
International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

19

An Optimal Algorithm to Detect Balancing in Common-

edge Sigraph

Deepa Sinha

South Asian University,
Akbar Bhawan, Chanakyapuri,

New Delhi – 110 021.

Anshu Sethi
Center for Mathematical Sciences,

Banasthali University,

Banasthali – 304 022

ABSTRACT
A signed graph (or sigraph in short) S is a graph G in which

each edge x carries a value s(x) ∈ {+1, −1} called its sign

denoted specially as S = (G, s). Given a sigraph S, a new

sigraph CE(S), called the common-edge sigraph of S is that

sigraph whose vertex-set is the set of pairs of adjacent edges

in S and two vertices of CE(S) are adjacent if the

corresponding pairs of adjacent edges of S have exactly one

edge in common, and the sign of the edge is the sign of the

common edge. If all the edges of the sigraph S carry + sign

then S is actually a graph and the corresponding common-

edge sigraph is termed as the common-edge graph. In this

paper, algorithms are defined to obtain a common-edge

sigraph and detect whether it is balanced or not in O(n3) steps

which will be optimal in nature.

Keywords
Algorithm, sigraph, common-edge graph, common-edge

sigraph, balanced signed graph.

1. INTRODUCTION
For standard terminology and notation in graph theory, except

for those that are specifically defined here, the reader is

referred to West [33] and for algorithms, refer to Coreman

[12]. Throughout the text, finite, undirected graph with no

loops or multiple edges are considered. A graph having n

vertices and e edges; is denoted by (n, e) where n is called the

order and e is called the size of G. In computers, any graph G

is observed as network by computer scientist where vertices

are taken to be nodes and edges to be taken as links.

In the spirit of a study of graph-valued functions, obtaining

the line graph L(G) of a given graph G = (V, E) may be treated

as a mapping L that operates on G to give rise to L(G) as the

graph whose vertices are the edges of G with two of these

vertices joined to each other (or, adjacent) whenever the edges

of G they represent have a common vertex in G or

equivalently the two edges form a P3 in G. H is called line

graph if and only if ∃ a graph G such that H ≅ L(G).

.

Broersma and Hoede [9] defined in general path graphs Pk (G)

of G for any positive integer k as follows: Pk(G) has for its

vertex-set the set Pk
G of all distinct paths in G having k

vertices, and two vertices in Pk(G) are adjacent if they

represent two paths P, Q ∈ Pk
G whose union forms either a

path Pk+1 or a cycle Ck in G. Some improvement of their paper

was subsequently given by [27, 7, 28].

Much earlier, making independently the same observation as

above on the formation of a line graph L(G) of a given graph

G, Kulli [32] had defined the common-edge graph CE(G) of

G as the intersection graph of the family P3(G) of 2-paths (i.e.,

paths of length two) each member of which is treated as a set

of edges of the corresponding 2-path; as shown by him, it is

not difficult to see that

CE(G) ≅ L2(G)

for any isolate-free graph G, where L(G) := L1(G) and Lt(G)

denotes the t-th iterated line graph of G for any integer t ≥ 2.

The notion of L(G) has been extended to the realm of signed

graph (or sigraph in short) [8]. As in [9] (also see, [7]) by a

sigraph S we mean a 2 graph G = (V, E) called the underlying

graph of S and denoted by Su, in which each edge x carries a

value s(x) ∈ {+1, −1} called its sign; an edge x is positive or

negative according to whether s(x) = +1 or s(x) = −1. The set

of positive edges of S is denoted by E+(S) and E−(S) = E(G) −

E+(S) is the set of negative edges of S. Graphs themselves

regarded as sigraphs in which every edge is positive. Given

a graph G, let ᵩ(S) denote the set of all sigraphs whose

underlying graph is G. In general, a subgraph Sꞌ of a sigraph S

is said to be all-positive(all-negative) if all the edges of Sꞌ are

positive (negative). A sigraph is said to be homogeneous if it

is either all-positive or all-negative and heterogeneous

otherwise. Cliques are defined as the complete subgraphs of

the graph.

For a sigraph S, Behzad and Chartrand [8] defines its

common-edge sigraph, CE(S) as the sigraph whose vertex-set

is the set of pairs of adjacent edges in S and two vertices of

CE(S) are adjacent if the corresponding pairs of adjacent edges

of S have exactly one edge in common, with the same sign as

that of common edge.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

20

A sigraph S and its common-edge sigraph CE(S) is shown in Figure 1.

The number of positive (negative) edges incident at vertex v,

denoted by d+(v)(d−(v)) is called positive(negative) degree of

the vertex v in S. The total degree d(v) of the vertex v in S is

the sum d(v) = d+(v) + d−(v).

A cycle in a signed graph S is said to be positive if the product

of the signs of its edges is positive or, equivalently, if the

number of negative edges in it is even. A cycle which is not

positive is said to be negative. A signed graph is said to be

balanced if every cycle in it is positive.

Theorem 1. [19] A signed graph is balanced if and only if

there exists a partition of its vertex set into two subsets, one of

them possibly empty, such that every positive edge joins two

vertices in the same subset and every negative edge joins two

vertices from different subsets.

Based on concept balancing of sigraphs and characterization

of common-edge sigraphs a computer-oriented approach is

obtained to detect whether a given common-edge sigraph is

balanced or not.

Since, for a network use nodes in case of vertices and link for

edges, so while giving algorithms for the characterization,

nodes and links are used.

As an example, the nodes of S will be 1, 2, 3, 4, . . . , n and the

node of H corresponding to the edge of S joining node 1 and

node 2 will be called “1-2”. A node of H will henceforth be a

pair of numbers written in increasing order.

2. BALANCED COMMON-EDGE

SIGRAPHS
The following result gives a characterization of sigraphs

whose common-edge sigraphs CE(S) is balanced:

Theorem 2. [6] For any sigraph S, CE(S) is balanced if and

only if S is a balanced sigraph and

(a) if d(vi) > 3 then d−(vi) = 0;

(b) if d(vi) = 3 then d−(vi) = 0; or d−(vi) = 2; and

(c) for every x - y path P4 = (x, v,w, y) of length three, vw is a

positive edge in S.

As an example, vertices of S will be 1, 2, 3.., n and edges will

be in the form of adjacency matrix of order n x n with entries

1 for positive edge, 0 representing no edge and -1 for negative

edge.

Following procedure is implemented to obtain a common-

edge sigraph from a given sigraph and check whether this

common-edge sigraph is balanced or not:

Enter the number of nodes i.e. n. Input n x n adjacency matrix

with respect to given sigraph. The adjacency matrix takes the

entries as 0, 1 and -1 for no edge, positive edge and negative

edge respectively. To find the common-edge sigraph of this

sigraph, find first non zero entry of the adjacency matrix, say

(i, jth) entry, then search for non zero entries in row i, column i

and column j. For each such non zero entry, say (i, kth) entry

in ith row, there corresponds a vertex in CE(S), in this case

edges (i, k) and (k, j) in S would be vertex of CE(S). Now sign

of the vertex depends on the sign of edge (i, j) in S. If edge (i,

j) is positive then corresponding vertex would be positive

otherwise it would be negative. This way new matrix of CE(S)

is computed.

To check whether a given common-edge sigraph is balanced

or not, following 4 conditions need to be checked:

(i.) S is balanced or not

(ii.) if d(vi) > 3 then d−(vi) = 0;

(iii.) if d(vi) = 3 then d−(vi) = 0; or d−(vi) = 2;

(iv.) for every x - y path P4 = (x, v, w, y) of length three, vw is

a positive edge in S.

If all the conditions are satisfied, then common-edge sigraph

is balanced and will also print the common-edge sigraph of S.

To check (i.) condition, i.e. balancing of the sigraph, partition

vertex set V(S) into two subsets V1 and V2 (one of them

possibly empty) such that every negative edge of S joins a

vertex of V1 with one of V2 while no positive edge does so.

Start with the first vertex say i = 1. Initially the first vertex is

assigned the Group1. Now look all edges incident to it.

Maintain two groups Group1 and Group2. Group1 contains all

the vertices with positive edges and Group2 with negative

edge. Now look in first row, if the (i, jth) entry is -1, then j will

be assigned Group2 else if 1 then Group1. Same procedure is

repeated for all vertices. If any vertex belong to both the

groups then the sigraph is not balanced else balanced.

To check (ii.) condition, count number of non-zero entry and

number of -1 in each row for each vertex and check if the

given condition is satisfied or not. If it satisfies the given

condition then check (iii.) condition otherwise terminate the

procedure and say CE(S) is not balanced.

To check (iii.) condition, check if the given condition is

satisfied or not from the count already calculated in (ii.)

condition. If it satisfies the given condition then check (iv.)

condition otherwise terminate the procedure and say CE(S) is

not balanced.

To check (iv.) condition, find every path x - v - w - y of length

3 in S, and check if (v, w) is positive or not. If it is positive

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

21

then the given condition is satisfied else say CE(S) is not

balanced. If all the above 4 conditions are satisfied we can say

that CE(S) is balanced.

3. ALGORITHM TO CONVERT A

SIGRAPH TO COMMON-EDGE

SIGRAPH

3.1 Part – 1:
Step1. Enter number of vertices i.e. n of sigraph S whose

common-edge sigraph H is required.

Step2. Enter lower triangular (or upper triangular) part of

adjacency matrix vertex [i] [j] and sign matrix signver [i] [j]

of sigraph S.

Step3. Instead of 1 assign distinct numbers at all those

positions of adjacency matrix where there is a non-zero entry.

Step4. Now search for non-zero entries in adjacency matrix.

 (i.) For each such non-zero entry, say (i, jth) entry, search

 for non-zero entries in row i, column i and column j.

 Now for each such nonzero entry, say (i, kth) entry in row

 i, there corresponds a vertex in common-edge graph. In

 this case (i, j) − (i, k) will be a vertex in common edge

 graph H. Prepare a vertex matrix comver [i] [j] for

 common-edge graph.

(ii.) Now sign of this vertex depends on sign of edge (i, j) in

S. If edge (i, j) is positive then corresponding vertex

would be positive otherwise it would be negative.

Prepare sign matrix signver1 [i] [j] for vertices.

Step5. Instead of 1 assign distinct numbers at all those

positions of vertex matrix where there is a non-zero entry.

Step6. Now search for non-zero entries in vertex matrix

comver [i] [j].

(i.) For each such non-zero entry, say (i, jth) entry, search

 for non-zero entries in row i, column i and column j.

 Now for each such nonzero entry, say (i, kth) entry in row

 i, there corresponds an edge in CE(G).

(ii.) Now sign of this edge depends on sign of common

 vertex. In this case if vertex i is negative then edge

 would be negative and if vertex i is positive then edge is

 also positive.

Step7. Thus the sigraph so produced is required common-edge

sigraph H of S.

Complexity of computation involved in above algorithm

In Step3, we have to assign distinct numbers to all the non

zero entries in adjacency matrix. Since we have entered lower

triangular matrix, thus we need to check n(n-1)/2 entries.

Hence complexity for this step is O(n2).

Then in Step4, first we have to search for non zero entries in

adjacency matrix and then corresponding to each such entry,

say (i, jth) entry, we have to search for non zero entries in row

i, column i and column j. Also we have to check signs of these

entries.

Thus complexity of this step = O(n2 × n) = O(n3).

In Step5, we assign distinct numbers to non zero entries in

vertex matrix with complexity O(n2). In Step6 we repeat the

procedure of Step4, thus complexity of this step would be

O(n3).

Thus complexity of computation involved in above algorithm

is O(n3), where n is number of vertices in S.

3.2 Part – 2:
Step1. Enter the number of vertices n of input sigraph S whose

common-edge sigraph CE(S) is required.

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with

enteries 0, 1 and -1 of sigraph S where i = 1 to n and j = 1 to n.

Step3. Set EdgeIndexCtr = 0

Step4. Repeat Step4 to Step11 for i = 1 to n

Step5. Repeat Step5 to Step11 for j = i+1 to n

Step6. Check if (vertex [i] [j] != 0) // There is an edge

If yes, find an adjacent edge

Step7. Repeat Step7 to Step9 for k = j+1 to n

Step8. Check if (vertex [j] [k] != 0), if yes,

Set CEVertex &CurVertex = CeVertices[CurCEVertexIndex]

CurVertex.e1[0] = i

CurVertex.e1[1] = j

CurVertex.e2[0] = j

CurVertex.e2[1] = k

CurVertex.Index = CurCEVertexIndex++

Step9. Check if (vertex[i][k] != 0), if yes,

Set CEVertex &CurVertex = CeVertices[CurCEVertexIndex]

CurVertex.e1[0] = i

CurVertex.e1[1] = j

CurVertex.e2[0] = i

CurVertex.e2[1] = k

CurVertex.Index = CurCEVertexIndex++

Step10. Repeat Step11 for k = i+1 to j

Step11. Check if (vertex [j] [k] != 0), if yes,

Set CEVertex &CurVertex = CeVertices[CurCEVertexIndex]

CurVertex.e1[0] = i

CurVertex.e1[1] = j

CurVertex.e2[0] = k

CurVertex.e2[1] = j

CurVertex.index = CurCEVertexIndex++

Step12. // Create common-edge graph

Repeat Step 12 to Step17 for i = 1 to CurCEVertexIndex

Step13. Repeat Step 13 to Step17 for j = i+1 to

CurCEVertexIndex

Step14. Set CEVertex &c1 = CeVertices[i]

 &c2 = CeVertices[j]

Step15. Set sign = 0

Step16. // Find if there is a common edge

Check if (c1.e1[0] == c2.e1[0] &&c1.e1[1] == c2.e1[1]) //

c1e1 == c2e1

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

22

Set sign = vertex[c1.e1[0]][c1.e1[1]]; // Sign of common edge

else check if (c1.e1[0] == c2.e2[0] && c1.e1[1] == c2.e2[1])

Set sign = vertex[c1.e1[0]][c1.e1[1]];

else check if (c1.e2[0] == c2.e1[0] && c1.e2[1] == c2.e1[1])

Set sign = vertex[c1.e2[0]][c1.e2[1]];

else check if (c1.e2[0] == c2.e2[0] && c1.e2[1] == c2.e2[1])

Set sign = vertex[c1.e2[0]][c1.e2[1]];

CeGraph[i][j] = sign; CeGraph[j][i] = sign;

Step17. Set CeGraph[i][j] = sign;

 CeGraph[j][i] = sign;

Step18. Print CeGraph i.e common-edge sigraph.

Complexity of computation involved in above algorithm

In Step2, we have entered n x n matrix, thus complexity for

this step is O(n2).

Then in Step4 first we have to search for non zero entries in

adjacency matrix and then corresponding to each such entry,

say (i, jth) entry, we have to search for non zero entries in row

i, column i and column j as in Step5. Then, for each such non

zero entry, say (i, kth) entry in ith row,we have to find vertex in

CE(S) as in Step10. That way common-edge graph is

computed and for sign of the edge we need to again traverse

the matrix as in Step16.

Thus complexity of this step = O(n3 x n) = O(n4).

Hence complexity of computation involved in above

algorithm is O(n4), where n is number of vertices in S.

3.3 Conclusion
Thus, common-edge sigraph from a given sigraph can be

implemented in two ways. First part takes input in the form of

two matrices and has complexity O(n3) whereas second part

takes only one matrix as input and with complexity O(n4).

There is a trade-off between space and time complexity.

Depending on nature of the problem, implementation of the

above algorithm can be done in any of the way.

4. ALGORITHM TO DETECT

BALANCING OF A SIGRAPH
Harary and Kabell [19] have proposed an algorithm to detect

balance in signed graphs in O(n) steps. But since matrix is

used as an input to the signed graph, code named

“BALANCE” is defined, to check balancing of a given

sigraph, where vertices can also be termed as nodes from

algorithmic point of view in O(n2) steps:

Step1. Enter the number of vertices i.e. n of sigraph S.

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with

enteries 0, 1 and -1 of sigraph S where i = 1 to n and j = 1 to

n.

Step3. Print the given sigraph.

Step4. Set IsBalanced = true.

Step5. Repeat Step5 for i = 1 to n && IsBalanced

 5.1 if (!IsVisited [i])

 5.1.1 Set IsVisited[i] = true

 IsGroup[i] = true

 Push back i and Group1

 5.2 While ((!queue.empty()) && IsBalanced)

 5.2.1 Set CurGroup = queue.front() and

 Set g = Cur.second

 5.2.2 Repeat Step5.2.2 for j = 1 to n && IsBalanced

 5.2.2.1 Check if vertex [Cur.first [j] == 1)

 If No, Goto 5.2.2.2

 If yes, check if (g.Othergroup !

 Curgroup[j] == true)

 If yes, Set IsBalanced = false and Print

 j is in both groups

 else check if (!IsVisited [j])

 Set g.Othergroup ! Curgroup[j] = true

 IsVisited[j] = true

 Push back j and Othergroup

 5.2.2.2 Check if vertex [Cur.first [j] == -1)

 If No, Goto Step6

 If yes, check if (g.Curgroup[j]== true)

 If yes, Set IsBalanced = false and

 Print j is in both groups

 else check if (!IsVisited [j])

 Set (g.Othergroup!Curgroup[j] = true)

 IsVisited[j] = true

 Push back j and Othergroup

Step6. If (IsBalanced) Print “Sigraph is balanced”

 else Print “Sigraph not balanced”

Step7. Exit

Complexity of computation

In Step2, we have to assign distinct numbers to all the non-

zero entries in adjacency matrix. Since we have entered n x n

matrix, thus we need to check n2 entries.

Hence complexity for this step is O(n2).

In Step5 we visit each vertex and for each vertex we find

adjacent edges incident to it and groups are assigned

depending on whether the entry is positive or negative assign

group to each non-zero entry. Thus 5.2.1 and 5.2.2 are

repeated till queue is not empty. Since there are n2 entries,

Complexity for this step is O(n2).

Thus, Total complexity involved = O(n2) + O(n2) = O(n2).

Hence complexity of computation involved in above

algorithm is O(n2) which is optimal in nature, where n is

number of vertices in S.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

23

Figure 2: S1 is balanced and S2 is unbalanced

5. ALGORITHM TO DETECT

BALANCING IN COMMON-EDGE

SIGRAPHS
The algorithm to detect balancing in common-edge sigraph is

based on the characterization given by Acharya & Sinha[6].

It uses following functions:

MAX denotes maximum number of vertices

n = number of vertices

struct CEVertex // Represents 2 edges

int e1[2] // Edge 1

e2[2] // Edge 2

index - Index in new graph

Step1. Enter the number of vertices i.e. n of sigraph S.

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with

enteries 0, 1 and -1 of sigraph S where i = 1 to n and j = 1 to n.

Step3. Implement algorithm defined in Section 3 to obtain

CE(S).

Step4. Implement algorithm defined in Section 4 to check

whether S is balanced. // First condition check

Step5. If S is balanced, Goto Step6 else Goto Step18.

Step6. // Checking degree requirement

Repeat Step6 to Step16 for v = 1 to n && IsCommonbal

Step7. Set NbPositiveEdge = 0

NbNegativeEdge = 0

NbTotalEdge = 0

Step8. Repeat Step8 to Step9 for j = 1 to n

Step9. if (vertex [i] [j] == 1) NbPositiveEdge++

if (vertex [i] [j] == -1) NbNegativeEdge++

if ((vertex [i] [j] == 1) || (vertex [i] [j] == -1)) NbTotalEdge++

Step10. if (NbtotalEdge > 3), if yes,

check if(NbNegativeEdge !=0), if yes,

Print “Degree Requirement not satisfied, i.e condition ‘a’

fails”

Print “Hence, CE(S) is not balanced” and Goto Step25

Step11. if (NbTotalEdge == 3), if yes

check if((NbNegativeEdge != 0) || (NbNegativeEdge != 2)),

 if yes,

Print “Degree requirement not satisfied, i.e condition ‘b’ fails”

Print “Hence, CE(S) is not balanced” and Goto Step25

Step12. //check condition ‘c’ with complexity O(n4)

if (NbTotalEdge ≥ 3) , if yes,

Print “Vertex where degree is greater than equal to 3 = ” v

Step13. Repeat Step13 to Step16 for x = 1 to n

Step14. Repeat Step14 to Step16 for w = 1 to n

Step15. Repeat Step15 to Step16 for y = 1 to n

Step16. Check

if((vertex[x][v]!=0)&&(vertex[y][w]!=0)&&(vertex[v][w]==-

1)&&(v!=y)&&(y!=x)&&(if yes, print “Third condition does

not satify at ” x - v - w – y

“Therefore, Common-edge Sigraph is not balanced”

Set isCommonbal=false

Step17. //check condition ‘c’ with complexity O(n3)

Step18. Repeat Step18 to Step23 for v = 1 to n.

Step19. Repeat Step19 to Step23 for w = 1 to n.

Step20. Check if (vertex[w][v] ==1) , If yes, Goto Step21

Step21. Repeat Step21 for x = 1 to n.

Check if (vertex[x][v] ==-1), If yes, Set isedgewithv = 1

Step22. Repeat Step22 for y = 1 to n.

Check if (vertex[y][w] ==-1), If yes, Set isedgewithw = 1

Step23. Check if ((isedgewithv!=0) && (isedgewithw!=0)),

If yes, print “Third condition does not satify at ” x - v - w - y

“Therefore, Common-edge Sigraph is not balanced”

Set isCommonbal=false

Step24. Print “CE(S) is balanced”

Step25. Exit

Complexity of computation involved in above algorithm

In Step2, since we input a graph of order n x n, complexity of

this step = O(n2).

In Step3, we compute CE(S) as defined in Section 3, therefore,

Complexity of this step = O(n4) or O(n3).

In Step4, we check whether S is balanced or not as defined in

Section 4, therefore,

Complexity of this step = O(n2).

In Step7 and Step9, since we have to traverse each node of the

graph and calculate number of positive, negative and total

edges of the graph and for this we traverse each row and each

column,

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

24

Thus complexity of this step = O(n2).

In Step10, we check ‘a’ condition for each vertex, therefore,

Complexity of this step = O(n).

In Step11, we check ‘b’ condition for each vertex, therefore,

Complexity of this step = O(n).

Figure 3: A Sigraph S such that CE(S) is balanced

In Step12, we check condition ‘c’, for this we have to traverse

the graph and find path of length 3, i.e. Step13, Step14 and

Step15 are repeated ‘n’ times and for each vertex,

Complexity of this step = O(n3) × n = O(n4).

Further, to improve the complexity in condition ‘c’, we

implement Step17 to Step23, where we find first positive edge

vw. Then we find adjacent edges from vertex v and w and if

there is any edge adjacent we set value equal to 1.

Complexity of this step = O(n2) × n = O(n3).

Total maximum complexity = O(n2) + O(n4) + O(n2) + O(n2)

+ O(n) + O(n) + O(n4) = O(n4).

Optimal complexity = O(n2) + O(n3) + O(n2) + O(n2) + O(n) +

O(n)+ O(n3) = O(n3).

Hence, complexity of computation involved in above

algorithm is O(n3), where n is number of vertices in S.

6. CONCLUSION AND SCOPE
In this paper, an algorithmic approach is depicted to convert

signed graph S into common-edge sigraph CE(S) and detect

whether it is balanced or not in O(n4) steps. Further

complexity is reduced to O(n3) steps. This way, algorithm

optimality is proved. We can extend our algorithm to detect

common-edge sigraph and output its root common-edge

sigraph. Also, algorithm can be developed to obtain iterated

common-edge sigraph and S-consistent common-edge

sigraphs. These problems are important, at least from the

socio-psychological point of view that they might help

understand how interacting dyads in a social network tend to

change the social structure in a way prescribed by the

structure of common-edge sigraph of the initial social

network; structural evolution of social networks has been a

topic of current research interest (e.g., see, Holland &

Leinhardt [20]; Acharya [1]; Acharya & Acharya [3, 4];

Doreian [14, 15, 16]; Kovchegov [24, 25, 26]).

7. ACKNOWLEDGMENTS
The authors express gratitude to Mr. Dhananjay Kulkarni who

was always there in prior discussion and helping in writing

algorithms and finding complexity and to the referees who

made extensive and constructively critical comments on the

first version of the paper.

8. REFERENCES
[1] Acharya B .D, 1980, (1980b) Applications of sigraphs in

behavioral sciences, MRI Technical Report DST/HCS..

[2] Acharya B. D, 1983, A characterization of consistent

marked graphs, Nat. Acad. Sci. -Letters, India.

[3] Acharya, B. D and Acharya, M, 1983, A graph-theoretical

model for the analysis of intergroup stability in a social

system, Manuscript. In: A mathematical bibliography

of signed and gain graphs and allied areas, VII

Edition.

[4] Acharya, B. D and Acharya, M, 1986, New algebraic

models of a social system, Indian Journal of Pure and

Applied Mathematics.

[5] Acharya, M and Sinha, D, 2005, Characterizations of line

sigraphs, Nat. Acad. Sci. –Letters.

[6] Acharya, M and Sinha, D, 2006, Common-edge sigraphs,

AKCE Int. J. Graphs Comb.

[7] Balbuena, C, Garcia-Vazquez, P. 2004, Edge-connectivity

in Pk - path graphs, Discrete Mathematics.

 [8] Behzad, M. and Chartrand, G. T , 1969, Line coloring of

signed graphs, Elem. Math.

[9] Broersma, H. J., HOEDE, C., 1989, Path graphs, Journal

of Graph Theory.

[10] Cartwright, D. and Harary, F., 1956, Structural Balance:

A generalization of Heider’s Theory, Psych. Rev.

[11] Chartrand, G. T., 1977, Graphs as Mathematical Models,

Prindle, Weber and Schmidt, Inc., Boston,

Massachusetts.

[12] Cormen, Thomas, Leiserson, Charles., Rivest, Ronald.,

Stein, Clifford., 2011, Introduction to algorithm, Third

Edition, PHI Learning Private Limited.

[13] Deo, Narasing., 1995, Graph theory with application to

Engineering and Computer Science, Prentice Hall India.

[14] Doreian, P., (1979/80), On the evolution of group and

network structure, Social Networks.

International Journal of Computer Applications (0975 – 8887)

Volume 93 – No 10, May 2014

25

[15] Doreian, P., and Mrvar, A., 1996, A partitioning

approach in structural balance, Social Networks.

[16] Doreian, P., 2002, Event sequences as generators of

social network evolution, Social Networks.

[17] Harary, F., Norman, R.Z., Cartwright, R. W., 1965,

Structural Models: An Introduction to the Theory of

Directed Graphs, Wiley Inter Science, Inc., New York.

[18] Harary, F., 1969, Graph Theory, Addison-Wesley Publ.

Comp., Reading, Massachusetts.

[19] Harary, F., and Kabell, J. A., 1980/81, A simple

algorithm to detect balance in signed graphs, Math. Soc.

Sci.

[20] Holland, L. W., and Leinhardt, S., 1977, Social

structure as a network process, Zeitschrift f¨ur

Soziologi´e.

[21] Horowitz, Ellis., Sahni, Sartaj., 2004, Computer

Algorithm, Galgotia Publications, 2004 Edition.

[22] Kanetkar, Yashavant., 2004, “Let Us C”, Fifth Edition,

BPB Publications.

[23] Kanetkar, Yashavant., 2008, “Graphics under C”, Fifth

Edition, BPB publications.

[24] Kovchegov, V.B., 1993, A model of dynamics of group

structure of human institutions, Journal of Mathematical

Sociology.

[25] Kovchegov, V.B., 1994, A principle of nonergodicity

for modeling of the human groups by nets of probability

automata, Proceeding of the 14 th IMACS World

Conference on Computat ional and Applied

Mathematics.

[26] Kovchegov, V.B., 2004, Application of the theory of

locally interacting and product potential networks of

automata to modelling balance in social groups,

Preprint.[27] Li, H., Lin, Y., 1993, On the

characterization of path graphs, Journal of Graph

Theory.

[28] Li, X., Zhao, B., 2004, Isomorphisms of Pk – graphs for

k ≥ 4, Discrete Mathematics.

[29] Lehot, P.G.H., 1974, An optimal algorithm to detect a

line graph and output its root graph, Journal of the

Association for Computing Machinery.

[30] Sinha, D., 2005, New frontiers in the theory of signed

graph, Ph.D. Thesis, University of Delhi (Faculty of

Technology).

[31] S inha, D. , Upadhayaya, S. , Katar ia, P . , 2013,

Characterization of Common edge signed graphs,

Applied Discrete Mathematics.

[32] Kulli, V.R., 1973, On common-edge graphs, The

Karnatak University Journal: Science XVIII.

[33] West, D.B., 1996, Introduction to Graph Theory,

Prentice-Hall of India Pvt. Ltd.

[34] Zasalavsky, T., 1981, Characterizations of signed graphs,

J. Graph Theory.

[35] Zasalavsky, T., 1982, Signed graphs, Discrete

Appl. Math

IJCATM : www.ijcaonline.org

