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ABSTRACT 
A signed graph (or sigraph in short) S is a graph G in which 

each edge x carries a value s(x) ∈ {+1, −1} called its sign 

denoted specially as S = (G, s). Given a sigraph S, a new 

sigraph CE(S), called the common-edge sigraph of S is that 

sigraph whose vertex-set is the set of pairs of adjacent edges 

in S and two vertices of CE(S) are adjacent if the 

corresponding pairs of adjacent edges of S have exactly one 

edge in common, and the sign of the edge is the sign of the 

common edge. If all the edges of the sigraph S carry + sign 

then S is actually a graph and the corresponding common-

edge sigraph is termed as the common-edge graph. In this 

paper, algorithms are defined to obtain a common-edge 

sigraph and detect whether it is balanced or not in O(n3) steps 

which will be optimal in nature. 

Keywords 
Algorithm, sigraph, common-edge graph, common-edge 

sigraph, balanced signed graph. 

 

1. INTRODUCTION 
For standard terminology and notation in graph theory, except 

for those that are specifically defined here, the reader is 

referred to West [33] and for algorithms, refer to Coreman 

[12]. Throughout the text, finite, undirected graph with no 

loops or multiple edges are considered. A graph having n 

vertices and e edges; is denoted by (n, e) where n is called the 

order and e is called the size of G. In computers, any graph G 

is observed as network by computer scientist where vertices 

are taken to be nodes and edges to be taken as links. 

 

In the spirit of a study of graph-valued functions, obtaining 

the line graph L(G) of a given graph G = (V, E) may be treated 

as a mapping L that operates on G to give rise to L(G) as the 

graph whose vertices are the edges of G with two of these 

vertices joined to each other (or, adjacent) whenever the edges 

of G they represent have a common vertex in G or 

equivalently the two edges form a P3 in G. H is called line 

graph if and only if ∃ a graph G such that H  ≅ L(G). 

. 

Broersma and Hoede [9] defined in general path graphs Pk (G) 

of G for any positive integer k as follows: Pk(G) has for its 

vertex-set the set Pk
G of all distinct paths in G having k 

vertices, and two vertices in Pk(G) are adjacent if they 

represent two paths P, Q ∈ Pk
G  whose union forms either a 

path Pk+1 or a cycle Ck in G. Some improvement of their paper 

was subsequently given by [27, 7, 28].  

 

Much earlier, making independently the same observation as 

above on the formation of a line graph L(G) of a given graph 

G, Kulli [32] had defined  the common-edge graph CE(G) of 

G as the intersection graph of the family P3(G) of 2-paths (i.e., 

paths of length two) each member of which is treated as a set 

of edges of the corresponding 2-path; as shown by him, it is 

not difficult to see that 

CE(G) ≅ L2(G) 

for any isolate-free graph G, where L(G) := L1(G) and Lt(G) 

denotes the t-th iterated line graph of G for any integer t ≥ 2. 

 

The notion of L(G) has been extended to the realm of signed 

graph (or sigraph in short) [8]. As in [9] (also see, [7]) by a 

sigraph S we mean a 2 graph G = (V, E) called the underlying 

graph of S and denoted by Su, in which each edge x carries a 

value s(x) ∈ {+1, −1} called its sign; an edge x is positive or 

negative according to whether s(x) = +1 or s(x) = −1. The set 

of positive edges of S is denoted by E+(S) and E−(S) = E(G) − 

E+(S) is the set of negative edges of S. Graphs themselves 

regarded as sigraphs in which every edge is positive. Given 

a graph G, let ᵩ(S) denote the set of all sigraphs whose 

underlying graph is G. In general, a subgraph Sꞌ of a sigraph S 

is said to be all-positive(all-negative) if all the edges of Sꞌ are 

positive (negative). A sigraph is said to be homogeneous if it 

is either all-positive or all-negative and heterogeneous 

otherwise. Cliques are defined as the complete subgraphs of 

the graph. 

 

For a sigraph S, Behzad and Chartrand [8] defines its 

common-edge sigraph, CE(S) as the sigraph whose vertex-set 

is the set of pairs of adjacent edges in S and two vertices of 

CE(S) are adjacent if the corresponding pairs of adjacent edges 

of  S have exactly one edge in common, with the same sign as 

that of common edge. 
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A sigraph S and its common-edge sigraph CE(S) is shown in Figure 1. 

The number of positive (negative) edges incident at vertex v, 

denoted by d+(v)(d−(v)) is called positive(negative) degree of 

the vertex v in S. The total degree d(v) of the vertex v in S is 

the sum d(v) = d+(v) + d−(v).  

 

A cycle in a signed graph S is said to be positive if the product 

of the signs of its edges is positive or, equivalently, if the 

number of negative edges in it is even. A cycle which is not 

positive is said to be negative. A signed graph is said to be 

balanced if every cycle in it is positive. 

 

Theorem 1. [19] A signed graph is balanced if and only if 

there exists a partition of its vertex set into two subsets, one of 

them possibly empty, such that every positive edge joins two 

vertices in the same subset and every negative edge joins two 

vertices from different subsets.  

 

Based on concept balancing of sigraphs and characterization 

of common-edge sigraphs a computer-oriented approach is 

obtained to detect whether a given common-edge sigraph is 

balanced or not.   

 

Since, for a network use nodes in case of vertices and link for 

edges, so while giving algorithms for the characterization, 

nodes and links are used.  

 

As an example, the nodes of S will be 1, 2, 3, 4, . . . , n and the 

node of H corresponding to the edge of S joining node 1 and 

node 2 will be called “1-2”. A node of H will henceforth be a 

pair of numbers written in increasing order. 

 

2. BALANCED COMMON-EDGE 

SIGRAPHS 
The following result gives a characterization of sigraphs 

whose common-edge sigraphs CE(S) is balanced:  

 

Theorem 2. [6] For any sigraph S, CE(S) is balanced if and 

only if S is a balanced sigraph and 

(a) if d(vi) > 3 then d−(vi) = 0; 

(b) if d(vi) = 3 then d−(vi) = 0; or d−(vi) = 2; and 

(c) for every x - y path P4 = (x, v,w, y) of length three, vw is a 

positive edge in S.  

 

As an example, vertices of S will be 1, 2, 3.., n and edges will 

be in the form of adjacency matrix of order n x n with entries 

1 for positive edge, 0 representing no edge and -1 for negative 

edge. 

Following procedure is implemented to obtain a common-

edge sigraph from a given sigraph and check whether this 

common-edge sigraph is balanced or not:  

Enter the number of nodes i.e. n. Input n x n adjacency matrix 

with respect to given sigraph. The adjacency matrix takes the 

entries as  0, 1 and -1 for no edge, positive edge and negative 

edge respectively. To find the common-edge sigraph of this 

sigraph,  find first non zero entry of the adjacency matrix, say 

(i, jth) entry, then search for non zero entries in row i, column i 

and column j. For each such non zero entry, say (i, kth) entry 

in ith row, there corresponds a vertex in CE(S), in this case 

edges (i, k) and (k, j) in S would be vertex of CE(S). Now sign 

of the vertex depends on the sign of edge (i, j) in S. If edge (i, 

j) is positive then corresponding vertex would be positive 

otherwise it would be negative. This way new matrix of CE(S) 

is computed. 

 

To check whether a given common-edge sigraph is balanced 

or not, following 4 conditions need to be checked: 

(i.) S is balanced or not 

(ii.) if d(vi) > 3 then d−(vi) = 0; 

(iii.) if d(vi) = 3 then d−(vi) = 0; or d−(vi) = 2; 

(iv.) for every x - y path P4 = (x, v, w, y) of length three, vw is 

a positive edge in S. 

 

If all the conditions are satisfied, then common-edge sigraph 

is balanced and will also print the common-edge sigraph of S.  

 

To check (i.) condition, i.e. balancing of the sigraph, partition 

vertex set V(S) into two subsets V1 and V2 (one of them 

possibly empty) such that every negative edge of S joins a 

vertex of V1 with one of V2 while no positive edge does so. 

Start with the first vertex say i = 1. Initially the first vertex is 

assigned the Group1. Now look all edges incident to it. 

Maintain two groups Group1 and Group2. Group1 contains all 

the vertices with positive edges and Group2 with negative 

edge. Now look in first row, if the (i, jth) entry is -1, then j will 

be assigned Group2 else if 1 then Group1. Same procedure is 

repeated for all vertices. If any vertex belong to both the 

groups then the sigraph is not balanced else balanced. 

 

To check (ii.) condition, count number of non-zero entry and 

number of -1 in each row for each vertex and check if the 

given condition is satisfied or not. If it satisfies the given 

condition then check (iii.) condition otherwise terminate the 

procedure and say CE(S) is not balanced. 

 

To check (iii.) condition, check if the given condition is 

satisfied or not from the count already calculated in (ii.) 

condition. If it satisfies the given condition then check (iv.) 

condition otherwise terminate the procedure and say CE(S) is 

not balanced. 

 

To check (iv.) condition, find every path x - v - w - y of length 

3 in S, and check if (v, w) is positive or not. If it is positive 
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then the given condition is satisfied else say CE(S) is not 

balanced. If all the above 4 conditions are satisfied we can say 

that CE(S) is balanced.  

 

3. ALGORITHM TO CONVERT A 

SIGRAPH TO COMMON-EDGE 

SIGRAPH 

3.1 Part – 1: 
Step1. Enter number of vertices i.e. n of sigraph S whose 

common-edge sigraph H is required. 

 

Step2. Enter lower triangular (or upper triangular) part of 

adjacency matrix vertex [i ] [j] and sign matrix signver [i] [j] 

of sigraph S. 

 

Step3. Instead of 1 assign distinct numbers at all those 

positions of adjacency matrix where there is a non-zero entry. 

 

Step4. Now search for non-zero entries in adjacency matrix. 

 

 (i.)  For each such non-zero entry, say (i,  jth) entry, search    

        for non-zero entries in row i, column i and column j.              

        Now for each such nonzero entry, say (i, kth) entry in row    

        i, there corresponds a vertex in common-edge graph. In    

        this case  (i,  j) − (i, k) will be a vertex in common edge      

        graph H. Prepare a vertex matrix comver [i] [j] for   

        common-edge graph.  

(ii.)  Now sign of this vertex depends on sign of edge (i, j) in   

S. If edge (i, j) is positive then corresponding vertex   

would be positive otherwise it would be negative. 

Prepare  sign matrix signver1 [i] [j] for vertices. 

 

Step5. Instead of 1 assign distinct numbers at all those 

positions of vertex matrix where there is a non-zero entry. 

 

Step6.  Now search for non-zero entries in vertex matrix  

comver [i] [j]. 

 

(i.)  For each such non-zero entry, say (i,  jth) entry, search    

       for non-zero entries in row i, column i and column j.              

       Now for each such nonzero entry, say (i, kth) entry in row    

       i, there corresponds an edge in CE(G).  

(ii.) Now sign of this edge depends on sign of common   

      vertex. In this case if vertex i is negative then edge  

       would be negative and if vertex i is positive then edge is    

       also positive. 

   

Step7. Thus the sigraph so produced is required common-edge  

sigraph H of S.  

 

Complexity of computation involved in above algorithm  

 

In Step3, we have to assign distinct numbers to all the non 

zero entries in adjacency matrix. Since we have entered lower 

triangular matrix, thus we need to check n(n-1)/2 entries.  

 

Hence complexity for this step is O(n2). 

 

Then in Step4, first we have to search for non zero entries in 

adjacency matrix and then corresponding to each such entry, 

say (i, jth) entry, we have to search for non zero entries in row 

i, column i and column j. Also we have to check signs of these 

entries. 

 

Thus complexity of this step = O(n2 × n) = O(n3).  

In Step5, we assign distinct numbers to non zero entries in 

vertex matrix with complexity O(n2). In Step6 we repeat the 

procedure of Step4, thus complexity of this step would be 

O(n3). 

 

Thus complexity of computation involved in above algorithm 

is O(n3), where n is number of vertices in S. 

 

3.2 Part – 2: 
Step1. Enter the number of vertices n of input sigraph S whose 

common-edge sigraph CE(S) is required. 

 

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with 

enteries 0, 1 and -1 of sigraph S where i = 1 to n and j = 1 to n. 

 

Step3. Set EdgeIndexCtr = 0 

 

Step4. Repeat Step4 to Step11 for i = 1 to n 

 

Step5. Repeat Step5 to Step11 for j = i+1 to n 

 

Step6. Check if (vertex [i] [j] != 0)  // There is an edge 

If yes, find an adjacent edge  

 

Step7. Repeat Step7 to Step9 for k = j+1 to n 

 

Step8. Check if (vertex [j] [k] != 0),  if yes, 

Set CEVertex  &CurVertex = CeVertices[CurCEVertexIndex] 

CurVertex.e1[0] = i 

CurVertex.e1[1] = j 

CurVertex.e2[0] = j 

CurVertex.e2[1] = k 

CurVertex.Index = CurCEVertexIndex++ 

 

Step9. Check if (vertex[i][k] != 0), if yes, 

Set CEVertex  &CurVertex = CeVertices[CurCEVertexIndex] 

CurVertex.e1[0] = i 

CurVertex.e1[1] = j 

CurVertex.e2[0] = i 

CurVertex.e2[1] = k 

CurVertex.Index = CurCEVertexIndex++ 

 

Step10. Repeat Step11 for k = i+1 to j 

 

Step11. Check if (vertex [j] [k] != 0), if yes, 

Set CEVertex  &CurVertex = CeVertices[CurCEVertexIndex] 

CurVertex.e1[0] = i 

CurVertex.e1[1] = j 

CurVertex.e2[0] = k 

CurVertex.e2[1] = j 

CurVertex.index = CurCEVertexIndex++ 

 

Step12. // Create common-edge graph 

Repeat Step 12 to Step17 for i = 1 to CurCEVertexIndex 

 

Step13. Repeat Step 13 to Step17 for j = i+1 to 

CurCEVertexIndex 

 

Step14.   Set CEVertex   &c1 = CeVertices[i] 

                &c2 = CeVertices[j] 

 

Step15. Set sign = 0  

 

Step16. // Find if there is a common edge 

Check if (c1.e1[0] == c2.e1[0] &&c1.e1[1] == c2.e1[1]) // 

c1e1 == c2e1 
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Set sign = vertex[c1.e1[0]][c1.e1[1]]; // Sign of common edge 

else check if (c1.e1[0] == c2.e2[0] && c1.e1[1] == c2.e2[1]) 

Set sign = vertex[c1.e1[0]][c1.e1[1]]; 

else check if (c1.e2[0] == c2.e1[0] && c1.e2[1] == c2.e1[1]) 

Set sign = vertex[c1.e2[0]][c1.e2[1]]; 

else check if (c1.e2[0] == c2.e2[0] && c1.e2[1] == c2.e2[1]) 

Set sign = vertex[c1.e2[0]][c1.e2[1]]; 

CeGraph[i][j] = sign; CeGraph[j][i] = sign;  

 

Step17. Set CeGraph[i][j] = sign; 

              CeGraph[j][i] = sign; 

 

Step18. Print CeGraph i.e common-edge sigraph. 

 

Complexity of computation involved in above algorithm 

 

In Step2, we have entered n x n matrix, thus complexity for 

this step is O(n2). 

 

Then in Step4 first we have to search for non zero entries in 

adjacency matrix and then corresponding to each such entry, 

say (i, jth) entry, we have to search for non zero entries in row 

i, column i and column j as in Step5. Then, for each such non 

zero entry, say (i, kth) entry in ith row,we have to find vertex in 

CE(S) as in Step10. That way common-edge graph is 

computed and for sign of the edge we need to again traverse 

the matrix as in Step16. 

 

Thus complexity of this step = O(n3  x n) = O(n4). 

 

Hence complexity of computation involved in above 

algorithm is O(n4), where n is number of vertices in S.  

 

3.3 Conclusion 
Thus, common-edge sigraph from a given sigraph can be 

implemented in two ways. First part takes input in the form of 

two matrices and has complexity O(n3) whereas second part 

takes only one matrix as input and with complexity O(n4). 

There is a trade-off between space and time complexity. 

Depending on nature of the problem, implementation of the 

above algorithm can be done in any of the way. 

 

4. ALGORITHM TO DETECT 

BALANCING OF A SIGRAPH 
Harary and Kabell [19] have proposed an algorithm to detect 

balance in signed graphs in O(n) steps. But since matrix is 

used as an input to the signed graph, code named 

“BALANCE” is defined, to check balancing of a given 

sigraph, where vertices can also be termed as nodes from 

algorithmic point of view in O(n2) steps: 

 

Step1. Enter the number of vertices i.e. n of sigraph S. 

 

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with 

enteries 0, 1 and -1 of sigraph S where i = 1 to n and  j = 1 to 

n. 

 

Step3. Print the given sigraph. 

 

Step4. Set IsBalanced = true. 

Step5. Repeat Step5 for i = 1 to n && IsBalanced 

      5.1 if (!IsVisited [i]) 

                 5.1.1 Set IsVisited[i] = true 

                          IsGroup[i] = true 

                          Push back i and Group1 

     5.2 While ((!queue.empty()) && IsBalanced) 

               5.2.1 Set CurGroup = queue.front() and  

                         Set g = Cur.second 

                5.2.2 Repeat Step5.2.2 for j = 1 to n && IsBalanced 

                        5.2.2.1 Check if vertex [Cur.first [j] == 1)  

                                     If No, Goto 5.2.2.2 

                                     If yes, check if (g.Othergroup !          

                                     Curgroup[j] == true ) 

                                      If yes, Set IsBalanced = false and Print  

                                     j is in both groups 

                                     else check if (!IsVisited [j]) 

                                     Set g.Othergroup ! Curgroup[j] = true          

                                      IsVisited[j] = true 

                                      Push back j and Othergroup 

                          5.2.2.2 Check if vertex [Cur.first [j] == -1) 

                                      If No, Goto Step6 

                                       If yes, check if (g.Curgroup[j]== true) 

                                      If yes, Set IsBalanced = false and                   

                                      Print j is in both groups 

                                     else check if (!IsVisited [j]) 

                                      Set (g.Othergroup!Curgroup[j] = true ) 

                                     IsVisited[j] = true 

                                     Push back j and Othergroup 

 

Step6.  If (IsBalanced) Print “Sigraph is balanced”  

            else Print “Sigraph not balanced” 

 

Step7. Exit  

 

Complexity of computation 

In Step2, we have to assign distinct numbers to all the non-

zero entries in adjacency matrix. Since we have entered n x n 

matrix, thus we need to check n2 entries. 

 

Hence complexity for this step is O(n2). 

 

In Step5 we visit each vertex and for each vertex we find 

adjacent edges incident to it and groups are assigned 

depending on whether the entry is positive or negative assign 

group to each non-zero entry. Thus 5.2.1 and 5.2.2 are 

repeated till queue is not empty. Since there are n2 entries, 

 

Complexity for this step is O(n2). 

 

Thus, Total complexity involved = O(n2) + O(n2) = O(n2). 

 

Hence complexity of computation involved in above 

algorithm is O(n2) which is optimal in nature, where n is 

number of vertices in S. 
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Figure 2: S1 is balanced and S2 is unbalanced 

 

 

5. ALGORITHM TO DETECT 

BALANCING IN COMMON-EDGE 

SIGRAPHS 
The algorithm to detect balancing in common-edge sigraph is 

based on the characterization given by Acharya & Sinha[6]. 

It uses following functions: 

MAX denotes maximum number of vertices 

n = number of vertices 

struct CEVertex // Represents 2 edges 

int e1[2]   // Edge 1 

e2[2] // Edge 2 

index - Index in new graph 

Step1. Enter the number of vertices i.e. n of sigraph S. 

 

Step2. Enter the n x n adjacency matrix i.e. vertex [i] [j] with 

enteries 0, 1 and -1 of sigraph S where i = 1 to n and j = 1 to n. 

 

Step3. Implement algorithm defined in Section 3 to obtain 

CE(S). 

 

Step4. Implement algorithm defined in Section 4 to check 

whether S is balanced. // First condition check 

 

Step5. If S is balanced, Goto Step6 else Goto Step18. 

 

Step6. // Checking degree requirement 

Repeat Step6 to Step16 for v = 1 to n && IsCommonbal 

 

Step7. Set NbPositiveEdge = 0 

NbNegativeEdge = 0 

NbTotalEdge = 0 

 

Step8. Repeat Step8 to Step9 for j = 1 to n 

 

Step9.  if (vertex [i] [j] == 1) NbPositiveEdge++ 

if (vertex [i] [j] == -1)  NbNegativeEdge++ 

if ((vertex [i] [j] == 1)  || (vertex [i] [j] == -1)) NbTotalEdge++ 

 

Step10. if (NbtotalEdge > 3),  if yes, 

check if(NbNegativeEdge !=0),  if yes, 

Print “Degree Requirement not satisfied, i.e condition ‘a’ 

fails” 

Print “Hence, CE(S) is not balanced” and Goto Step25 

 

Step11.  if (NbTotalEdge == 3), if yes 

check if((NbNegativeEdge != 0) || (NbNegativeEdge != 2)), 

 if yes, 

Print “Degree requirement not satisfied, i.e condition ‘b’ fails” 

Print “Hence, CE(S) is not balanced” and Goto Step25 

 

Step12. //check condition ‘c’ with complexity O(n4) 

if (NbTotalEdge ≥ 3) , if yes,  

Print “Vertex where degree is greater than equal to 3 = ” v 

 

 

Step13. Repeat Step13 to Step16 for x = 1 to n 

 

Step14. Repeat Step14 to Step16 for w = 1 to n 

 

Step15. Repeat Step15 to Step16 for y = 1 to n 

 

Step16.  Check 

if((vertex[x][v]!=0)&&(vertex[y][w]!=0)&&(vertex[v][w]==-

1)&&(v!=y)&&(y!=x)&&(if yes, print “Third condition does 

not satify at ” x - v - w – y  

“Therefore, Common-edge Sigraph is not balanced” 

Set isCommonbal=false 

 

Step17. //check condition ‘c’ with complexity O(n3) 

 

Step18. Repeat Step18 to Step23 for v = 1 to n. 

 

Step19. Repeat Step19 to Step23 for w = 1 to n. 

 

Step20. Check if (vertex[w][v] ==1) , If yes, Goto Step21 

 

Step21. Repeat Step21 for x = 1 to n. 

 

Check if (vertex[x][v] ==-1 ), If yes, Set isedgewithv = 1 

 

Step22. Repeat Step22 for y = 1 to n. 

Check if (vertex[y][w] ==-1 ), If yes, Set isedgewithw = 1 

 

Step23. Check if ((isedgewithv!=0) && (isedgewithw!=0)),  

If yes, print “Third condition does not satify at ” x - v - w - y 

“Therefore, Common-edge Sigraph is not balanced” 

Set isCommonbal=false 

 

Step24. Print “CE(S) is balanced” 

 

Step25. Exit 

Complexity of computation involved in above algorithm 

In Step2, since we input a graph of order n x n, complexity of 

this step = O(n2). 

In Step3, we compute CE(S) as defined in Section 3, therefore, 

Complexity of this step = O(n4) or O(n3). 

In Step4, we check whether S is balanced or not as defined in 

Section 4, therefore, 

Complexity of this step = O(n2). 

 

In Step7 and Step9, since we have to traverse each node of the 

graph and calculate number of positive, negative and total 

edges of the graph and for this we traverse each row and each 

column,  
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Thus complexity of this step = O(n2). 

 

In Step10, we check  ‘a’ condition for each vertex, therefore, 

Complexity of this step = O(n). 

In Step11, we check ‘b’ condition for each vertex, therefore, 

Complexity of this step = O(n).  

 

 

 
 

 

Figure 3: A Sigraph S such that CE(S) is balanced 

 

 

In Step12, we check condition ‘c’, for this we have to traverse 

the graph and find path of length 3, i.e. Step13, Step14 and 

Step15 are repeated ‘n’ times and for each vertex, 

Complexity of this step = O(n3) × n = O(n4). 

 

Further, to improve the complexity in condition ‘c’, we 

implement Step17 to Step23, where we find first positive edge 

vw. Then we find adjacent edges from vertex v and w and if 

there is any edge adjacent we set value equal to 1. 

 

Complexity of this step = O(n2) × n = O(n3). 

 

Total maximum complexity = O(n2) + O(n4) + O(n2) + O(n2) 

+ O(n) + O(n) + O(n4)  =  O(n4). 

 

Optimal complexity = O(n2) + O(n3) + O(n2) + O(n2) + O(n) + 

O(n)+ O(n3) = O(n3). 

 

Hence, complexity of computation involved in above 

algorithm is O(n3), where n is number of vertices in S. 

 

6. CONCLUSION AND SCOPE 
In this paper, an algorithmic approach is depicted to convert 

signed graph S into common-edge sigraph CE(S) and detect 

whether it is balanced or not in O(n4) steps. Further 

complexity is reduced to O(n3) steps. This way, algorithm 

optimality is proved. We can extend our algorithm to detect 

common-edge sigraph and output its root common-edge 

sigraph. Also, algorithm can be developed to obtain iterated 

common-edge sigraph and S-consistent common-edge 

sigraphs. These problems are important, at least from the 

socio-psychological point of view that they might help 

understand how interacting dyads in a social network tend to 

change the social structure in a way prescribed by the 

structure of common-edge sigraph of the initial social 

network; structural evolution of social networks has been a 

topic of current research interest (e.g., see, Holland & 

Leinhardt [20]; Acharya [1]; Acharya & Acharya [3, 4]; 

Doreian [14, 15, 16]; Kovchegov [24, 25, 26]). 
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