction datasets in

classified labels. A transactional database consists of a file

which contains transaction related information.

 This paper starts with introduction which contains the

description of the horizontal aggregation and three query

evaluation methods. Then it followed by proposed system

which consists of description of the optimization algorithm

used. Next it followed by the results obtained after application

of various techniques. And at last conclusion is given.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

32

2. HORIZONTAL AGGREGATION
Horizontal aggregation is same as traditional SQL, or standard

SQL aggregation, which return set of values in horizontal

layout instead of one number per row. It is a new class of

aggregate functions that aggregate numeric expressions and

transpose results to produce a data set with a horizontal

layout.

There are several advantages of horizontal aggregations as

follows:

1) They represent a template to generate SQL code

from a data mining tool. This SQL code automates

writing SQL queries, optimizing them, and testing

them for correctness.

2) SQL code reduces manual work in the data

preparation phase in a data mining.

3) SQL code is more efficient than SQL code written

by an end user as it is automatically generated. As a

result, data sets can be created in less time.

4) The data set can be created entirely inside the

DBMS. In modern database environments, it is

common to export de-normalized data sets to be

further cleaned and transformed outside a DBMS in

external tools. Unfortunately, exporting large tables

outside a DBMS is very slow and it creates

inconsistent copies of the same data and effects

database security.

Horizontal aggregations just require a small syntax extension

to aggregate functions called in a SELECT statement.

Alternatively, they can be used to generate SQL code from a

data mining tool to construct data sets for data mining

analysis[1].

2.1 Example of Horizontal Aggregation in

SQL
In this example ‘F’ is the input table having a simple primary

key ‘K’ represented by an integer. ‘D1’ and ‘D2’ are the

datasets. ‘A’ is aggregated value of dataset columns. In OLAP

terms, ‘F’ is a fact table with one column used as primary key.

Column K will not be used to compute aggregations.

In Table I dataset1 i.e D1 consist of three values 1, 2 and 3

repeatedly for distinct values in D2, which consist of only two

distinct values X and Y. The values within D1 are repeated, 1

appears 3 times in row number 1, 5 and 6, and for row 1, 5 &

6 value of D2 are X, Y & Y respectively. The sum ()

aggregate operation is used in this, so the aggregation function

sum () is applied to row 5 and 6. This sum () function adds

aggregated values of these rows and store in the vertical

aggregated format. This vertical aggregated data FV can be

transformed into horizontal layout FH by generating new

columns D2X and D2Y.

The basic SQL aggregation query is:

SELECT D1, D2, sum (A)

FROM F

GROUP BY D1, D2

ORDER BY D1, D2;

Ordonez’s system collects particular needed attributes from

different fact tables and display columns in order to create

data in horizontal layout which is useful for most of the data

mining task or operations such as unsupervised classification

and data summation, as well as segmentation of large

heterogeneous data sets into smaller homogeneous subsets so

that they can be easily managed, separately modeled and

analyzed [1].

Table I: Original dataset

Table II : dataset is in vertical aggregated format

(fv)

Table III: dataset is in horizontal aggregated format

2.2 SQL Code Generation
Defining a template to generate SQL code, combining

aggregation and transposition (pivoting) is the main objective.

Other goal is to extend the SELECT statement with a clause

that combines transposition with aggregation.

Consider the following GROUP BY query in standard SQL

that takes a subset L1; . . . ; Lm from datasets D1, . . .,Dp :

SELECT L1,….,Lm, sum(A)

FROM F

GROUP BY L1,. . . ,Lm;

Key

K

Dataset1(D1) Dataset2

(D2)

Aggregation

(A)

1 1 X 6

2 2 Y 7

3 3 X 4

4 2 Y 2

5 1 Y 3

6 1 Y 5

7 3 Y 10

D1 D2 A(Sum)

1 X 6

1 Y 8

2 Y 9

3 X 4

3 Y 10

D1 D2X D2y

1 6 8

2 Null 9

3 4 10

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

33

This aggregation query will produce a wide table with m+1

columns (automatically determined), with one group for each

unique combination of values L1, . . . , Lm and one

aggregated value per group (sum(A) in this case)

The basic objective of a horizontal aggregation is to transpose

(pivot) the aggregated column A by a column subset of L1, . .,

Lm; for simplicity, assume such subset is R1, . . .,Rk where k

< m.

 In other words, we partition the GROUP BY list into two

sublists: one list to produce each group (j columns L1, . . . ,Lj)

and another list (k columns R1, . . .,Rk) to transpose

aggregated values, where L1, . . . , Lj R1, . . .,Rk.

Each different combination of R1,. . .,Rk will automatically

produce an output column. Horizontal aggregation requires

four input parameters to generate SQL code:

1. Input table F,

2. List of GROUP BY columns L1, . . . ,Lj,

3. Column to aggregate (A),

4. List of transposing columns R1 ,. . .,Rk.

Horizontal aggregations maintain evaluation semantics of

standard (vertical) SQL aggregations. The main difference

will be returning a table with a horizontal layout, possibly

having extra nulls.

3. QUERY EVALUATION METHODS
There are three query evaluation methods to evaluate

horizontal aggregation

1) SPJ

2) PIVOT

3) CASE

SPJ method based on standard relational operator such as

select, project, and join (SPJ) queries. CASE method based

on the SQL CASE construct. PIVOT method uses a built-in

operator in a commercial DBMS that is not widely available

[1].

3.1 SPJ Method
It depends only on relational operations means it only doing

select, project, join, and aggregation

The main idea of this method is to create one table with a

vertical aggregation for each result column, and then join all

those tables to produce horizontal aggregation.

We aggregate from input table F into dimension d projected

tables with d Select-Project-Join Aggregation queries

(selection, projection, join, aggregation).

 Each table Fi corresponds to one subgrouping combination

and has Li……Lj as primary key and an aggregation on A as

the only non-key column.

There are two strategies to compute Horizontal Aggregation.

first strategy is to do direct calculation aggregation form fact

table and second one is to compute corresponding vertical

aggregation in temporary table Fv grouping by list of

grouping columns LE1,......,LEi, list of transposing columns

RI1,......,RIj then FH can be computed from FV.

Fig 1: Direct Calculation from fact table.

Fig 2: By Computing corresponding vertical aggregation

FV (optimized)

3.2 CASE Method
In this method, the “case” programming construct available in

SQL is use. a value selected from a set of values based on

Boolean expressions is returned by the case statement. From

theory point of view, a relational database is equivalent to

doing a simple projection/aggregation query where each non

key value is given by a function that returns a number based

on some conjunction of conditions.

There are two basic strategies to compute FH. Just like SPJ,

the first strategy is to directly aggregates from F and the

second strategy to computes the vertical aggregation in a

temporary table FV and then horizontal aggregations are

indirectly computed from FV.

Compute Fh

PIVOT d
pivoting values

CASE d sum

(CASE) terms

SPJ D left join

Select Distinct
R1….Rk

Compute Fh

PIVOT
d pivoting

values

CASE
d sum(CASE)

terms

SPJ
D left join

Select Distinct
R1….Rk

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

34

 For the direct aggregation method, Horizontal aggregation

queries can be evaluated by directly aggregating from F and

transposing rows at the same time to produce FH. First, get

the unique combinations of R1,..…..Rk that define the

matching Boolean expression for result columns[1]. The SQL

code to compute horizontal aggregations directly from F is as

follows:

 observe V() is a standard (vertical) SQL

aggregation that has a “case” statement as argument.

Horizontal aggregations need to set the result to null

when there are no qualifying rows for the specific

horizontal group to be consistent with the SPJ

method and also with the extended relational model

[4].

 SELECT DISTINCT R1; . . .;Rk

FROM F;

INSERT INTO FH

SELECT L1, . . . ,Lj

,V(CASE WHEN R1 = v11 and . . . and Rk =vk1

THEN A ELSE null END),

V(CASE WHEN R1 = v1d and . . . and Rk = vkd

THEN A ELSE null END)

FROM F

GROUP BY L1; L2; . . . ; Lj;

Query evaluation needs to combine the desired aggregation

with “CASE” statements for each different combination of

values of R1, . . .,Rk. The following statements compute FH:

SELECT DISTINCT R1; . . .;Rk

FROM FV ;

INSERT INTO FH

SELECT L1,..,Lj

,sum(CASE WHEN R1 = v11 and .. and Rk = vk1

THEN A ELSE null END)

sum(CASE WHEN R1 = v1d and .. and Rk = vkd

THEN A ELSE null END)

FROM FV

GROUP BY L1, L2, . . . , Lj;[1]

3.3 PIVOT Method
Pivot (also called rotate) is a visualization operation that

rotates the data axes in view in order to provide an alternative

presentation of the data. Pivot transforms a series of rows into

a series of fewer rows with additional columns.

Data in one source column is used to determine the new

column for a row, and another source column is used as the

data for that new column[2].

In a commercial DBMS, the PIVOT operator is a built-in

operator. Since PIVOT operator can perform transposition it

can help evaluating horizontal aggregations. The PIVOT

method internally needs to determine how many columns are

needed to store the transposed table and it can be combined

with the GROUP BY clause.

The syntax for PIVOT provides is simpler and more readable

than the syntax that may otherwise be specified in a complex

series of SELECT...CASE statements.

The following is syntax for PIVOT.

SELECT <non-pivoted column>,

 [first pivoted column] AS <column name>,

 [second pivoted column] AS <column name>,

 [last pivoted column] AS <column name>

FROM

 (<SELECT query that produces the data>)

 AS <alias for the source query>

PIVOT

(

 <aggregation function>(<column being aggregated>)

FOR

[<column that contains the values that will become column

headers>]

 IN ([first pivoted column], [second pivoted column],

 ... [last pivoted column])

)

AS <alias for the pivot table>

<optional ORDER BY clause>;

4. PROPOSED SYSTEM
Proposed system steps are as follows:

1) In proposed system, data comes from transaction

database (OLTP) which is used to retrieve data by

using OLAP operation or query evaluation methods.

Transaction database is the database which contains

transaction related files.

2) Data which comes from transaction database are

classified according to specified category using

C4.5 algorithm [4].

3) On classified data, some query evaluation method is

applied with aggregation function to operate data in

horizontal tabular layout.

4) Conceptual flow of this proposed system is as

follows:

Fig 3: Proposed System

Apply Decision tree for classification of data

(transaction log data)

Apply query evaluation Methods for retrieval of

result

Apply Aggregation operations to operate

horizontal aggregation

Transaction database

Results in Horizontal

Aggregated format

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

35

a) To implement this concept, hospital management

system is used as a use-case. In this, hospital

database are used containing the patient information

of blood group, pathology, pharmacy and Operation

Theatre (OT).

b) In proposed system, patient’s related data comes

from transaction database and it is classified into

specific category according to their transaction

performed namely Blood bank, Pathology,

Pharmacy and OT.

c) After classification we can retrieve individual

patient data either according to a specific category

or all categories. Similarly, data for all patients can

be retrieved for a specific category.

d) In this system, for classification C4.5 algorithm is

used. C4.5 algorithm is chosen because of its

highest frequency usage, specificity & high

accuracy compared to other algorithms because of

its simplicity, robustness and effectiveness [9]

Rathee, mathur’s paper [9] they did comparative

analysis between five decision tree algorithm

namely ID3, C4.5, CART, SLIQ and SPRINT. They

concluded that C4.5 algorithm is the best algorithm

among all the five because it provides better

accuracy and efficiency than the other algorithms.

e) For retrieval of data, one query evaluation method is

applied out of SPJ, CASE or PIVOT with some

aggregate functions namely SUM, MIN, MAX and

COUNT to operate data in horizontal aggregated

format.

Fig 4: Conceptual Flow of the proposed system

4.1 C4.5 Classification Algorithm
C4.5 algorithm is an improved version of ID3, which uses

Gain Ratio as splitting criteria. This algorithm handles both

continuous and discrete attributes. To handle continuous

attributes, C4.5 creates a threshold and then splits the list into

those whose attribute value is above the threshold and those

that are less than or equal to it & the data is sorted at every

node of the tree in order to determine the best splitting

attribute. The main advantages of C4.5 is it handles training

data with missing attribute values

In general, missing data are simply ignored when a decision

tree is built. The gain ratio is calculated by looking only at the

other records, which have a value for that attribute. In order to

classify a record with a missing attribute value, the attribute

values for the other records can be used to predict the same.

If S is the set of training data denoting a concept with c

classes, f(Cj, S) is the frequency of class Cj occurring in that

set, then the expected information required to classify a given

class in S is:

 2

1

(,S) (,)
() log ()

| | | |

c
j j

j

f C f C S
Info S

S S

  (1)

when an attribute, A, with v values, has been selected as a test

attribute, then the expected information needed to identify a

class under that test is:

1

| |
() ()

| |

v
i

A i

i

S
Info S Info S

S

 (2)

where S1, S2, . . ., Sv is the subset of S all of whose instances

possess value i for attribute A.

The information gain is the difference between the expected

information needed to identify a class with and without the

test on attribute A:

1

| |
() () ()

| |

v
i

i

i

S
Gain A Info S Info S

S

   (3)

The attribute giving the maximum information gain is selected

as the current split. The gain criterion is biased towards the

high frequency data. To restructure this problem, C4.5

normalizes the information gain by the amount of the

potential information generated by dividing T into v subsets:

2

1

| | | |
inf () log ()

| | | |

v
i i

i

S S
Split o A

S S

  (4)

C4.5 selects the test to partition the set of available cases is

defined as:

()

()
inf ()

gain A
GainRatio A

Split o A
 (5)

C4.5 selects the test that maximizes gain ratio value. It uses

multi-way splits. Post-pruning technique is used by C4.5 to

reduce the size of the decision [3].

5. RESULTS
The query evaluation techniques and classification algorithm

are implemented on Intel(R) Core(TM) i5-3337U CPU

@1.80 GHz,6 GB RAM. Microsoft visual studio and MS SQL

Server 2008 is used as platform. We have applied these

techniques on 5k records.

In proposed system, C4.5 classification algorithm is used

when we wanted to retrieve all patient’s data or single

patient’s data which belongs to specific category in horizontal

tabular layout. The results of all patient’s data according to

specific category are as follows:

Blood

group
Pharmacy

macy

Pathology OT

Apply Aggregation function such as min, max,

avg, count, sum

Transaction Log

Database
C4.5 algorithm for classification

Apply Query evaluation method

Output is in Horizontal aggregated format

For

indiv-

idual

patie

nt

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

36

Table III : Query Execution time for retrieval of all patients data in Horizontal aggregated format using C4.5 algorithm

Data

size(n)

Category

SPJ

(Time in milliseconds)

PIVOT

(Time in milliseconds)

CASE

(Time in milliseconds)

1k

Blood Bank

2.50178

2.1017

2.1517

Pathology

3.1421

1.7813

2.52184

Pharmacy

2.7534

1.9173

1.98165

OT

3.5102

2.9024

3.05349

5k

Blood Bank

12.5089

10.00583

10.0085

Pathology

15.21048

8.40584

12.60918

Pharmacy

13.717

9.08675

9.75825

OT

17.0116

14.01245

15.26745

In the above table n is a size of data. There are different readings for different size of data as well as for different category namely

Blood Bank, Pathology, Pharmacy and OT. These are some readings for retrieving data of all the patients who performed transactions

in Blood Bank, Pathology, Pharmacy and OT respectively.

0
0.5

1
1.5

2
2.5

3
3.5

4

B
lo

o
d

 B
an

k

P
at

h
o

lo
gy

P
h

ar
m

ac
y

O
T

1k

SPJ (Time in
milliseconds)

PIVOT (Time in
milliseconds)

CASE (Time in
milliseconds)

Fig 5: Graph for retrieval of 1k records

0

5

10

15

20

B
lo

o
d

 B
an

k

P
at

h
o

lo
gy

P
h

ar
m

ac
y

O
T

5k

SPJ (Time in
milliseconds)

PIVOT (Time in
milliseconds)

CASE (Time in

milliseconds)

 Fig 6: Graph for retrieval of 5k records

Fig 5 and Fig 6 represents query execution time taken for retrieval of 1k and 5k records respectively. X-axis represents time in

milliseconds and Y-axis represents specified category in which patient data is classified. From these fig. proposed system concludes

that query execution time taken by SPJ method is greater as compared to time taken by PIVOT and CASE method. Out of PIVOT and

CASE, time taken by PIVOT method is less as compared to CASE. Hence PIVOT method has best execution time.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No.13, May 2014

37

6. CONCLUSION
In this paper, dataset is constructed in horizontal tabular

layout by using three provisions of SQL which are used to

build aggregations namely SPJ, CASE and PIVOT. When

these provisions are used, the underlying commands are

executed and datasets are generated in horizontal format.

These operators can be used in OLAP application where huge

amount of historical data is analyzed. We built this operator

for horizontal aggregation same as that we built for vertical

aggregation, but optimization techniques which are used for

standard (Vertical) Aggregation is not suitable for Horizontal

Aggregation. Hence, optimization technique for Horizontal

Aggregation using C4.5 Algorithm with three query

evaluation methods namely SPJ, CASE and PIVOT has been

proposed. It is observed that, query execution is significantly

faster when we use C4.5 Algorithm with these three query

evaluation methods to retrieve data in horizontal tabular

format. The query execution time required for PIVOT and

CASE methods to retrieve data in horizontal aggregated

format is less as compared to SPJ. We plan to analyze the

behavior of proposed system with large amount of datasets

and study query optimization strategies which is more precise

and efficient in theoretical terms with I/O cost model.

7. REFERENCES
[1] C.C. Ordonez, and Zhibo Chen, “Horizontal

Aggregation in SQL to prepare Data Sets for

 Data Mining Analysis,” IEEE Transactions on

Knowledge and Data Engineering (TKDE), April 2012.

[2] C. Cunningham, G. Graefe, and C.A. Galindo-Legaria,

“PIVOT and UNPIVOT: Optimization and Execution

Strategies in an RDBMS”, Proc. 13th Int’l Conf. Very

 Large Data Bases (VLDB ’04), pp. 998-1009,

2004.

[3] Venkatadri.m, Lokanatha C. Reddy”A Comparative

Study On Decision Tree Classification Algorithms In

Data Mining” ISSN: 0974-3596, April ’10 – Sept ’10,

Volume 2 : Issue 2, Page: 24.

[4] R. Rakesh Kumar, A. Bhanu Prasad,” K Means

Clustering Algorithm for Partitioning Data Sets

Evaluated From Horizontal Aggregations”, IOSR Journal

of Computer Engineering (IOSR-JCE) e-ISSN: 2278-

0661, p- ISSN: 2278-8727Volume 12, Issue 5 (Jul. -

Aug. 2013), PP 45-48.

[5] Joyce Jackson, Data Mining: A Conceptual Overview.

Communications of the Association for Information

Systems (Volume 8, 2002) 267-296.

[6] Xindong Wu, Vipin Kumar, J. Ross Quinlan, Joydeep

Ghosh, Qiang Yangb,Hiroshi Motoda, Geoffrey J.

McLachlan, Angus Ng, Bing Liu, Philip S. Yu, Zhi-Hua

Zhou, Michael Steinbach, David J. Hand, Dan

Steinbergand, ”Top 10 algorithms in data mining”,

Received: 9 July 2007 / Revised: 28 September 2007 /

Accepted: 8 October 2007 Published online: 4 December

2007 © Springer-Verlag London Limited 2007.

[7] J. R. Quinlan, “C4.5: Programs For Machine Learning”.

Morgan Kaufmann Los Altos, 1993.

[8] Matthew N. Anyanwu, Sajjan G. Shiva , “Comparative

Analysis of Serial Decision Tree Classification

Algorithms”, International Journal of Computer Science

and Security, (IJCSS) Volume (3) : Issue (3).

[9] Anju Rathee, Robin prakash mathur, ”Survey on

Decision Tree Classification algorithms for the

Evaluation of Student Performance”, International

Journal of Computers & TechnologyVolume 4 No. 2,

March-April, 2013, ISSN 2277-3061.

[10] Durka.C, Kerana Hanirex.D,”An Efficient Approach for

Building Dataset in Data Mining”, IJARCSSE, Volume

3, Issue 3, March 2013.

.

IJCATM : www.ijcaonline.org

