
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

31

Robust Rule-based Approach in Arabic Processing

Riadh Ouersighni

Military Academy
Fondek Jedid

Tunisia

ABSTRACT

A parsing system is a key element of many computer

applications such as Information Retrieval, Knowledge

Extraction and automatic translation. This paper presents a

robust large-scale parser system for parsing Arabic sentences.

From a practical point of view, the system is able to analyze

real-world sentences thanks to a wide coverage of its

linguistic knowledge that is realized within the DIINAR-MBC

European project1. The parser is designed for robustness

against difficult input that cannot be parsed correctly

according to the standard grammar rules in the system,

whether it is an extra-grammatical, ill-formed or unexpected

input. Most systems use algorithmic approaches to robustness

where parsing programs are extended to include heuristics to

handle defect cases. This study adopts another solution based

on a robust grammar-based approach for parsing. It consists of

introducing robust rules in the grammar itself and relaxing

constraints if necessary. The parser has been evaluated against

real-world sentences and the results were very encouraging.

The parser provides 95% coverage.

General Terms

Natural Language Processing, Arabic Processing

Keywords

Morphological analysis, Lexicon, Parsing, Formal grammar,

Arabic language

1. INTRODUCTION
Parsing or syntactic analysis of natural language is the process
of analysis by a computer of a sentence into its constituents,
resulting in a parse tree showing their syntactic relation to
each other according to the rules of a formal grammar. A
parser is considered as the main component of a wide range of
Natural Language Processing (NLP) systems ranging from
man-machine Interface and Information retrieval system to
automatic translation and speech processing. The problem of
parsing Arabic language belongs among the most interesting
and the most difficult task of Arabic processing. Indeed,
despite over two decades of research effort, no practical
domain-independent parser of Arabic has been developed.
This is due to challenging features of Arabic language such as
high degree of ambiguity, high degree of syntactic flexibility,
complexity of the syntax, and omission of diacritics (vowels)
in written Arabic. A number of parsers for Arabic have been
made in recent years. But there is still no robust parser
available for Arabic with sufficiently wide coverage. Most
systems simply select types of syntactic phenomena for
treatment, with considerable lexical limitations. But real
world texts like article from newspaper, abstract from
scientific journals or web pages usually contain all sorts of

1 DIINAR-MBC is the acronym of “Dictionnaire INformatisé de

l’ARabe, Multilingue et Basé sur Corpus” – project n° 961791 of the

INCO-DC program, European Commission [9]. A part of this system

was realized within the DIINAR-MBC project [21, 23].

sentences which cause problems for parsers in assigning a
suitable structure.

Robustness or fall-back technique is a key issue in nowadays
NLP technology and a necessary precondition for building
parsers able to tackle the difficult input. In real world
applications, the parser should be able to deal with ill-formed
sentences that cannot be parsed as a unified structure:
sentences with grammatical errors and ellipses, long and
complex sentences, but also some grammatical sentences that
cannot be parsed owing to the presence of unknown words or
to a lack of completeness in the grammar.

The need for robust Arabic parsers with a wide coverage is
still increasing, especially with respect to application driven
natural language processing systems such as Information
Retrieval and Knowledge Extraction. For such applications, it
is useful to have a parser that is able to assign a best partial
parse to unexpected input in case a full parse cannot be
attained, so that a maximum of information is saved.

2. RELATED WORK
Designers of application-oriented text processing systems

have adopted a number of strategies for robust parsing. Some

of them incorporate a robustness method at the algorithmic

level. In [16] Lavie describes a parsing strategy based on

GLR* parsing technique. A GLR* parser can parse almost

any input sentence by ignoring unrecognizable parts of the

sentence. The basic idea is to skip words that cause problems

during the parsing process. The parser returns the analysis

with the fewest skipped words. This way, it is guaranteed that

a maximum of information is returned.

In [28] Strzalkowski presents a Tagged Text Parser extended

with a skip-and-fit-recovery. When the parser reaches a

predefined time-limit, it skips the problematic input and

continues to recognize the rest of the input. When the end of

sentence is detected, the parser tries to fit the recognized

constituents into a complete parse tree.

Other strategies are based on statistical approaches. The

technique presented in [17] consists of using probabilistic

predictions to predict which grammar rules are likely to lead

to an acceptable parse of the input. The algorithm calculates a

number of probabilities with the phrase structure rules. If the

probabilities exceed a certain limit, the program will mark the

sentence as ungrammatical and it will produce a set of

constituents that will probably lead to a parse with a higher

probability. In [6] and [25] a robust method for predicting

reading times is reported. Robustness first comes from the

conception of the difficulty model, which is based on a

morpho-syntactic surprisal index. This metric is intrinsically

robust (because relying on POS-tagging instead of parsing).

Robustness also concerns data analysis: he proposed to

enlarge the scope of reading processing units by using

syntactic chunks instead of words. As a result, words with null

reading time do not need any special treatment or filtering.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

32

All these techniques imply in most cases adjustment of the

underlying parsing strategy: unknown words are automatically

skipped, problematic fragments of the input is partially

parsed.

Another solution to the problem is to use a rule-based

knowledge approach. This strategy has been successfully used

in several systems [3, 7, 14, and 19]. It consists of introducing

robustness into the grammar itself rather than equipping the

parser algorithm with a set of adjustment procedures.

With regard to Arabic processing, much standard parsing

systems has already been carried out [1, 10, 18, 26, 27, 29, 30]

and many others. In contrast, there were less works reported

on robust parsing. In [3], Attia presents an Arabic robust

parser using robust grammar based approach. The system is

developed in the XLE (Xerox Linguistics Environment)

which allows writing grammar rules that follow the LFG

formalisms. For robustness, the standard grammar is extended

with some robust rules. When a complete parse is not found in

the standard grammar, the robust grammar allows the

sentence to be analyzed as a sequence of well-formed chunks.

When tested on short sentences (10 to 15 words) randomly

selected from a corpus of news articles, the parser achieved

92% coverage after applying robustness techniques such as

non-deterministic tokenizer, morphological guessers and a

fragment grammar.

Tounsi et al. [30] presented a method for parsing Arabic

sentences using Treebank-based parsers and automatic LFG f-

structure annotation methodologies. The modified approach

learned ATB functional tags and merge phrasal categories

with functional tags in the training data. The authors reported

about 77% parsing accuracy on parsing Arabic sentences.

In [5] Ben Fraj et al presented a machine learning approach

using an Arabic Treebank. The knowledge enclosed in this

Treebank is structured as patterns of syntactic trees. These

patterns are representative models of the Arabic syntactic

components. They are both layered and rich structurally and

contextually. They serve as an informational source for

guiding the parsing process. The parser is progressive since it

proceeded by treating a sentence into a number of stages equal

to the number of its words. At every step, the parser affects

the target word with the most likely patterns that represent it

in the context where it is put. Then, it joins the selected

patterns with those collected in the previous parsing steps in

order to construct the representative syntactic tree(s) of the

whole sentence. If more than one tree is proposed, all the

analysis trees are sorted according to their appearance

frequencies in the Treebank. The preliminary tests have

yielded accuracy and f-score equal to 84.8% and 77.5%,

respectively.

In [2], Al-Taani et al describes a top-down chart parser for

parsing simple Arabic sentences with the Context Free

Grammar (CFGs). According to the authors, the parser is

tested on 70 sentences extracted from Arabic real-world

documents and gave an average accuracy of 94.3%.

Bataineh et al. [4] implemented a top-down parser with

recursive transition network for parsing Arabic. The system

has been tested on 77 sentences and gave a performance of

85.6%.

3. SYSTEM ARCHITECTURE
In general, a parsing system incorporates three main

components, namely, lexicon, morphological analyzer, and

syntactic parser. As Arabic is a highly inflected and derived

language, each component requires extensive study and

exploitation of the associated linguistic characteristics. A

brief overview of the system is given here and main

components will be described in detail in the following

sections. The architecture of the system is given in Fig1. In

this architecture, the boxes are indicating the processes of the

system and the arrows indicate the flow of information

between system parts.

Fig 1: Overview of the architecture

The system is organized in a sequential modular system. Input

sentence first passes through a morphological analyzer. The

tokenization and the morphological analysis phase decompose

words into a set of stem and affixes and associates a set of

morpho-syntactic features to each recognized lexical unit. The

morphological analyzer gives a list of all possible analyses for

the words of the input sentence. Then the output of the

morphological module is used as the input for the syntactic

analysis phase. The syntactic analysis is carried out by a

grammar-based parser which gives the syntactic structures for

the input respecting to the formal grammar of the parser.

4. MORPHOLOGICAL ANALYZER

4.1 Analysis Strategy
The automatic processing of Arabic morphology is

particularly challenging. This is due to the peculiarities of the

Arabic language such as rich and complex morphology and

highly ambiguous writing system since Arabic is typically

spelled without short vowels and other diacritical markers.

The morphological analyzer uses a rule-based morphological

segmentation algorithm and a large stem-based lexicon [23].

A written word is considered as a suite of morphemes. The

Morphological Analyzer

Input sentence

Lexicon

Lexical structures

(categories + morpho-

syntactic features

Syntactic Parser Formal

grammar

(Robust

rules)

Stem

Features

Parse Trees

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

33

analyzer identifies these morphemes by decomposing them

into proclitics2, prefixes3, stem4, suffixes5 and enclitics6 and

associates a set of features to each recognized lexical unit

including possible segmentation(s), vowelled form(s), basic

derivation forms (roots, lemmas, derived forms), potential

grammatical categories and features such as gender, number,

person, mood, case, voice, form, transitivity, human, deftness,

etc.

Since the morphological analyzer uses a stem-based lexicon,

the flexional forms were obtained by the morphological

process of derivation, prefixation and suffixation. This

complicates the morphological analysis algorithm but gives

very interesting results in terms of processing time and

memory space. The result of the analysis is given as a

structure of lexical units that is used as the input for the

parsing module.

4.2 The Lexicon
The morphological analyzer uses a large stem-based lexicon

generated form DIINAR (DIctionnaire INformatisé de

l’ARabe [9] and [24]). The DIINAR lexical Data Bases

encompasses 19,457 verbs, 70,702 “derived verbal” entries

(verbal nouns, active and passive participles, ‘analogous’

adjectives, nouns ‘of time and operating place’, 39,099,

nominal stems, 445 tool-words and a prototype of 1,384

proper names.

Every entry is associated with morpho-syntactic features at

word-level and ensuring grammar-lexis relations between the

lexical basis of a given word-form and other word-formatives.

The total amount of minimal words (i.e. of lemmas with their

prefix and suffixes) generated from the database is 7,774,938.

The lexicon contains:

 all the 121,522 unvocalized stem-entries of the

DIINAR database

 all the vocalic schemes of each stem

 all possible combinations of (prefixes, suffixes) for

each couple of (stem and vocalic scheme), and a set

of features, containing morphosyntactic information.

 A specifiers of compatibility with possible clitics for

each trio of stem, vocalic scheme, prefixes/suffixes

combination.

The stem-based lexicon is organized in a letter tree structure.

The principal advantage of the tree structure is that it greatly

facilitates access while at the same time considerably reducing

the lexicon size. The lexicon used for parsing is a 13 Mb

binary file [24].

4.3 Testing the morphological Analyzer
The system has been tested on 37952 words from the

ARCOLEX7 corpus. Five text genres were used. The

2 Morphemes attached to the word that follows them. They

represent coordinations, conjunctions, prepositions, etc.
3 the prefixes include only the verbal morphemes (prefixed) of the

imperfect tense.
4 it is the nucleus of the word-form, which obtained after the

identification of the other morphemes (proclitic, prefix, suffix,
enclitic).

5 are morphemes situated immediately after the stem.
6 are morphems attached to a lexical category (noun or verb). In

Arabic the enclitics are attached personal pronouns.
7 ARCOLEX (Arabic Raw Corpora for Lexical-purpose) realized

within the DIINAR-MBC Project.

evaluation is preliminary; it can only serve as an indicator of

the analyzer’s performance and coverage. It gives us also an

idea of the ambiguity rate encountered before parsing.

Table 1. Results of the Morphological analyzer Testing

Number

of words

Arabic

words

%

Recognit

ion

Number

Analyses

/ word

%

ambigu

ity

Segmen-

tations /

word

Number

words /

Second

37952 35157 89% 3,93 77% 1,25 1315,28

4.4 Discussion
The results showed a coverage rate of 89%. The average

number of morphological analysis per word is 3.93, the

average number of segmentations per word is 1.25 and 77%

of the words are ambiguous. Compared to other languages (in

French 20% and in English only 11% of the data is ambiguous

[12]), Arabic words seems to be very ambiguous and the task

of disambiguating is still very difficult. This high level of

ambiguity can be explained with the fact that the

morphological analyzer recognizes morpho-syntactic features

involved in the structure of the word-form, such as verb

transitivity, human or non-human complements, gender,

number, mode in verbs and nominal cases, etc. such

information strongly expand the number of analyses yielded

by the system. The more features are added, the more analyses

gain in accuracy, the higher the number of answers are found

for a given word-form.

5. SYNTACTIC PARSING

5.1 Software Environment
The choice of software environment for the development of

the parser is a decision that to a great extent influences the

general behaviour of the system. There is usually a trade-off

between the speed and efficiency and the use of a high-level

linguistic formalism. The AGFL (Affix Grammars over Finite

Lattice) system [13] was chosen for implementing the process

of Syntactic Analysis, because AGFL allows for compactly

and intuitively written grammars. It is a completely developed

processing environment for grammar-based parsing. The

grammars are automatically transformed into parsers, and

important characteristics of the grammar (like left-recursion,

rewrite rules that generate empty strings, etc.) are logged.

More importantly, AGFL parsers are extremely fast (up to

2,000 words per second) and can be easily incorporated into

larger software programs. Furthermore, the AGFL is proved

to be appropriate for developing robust parser. Robust AGFL

grammar has been successfully used in several full-text

information Retrieval systems [14].

AGFL grammars are a restricted form of Context Free

grammars. Context-Free production rules are extended with

affixes (features) for expressing agreement between the parts

of speech. These are passed as parameters to the rules of the

grammar. The domain of every nonterminal affix is described

by a set of Context-Free metarules producing a finite set of

terminal affixes. The full syntax of AGFL is defined in [13].

The AGFL parsing is based on the Recursive Back-up [13]. It

is a generalization of Recursive Descent Parsing to ambiguous

grammars, extended with on-the-fly computation of features.

According to [13], in the worst case, recursive backup parsers

may exhibit exponential behavior. By establishing a time limit

upon the parsing process, parsing of “expensive” sentences is

aborted. In this way a trade-off between performance and

coverage is established.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

34

5.2 Strategy for robustness
In order to be able to parse ill-formed or unexpected input the

parser should be made robust. When building a robust parser

it is necessary to make some preliminary considerations

concerning the global strategy of the approach to the problem.

This means that we have to decide whether we are going to

build robustness techniques at the algorithmic level or else

introducing robustness at the declarative level of the parser or

alternatively using probabilistic and learning approaches.

The parsing algorithms are primarily designed to analyze

“clean” grammatical input. In order to be able to handle

difficult input, parsers are extended to include heuristics

which implies adjustment of the underlying parsing algorithm.

It should be stressed that most problems with unrestricted

texts are linguistics in nature. Maintaining the principle of

separation between declarative and algorithmic components, it

is obvious that for linguistic problems the solution must be

considered at the declarative level. This means that we prefer

a grammar-based solution by introducing robust rules in the

grammar rather than equipping the parsing program with ad-

hoc adjustment procedures and altering the behaviour of the

parsing algorithm.

According to this approach inspired by [19], the system will

first try to create complete syntactic structures for the

sentence by means of the main rules; if this fails, try to

analyze the ill-formed sentence as a sequence of well-formed

chunks by means the robust rules.

5.3 Formal Grammar

5.3.1 Main Grammar
The main formal grammar, in which standard Arabic

structures are described, is based on the EAG (Extended Affix

Grammar) of Modern Standard Arabic developed by Everhard

Ditters and presented in [10] and [11]. This grammar covers

most frequent syntactic phenomena, allowing representing a

syntactic structure of simple clauses and also the structure of

certain types of complex sentences such as negative forms,

elliptical forms, several interrogative forms, some kind of

coordination and complex determiners. This grammar is

translated in the AGFL formalism. The main grammar

obtained encompasses some 850 syntactic rules.

5.3.2 Sub Grammar
Is a set of rules based on regular expressions ensuring the

interface between output from morphological module and

syntactic module. The morphological and syntactical levels of

the system were carried out separately in two different

environments and the two need to be brought together to

produce a coherent system. The output of the morphological

module is used as the input for the parsing module by means

of an AGFL sub-grammar based internal interface. The first

problem on the input side of the AGFL syntactic parser is the

fact that the output of the morphological is a lexical lattice,

instead of a string, which AGFL would expect. Since the

AGFL parser only handles strings, lattice information is coded

into string format. When a word corresponds with more than

one category, all categories are copied into the output-string.

It is the task of the syntactic analyzer to find out which

category is suitable.

The basic idea of the integration technique is inspired by [8].

It consists of extending the core grammar by a sub-grammar,

which describes categories rather than lexical stems.

Therefore, the grammar has to describe categories as terminal

nodes. Of course, the lexical stems have to be added as a kind

of suffix to the category. Then the grammar has to be adapted

in such a way that it only recognizes the output of the

morphological component.

5.3.3 Robust rules
As mentioned in the previous section, this work adopts a

tolerant grammar-based approach to robustness. In practice

the main AGFL grammar is extended with rules that will

perform the robust parsing. These rules should be developed

that are more tolerant than standard grammar rules. The robust

grammar encompasses some 70 rules.

5.4 Implementation of robustness
The AGFL formalism offers a number of mechanisms that are

suitable for developing robust grammar [14]. First it is

possible to define sequence with regular expressions for

skipping or matching unexpected word. This technique is used

at lexical robustness level for parsing unknown words, but

also names, abbreviations, dates, etc. To do this, two

nonterminals $SKIP and $MATCH are used, with regular

expression as parameter. This makes it possible to describe

open classes of words with a simple structure.

Another important mechanism is the best-first parsing called

“graceful degradation”. When a complete syntactic analysis is

not found in the standard grammar, “graceful degradation”

allows the sentence to be analyzed as a sequence of well-

formed chunks.

A more important feature is the mechanism of stratification

[14]. It means an ordering on the parsing and a partitioning

into classes, suitable for avoiding unwanted ambiguities. This

is realized by means the commit-operator in the rules. The

commit-operator (!) is a special form of the (;) separating

alternatives, which ensures that, if one of the previous

alternatives succeeds and leads to at least one parsing, the

subsequent alternatives are ignored. It can be used to indicate

a preference of certain alternatives over others, of “correct”

syntactic forms over doubtful ones.

In the next we will explain how we use these mechanisms.

Robustness can furthermore be divided in lexical robustness

and syntactical robustness.

5.4.1 Lexical robustness
Handling an unknown word in a sentence consist of assigning

a category on the basis of its position in the syntactic structure

and also the morphology of the word itself. First, we have to

anticipate on which positions an unknown strings might

occur. Unknown words can occur everywhere in the input, but

the obvious positions are those positions on which open

classes are expected: Nouns, Verbs, Adjectives and Names.

For example, the rule which rewrites a kind of Noun phrase in

the parser looks as follows:

NP (HEADREAL, HUM, DEF, GENDER, NUMBER, THIRD, CASE) :
 PREDART,
 HEAD (HUM, DEF, GENDER1, NUMBER1, THIRD, CASE1),
 POM (DEF, GENDER2, NUMBER2, PERSON, CASE2),

 AGREEMENT IS (HUM, GENDER1, GENDER2, GENDER,
 NUMBER1, NUMBER2, NUMBER).

 HEAD (COM, HUM, DEFNESS, GENDER, NUMBER, THIRD, CASE) :

 COMMON NOUN (DEFNESS, GENDER, NUMBER, CASE, HUM) !
 UNKNOWN NOUN.

UNKNOWN NOUN : $MATCH(“.*”).

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

35

As we can see, a HEAD of a Noun Phrase is rewritten into a

COMMON NOUN or a nonterminal UNKNOWN NOUN.

The mechanism of stratification with the commit-operator (!)

in this rule make sure that this alternative will only apply

when the previous alternatives did not lead to a parse.

The morphology structure of the unknown word can be used

for assigning a plausible category by means of wild cards

using regular expression. Words beginning in “ال”and ending

in “ات“, are classified as Nouns. So instead of recognizing

Nouns with $MATCH(“.*”) it will be possible to recognize an

unknown definite, fem, plural Nouns with the lexical

robustness rule:

UNKNOWN NOUN (DEF, FEM, PLUR, CASE, HUM) :
 $MATCH(" ات]*[+ال ").

Since the suffix “ات” indicates plural, feminine and the prefix

 .indicates deftness in Arabic ”ال“

The next lexical rule is also an example of lexical robustness

to recognize unknown noun masculine plural:

UNKNOWN NOUN (DEFTNESS, MASC, PLUR, NOM, HUM) :

$MATCH(" .*ون ").

Word with prefix “ون” and suffix “ت” that occur in the

grammar rule of the Verb phrase can be parsed as unknown

verb (Indicative tense, Active voice, second, plural, …).

UNKNOWN VERB(INDIC, ACTIVE, 2, MASC|FEM, PLUR, COMPL) :

$MATCH(" ون]*[+ت ").

5.4.2 Syntactic robustness
The parser tries initially to recognize the complete sentence

according to the main grammar, denoted by the first

alternative. Failing this, it should recover all recognizable

PHRASE PART and skip those fragments which are

unrecognizable by means the robust rules (island parsing).

These rules serve thus serve as a last resort.

As an example, consider the root of a grammar from which a

parser will be obtained which servers to extract noun Phrases

from a sequence of utterances. Recognition proceeds from left

to right.

SENTENCE : PREDICATION; ENONCIATION !

UNKNOWN SEQUENCE.

According to the stratification technique (commit-operator),

the parser tries to analyze the complete sentence as

PREDICTION or ENONCIATION, denoted by the first

alternative. If this will fail, the following alternative

(UNKNOWN SEQUENCE), denoting the robust rule, will be

tested as a last resort.

UNKNOWN SEQUENCE : PHRASE PART ,
 [UNKNOWN SEQUENCE].
PHRASE PART :

 NOUNPHRASE (DEFNESS, GENDER, NUMBER, PERSON, NOM) !

 VP (TENSE, PERSON, GENDER, NUMBER) !
 ADJP (DEF, GENDER, NUMBER, CASE)!

 ADVP !

 CL !

The nonterminal “UNKNOWN SEQUENCE” rewrites into

one or more constituents, defined by the nonterminal

“PHRASE PART”. The rule above recognizes strings

containing a number of “PHRASE PART” in any order.

NOUNPHRASE (DEFNESS, GENDER, NUMBER, PERSON, CASE) :
 NP (HEADREAL, HUM, DEFNESS, GENDER, NUMBER, PERSON,
CASE) !
 UNDEFINED NP.

UNDEFINED NP : NP PART , [UNDEFINED NP].
NP PART : PREDET ,
 HEAD (HEADREAL, HUM, DEF, GENDER, NUMBER, THIRD, CASE) !

HEAD (HEADREAL, HUM, DEF, GENDER, NUMBER, THIRD, CASE) !
 POM (DEFNESS, GENDER2, NUMBER2, PERSON, CASE2)] !
 POM (DEFNESS, GENDER2, NUMBER2, PERSON, CASE2)].
 …..

6. PARSER EVALUATION
The evaluation has been carried out on a set of 200 real-world

Arabic sentences randomly selected from the Arcolex corpus.

This corpus has not been used to build up the parsing rules.

Sentences have different sizes from 6 to 20 words (average

sentence length is 10.52 words). The aim of this experiment

was to investigate whether the parser is sufficiently robust for

Arabic real-world applications.

TABLE 1. Evaluation Results

Number of sentences 200

Parsed
141

(70.5%)
95%

Robustly parsed
49

(24.5%)

Not parsed 10 5%

Average number of valid analyses

per sentence
23.12

As seen in Table 1, the parser provides 95% coverage. 141

sentences (about 70.5 %) were completely parsed according to

the main grammar, 49 sentences (about 24.5%) were robustly

parsed using the robust rules, and 10 sentences (about 5%)

could not be parsed.

The average number of valid analyses per sentence is 23.12.

This high level of ambiguity can be explained with the fact

that the parser has a broad coverage (lexicon and grammar). In

addition, the grammar was extended with robust rules which

may cause additional ambiguity. The more linguistic

knowledge are added to the system, the more analyses gain in

accuracy, the greater the number of parses are found for a

given sentence, the longer a parser takes in the analyzing.

Ambiguity is a major problem for large-scale parser.

The performance of the parser could be compared to the

Attia’s Arabic LFG-based robust parser [3] which uses robust

grammar-based approach similar to our strategy for

robustness. The Attia parser is evaluated on 207 short

sentences (10 to 15 words) and provides 92% coverage. 69

sentences (33% coverage) found a complete parse according

to the standard grammar, and 138 sentences could not be

completely parsed using the grammar alone. The coverage is

raised to 92% when using a set of robustness techniques.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

36

TABLE 2. Comparison with Attia parser

 Ouersighni

parser

Attia

parser

Number of sentences 200 207

Number

words/sentence
6 to 20 10 to 15

Parsed 70.5%
95%

33%
92%

Robustly parsed 24.5% 59%

Not parsed 5% 8%

7. CONCLUSION AND FUTURE WORK
This paper presents a large-scale robust parser for unrestricted

Arabic sentences. The parser is intended for real-world

applications such as Information Retrieval and Knowledge

extraction where it is useful to have partial parses, even with

low accuracy, for every input, so that a maximum of

information is saved.

In order to deal with ill-formed input, the parser uses a robust

grammar-based approach where the main grammar is

extended with mechanisms which are suitable to produce

robust parsing. The results observed in the experiment are

very satisfactory in terms of coverage. The evaluation results

showed an improvement in performance. The parser provides

70.5% coverage when using the main grammar alone. The

coverage is raised to 95% when using a set of robustness

mechanisms.

In contrast, the results showed a high level of ambiguity and a

decrease in efficiency. This ambiguity may lead to an

enormous amount of possible parses for an input sentence. It

is obvious that robustness is a highly desirable property for

natural-language processing systems. In practice, however, as

the coverage increases, the ambiguity increases and the

efficiency often decrease. Finding an optimum between

coverage, efficiency, accuracy and ambiguity is therefore one

of the bigger challenges in our future work.

The system is, of course far from complete, building a large-

scale robust parser for Arabic texts is not a task which may be

complete quickly. The work completed so far constitutes a

base for further research. Future work will focus on the

following related issues:

 Disambiguation in the morphological level (tagging)

 Disambiguation in the Parsing level

 Optimization of the grammar coverage

 Improving performance: reducing both parse time and

ambiguities, and keeping them within an acceptable

level.

8. REFERENCES
[1] Al-Daoud, E. and Basata, A, 2009, “A Framework to

Automate the Parsing of Arabic Language Sentences,”

Computer Journal of The International Arab Journal of

Information Technology, vol. 6, no. 2, pp. 191-195.

[2] Al-Taani, A., Msallam, M. and Wedian, S., 2010, “A

Top-Down Chart Parser for Analyzing Arabic

Sentences”, The International Arab Journal of

Information Technology (IAJIT).

[3] Attia, M., 2008, “Handling Arabic Morphological and

Syntactic Ambiguity within the LFG Framework with a

View to Machine Translation,” UK, PhD Thesis.

[4] Bataineh, B. and Bataineh,E., 2009, An Efficient

Recursive Transition Network Parser for Arabic

Language, in Proceedings of the World Congress on

Engineering WCE, UK, pp. 124- 127.

[5] Ben Fraj, F., Ben Othmane-Zribi, and Ben Ahmed, M.,

2010, “Parsing Arabic Texts Using Real Patterns of

Syntactic Trees” The Arabian Journal for Science and

Engineering, Volume 35, Number 2C.

[6] Blache, P and Azulay, D.O., 2002, “Parsing ill-formed

inputs with constraint graphs”, Lecture notes in computer

science ISSN 0302-9743, Computational linguistics and

intelligent text processing: Mexico City, 17-23

February.

[7] Chanod, J.P., 2001, “Robust Parsing and Beyond”, in

J.C. Junqua and G. van Noord (eds.) Robustness in

Language and Speech Technology, Dordrecht, Kluwer,

pp. 187-204.

[8] Coppen.P.A., 1996, The use of AGFL in sequential

Modular NLP systems in proceedings of the first AGFL

Workshop, CSI (computing Science Institute Nijmegen),

Nijmegen University.

[9] Dichy, J. and Hassoun, M., 2005, The DIINAR.1-

 Arabic Lexical Resource, an outline of contents ”معالي“

and methodology”. In the ELRA Newsletter, Vol. 10,

n°2, April-June 2005 : 5-10.

[10] Ditters. E, 1992, A formal approach to arabic syntax: the

noun phrase and the verb phrase, Phd, Nijmegne

University, Holland.

[11] Ditters. E, 2001, A formal Grammar for the description

of sentence structure in Modern Standard Arabic, in

proceedings of the Arabic Language Processing

Workshop, Association for computational linguistics

(ACL) 39th Annual Meeting and 10th Conference of the

European Chapter, Toulouse.

[12] El-Beze M, Merrialdo B. Rozeron B. and Derouault A.,

1994, Accentuation automatique de textes par des

méthodes probabilistes, Technique et sciences

informatique. Volume 13- n°6/1994, pages 797-815.

[13] Koster, C.H.A. and Oltmans. E. (Eds) 1996, proceedings

of the first AGFL workshop, Computing Science

Institute, Nijmegen.

[14] Koster, C.H.A. and Tiberius, C., 1996, AGFL Grammars

for full-Text Information Retrieval, in proceeding of the

NLDB.

[15] Koster. C.H.A., 1991, “Affix Grammars For Natural

Languages”, in H.Albas & B.Melichar (eds), Attribute

Grammar Applications and Systems, SLNCS, 545,

Springer, pp-469-484.

[16] Lavie, A., 1994, An Integrated Heuristic Scheme for

Partial Parse Evaluation. In Proceedings of the 32nd

meeting of the Association for Computational Linguistics

(ACL 94), pages 316-319, Las Cruces, New Mexico,

New Mexico State University.

[17] Magerman, D. and Weir, C. 1992, Efficiency,

Robustness, and Accuracy in Picky Chart Parsing. In

Proceedings of the 30st meeting of the Association for

Computational Linguistics (ACL 92), pages 40-47,

Newark, Delaware, University of Delaware.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 12, May 2014

37

[18] Mohammed, M.A. and Omar, N., 2011, “Rule Based

Shallow Parser for Arabic Language”, Journal of

Computer Science 7, Science Publications.

[19] Oltmans, E., 1999, “A Knowledge-based Approach to

Robust Parsing”, the Netherlands, PhD Thesis.

[20] Othman, E., Shaalan, K and Rafea, A., 2003, A Chart

Parser for Analyzing Modern Standard Arabic Sentence,

MT Summit IX Workshop on Machine Translation for

Semitic Languages: Issues and Approaches, USA.

[21] Ouersighni, R, 2001, “A major offshoot of the DIINAR-

MBC project: AraParse, a morpho-syntactic analyzer of

unvowelled Arabic texts”. In ACL 39th Annual Meeting.

Workshop on Arabic Language processing: Status and

Prospect, Toulouse, pp. 66-72.

[22] Ouersighni, R, 2008, Towards Developing A Robust

Large-Scale Parser for Arabic Sentences, in Proceedings

of the International Arab Conference on Information

Technology, pp. 15-18.

[23] Ouersighni, R. 2002, La conception et la réalisation d’un

système d’analyse morphosyntaxique pour l’arabe :

utilisation pour la détection et le diagnostic des fautes.

PHD, Lyon2 University.

[24] Ouersighni, R. and Ghenima, M. 2009, Un système

d’analyse morphologique à large couverture de l’arabe,

actes de la 2ème Conférence internationale Systèmes

d’Information & Intelligence Economique (www.siie.fr),

IHE édition pp.559-572, 12-14, Hammamet, Tunisie.

[25] Rauzy, S. and Blache, 2012, P. Robustness and

processing difficulty models. A pilot study for eye-

tracking data on the French Treebank, in proceedings of

Eye-tracking and NLP workshop, COLING-2012

[26] Shaalan, K, Farouk, A. and Rafea, A, 1999, Towards An

Arabic Parser for Modern Scientific Text, In Proceeding

of the 2nd Conference on Language Engineering,

Egyptian Society of Language Engineering (ELSE), pp.

103-114, Egypt.

[27] Shaalan, K., 2010, “Rule-Based Approach in Arabic

Natural Language” Processing. Int. J. Inf. Commun.

Technol., 3: 11-19.

[28] Strzalkowsk, T. 1993, Natural language processing in

large-scale text retrieval tasks, in the first text retrieval

conference (TREC-1), D.K. Harman, ed., U.S.

Department of commerce, National Institute of Standards

and Technology, Washington, DC, 173-187, NIST

Special Publication 500-207.

[29] Tounsi, L. and Van Genabith, J. 2010, Arabic parsing

using grammar transforms. In: LREC - 7th conference on

International Language Resources and Evaluation, 17-23

May 2010, Valletta, Malta.

[30] Tounsi, L., Attia, M. and Genabith, J., 2009 PARSING

ARABIC USING TREEBANK-BASED LFG

RESOURCES, Proceedings of the LFG09 Conference,

Miriam Butt and Tracy Holloway King (Editors) CSLI

Publications.

IJCATM : www.ijcaonline.org

http://www.siie.fr/

